
C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Front
February 4, 2009 9:56 am

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Beta Beta Beta Beta
UniVerse
UCI Developer’s Guide
Version 10.3
February, 2009

ii UCI Developer’s G

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Front
February 4, 2009 9:56 am

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
IBM Corporation
555 Bailey Avenue
San Jose, CA 95141

Licensed Materials – Property of IBM

© Copyright International Business Machines Corporation 2008, 2009. All rights reserved.

AIX, DB2, DB2 Universal Database, Distributed Relational Database Architecture, NUMA-Q, OS/2, OS/390, and
OS/400, IBM Informix®, C-ISAM®, Foundation.2000 ™, IBM Informix® 4GL, IBM Informix® DataBlade® module,
Client SDK™, Cloudscape™, Cloudsync™, IBM Informix® Connect, IBM Informix® Driver for JDBC, Dynamic
Connect™, IBM Informix® Dynamic Scalable Architecture™ (DSA), IBM Informix® Dynamic Server™, IBM
Informix® Enterprise Gateway Manager (Enterprise Gateway Manager), IBM Informix® Extended Parallel Server™,
i.Financial Services™, J/Foundation™, MaxConnect™, Object Translator™, Red Brick® Decision Server™, IBM
Informix® SE, IBM Informix® SQL, InformiXML™, RedBack®, SystemBuilder™, U2™, UniData®, UniVerse®,
wIntegrate® are trademarks or registered trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company
Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of others.

This product includes cryptographic software written by Eric Young (eay@cryptosoft.com).

This product includes software written by Tim Hudson (tjh@cryptosoft.com).

Documentation Team: Claire Gustafson, Shelley Thompson, Anne Waite

US GOVERNMENT USERS RESTRICTED RIGHTS

Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
uide

Table of Contents

:\Prog
ebrua

Table of
Contents

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Preface
Organization of This Manual viii
Documentation Conventions. ix

Hungarian Naming Conventions xi
Help . xii
UniVerse Documentation. xiii
Related Documentation xvi
API Documentation xvii

Chapter 1 Introduction
What Is an SQL Call Interface?. 1-3

SQL Call Interface Versus Embedded SQL 1-3
Advantages of Call Interfaces. 1-4

Language Support 1-5
Operating Platforms 1-6
Compliance with the ODBC 2.0 Standard 1-7
Requirements for UCI Applications 1-8

Chapter 2 Getting Started
Installing UCI . 2-3

On UNIX Systems 2-3
On Windows Systems 2-4
Version Compatibility 2-4

Creating and Running the Sample Application 2-6
Creating and Running Client Programs 2-8
UCI Administration 2-10

Maintaining the UCI Configuration File 2-10
Administering the UniRPC 2-10
ram Files\Adobe\FrameMaker8\UniVerse 10.3\uci\UCITOC.doc (bookTOC.template)
ry 4 2009 9:57 am

iv UCI
Chapter 3 Configuring UCI
Configuring a Database Server for UCI 3-3

UniRPC . 3-3
UniVerse NLS 3-4

Configuring a Client System for UCI 3-5
Configuration Parameters. 3-5
Editing the UCI Configuration File 3-8
Changing UCI Configuration File Parameters 3-10
Configuring UCI for an NLS-Enabled UniVerse Server 3-12

Chapter 4 Developing UCI Applications
Writing a UCI Application Program 4-3
Initializing Resources 4-4

Allocating the Environment 4-4
Allocating the Connection 4-5
Connecting to the Server 4-5
Allocating Statement Handles 4-9

Processing SQL Statements 4-10
Transaction Modes 4-10
Function Calls 4-11
Executing an SQL Statement 4-11
Processing Output from SQL Statements 4-15
Checking for Errors 4-17
Freeing the SQL Statement Environment 4-18

Terminating the Connection 4-19
Transaction Processing 4-20

Nested Transactions 4-20
Transaction Isolation Levels 4-22

Handling Multivalued Columns 4-23
Setting the Data Model Mode 4-23
Dynamic Normalization and Associations 4-25

Chapter 5 Calling and Executing UniVerse Procedures
What Can You Call as a UniVerse Procedure? 5-3
Processing UniVerse Procedure Results 5-5

Print Result Set 5-5
Multicolumn Result Set 5-6
Affected-Row Count 5-6
Output Parameter Values 5-6

Processing Errors from UniVerse Procedures 5-7
Developer’s Guide

Chapter 6 How to Write a UniVerse Procedure
Using UniVerse Paragraphs, Commands, and Procs as Procedures 6-3
Writing UniVerse BASIC Procedures 6-4

Parameters Used by a UniVerse BASIC Procedure 6-4
SQL Results Generated by a UniVerse BASIC Procedure 6-5
Using @HSTMT in a UniVerse BASIC Procedure to Generate SQL Results 6-

7
Using the @TMP File in a UniVerse BASIC Procedure. 6-9
Errors Generated by a UniVerse BASIC Procedure 6-12
Restrictions in UniVerse BASIC Procedures 6-15
Fetching Rows and Closing @HSTMT Within a Procedure 6-15
Hints for Debugging a Procedure 6-16

Chapter 7 Data Types
Data Types and Data Type Coercion 7-3

C Data Types Supported 7-3
SQL Data Types Supported 7-9
Data Type Coercion 7-10

Chapter 8 UCI Functions
Function Call Summary 8-4

Variables . 8-5
Search Patterns 8-7
Return Values 8-8
Error Codes 8-8
Use of Hungarian Naming Conventions 8-8

Functions . 8-10
SQLAllocConnect 8-11
SQLAllocEnv 8-13
SQLAllocStmt . 8-15
SQLBindCol 8-17
SQLBindMvCol 8-22
SQLBindMvParameter 8-25
SQLBindParameter 8-27
SQLCancel 8-32
SQLColAttributes 8-34
SQLColumns 8-41
SQLConnect 8-45
SQLDataSources 8-49
SQLDescribeCol 8-52
Table of Contents v

vi UCI
SQLDisconnect 8-56
SQLError 8-58
SQLExecDirect 8-62
SQLExecute 8-66
SQLFetch 8-69
SQLFreeConnect 8-73
SQLFreeEnv 8-75
SQLFreeMem 8-77
SQLFreeStmt 8-78
SQLGetData 8-81
SQLGetFunctions 8-85
SQLGetInfo 8-89
SQLNumParams 8-98
SQLNumResultCols 8-100
SQLParamOptions 8-102
SQLPrepare 8-105
SQLRowCount 8-109
SQLSetConnectOption 8-111
SQLSetParam 8-117
SQLTables 8-120
SQLTransact 8-125
SQLUseCfgFile 8-129

Appendix A Error Codes
SQLSTATE Error Codes A-2
UniVerse SQL Error Codes. A-6
UniRPC Error Codes. A-12

Appendix B The UCI Sample Program
Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Preface
This manual describes how to use UCI (Uni Call Interface). UCI is a C-language
application programming interface that lets application developers create client
programs that use SQL functions to access data in UniVerse and UniData databases.
You should have a working knowledge of UniVerse or UniData, C, and SQL, and
have an understanding of client/server protocols.
 vii

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Preface
2/4/09
Organization of This Manual
This manual contains the following:

Chapter 1, “Introduction,” describes UCI, its relationship to the ODBC 2.0 standard,
and what you need to run it.

Chapter 2, “Getting Started,” tells how to install UCI, how to run the sample appli-
cation program, and how to compile, link, install, and execute a client application
program that uses UCI.

Chapter 3, “Configuring UCI,” tells how to modify the configuration file (uci.config)
that fine-tunes the UCI process.

Chapter 4, “Developing UCI Applications,” explains how to develop a UCI
application.

Chapter 5, “Calling and Executing UniVerse Procedures,” describes how to call and
execute procedures stored on a UniVerse data source.

Chapter 6, “How to Write a UniVerse Procedure,” describes how to write a UniVerse
procedure.

Chapter 7, “Data Types,” is the technical reference for data types.

Chapter 8, “UCI Functions,” is the technical reference for UCI function calls.

Appendix A, “Error Codes,” lists the SQLSTATE return codes and their meaning.

Appendix B, “The UCI Sample Program,” contains ucisample.c, an annotated UCI
client program.

The Glossary defines terms used in this manual.
viii UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, and
options. In text, bold indicates keys to press, function names,
menu selections, and MS-DOS commands.

UPPERCASE In syntax, uppercase indicates database commands, keywords,
and options; UniVerse BASIC statements and functions; and
SQL statements and keywords. In text, uppercase also indicates
database identifiers such as file names, account names, schema
names, and Windows file names and paths.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and paths.

Courier Courier indicates examples of source code and system output.

Courier Bold In examples, courier bold indicates characters the user types or
keys the user presses (for example, <Return>).

[] Brackets enclose optional items. Do not type the brackets unless
indicated.

{ } Braces enclose nonoptional items from which you must select at
least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

 I Item mark. For example, the item mark (I) in the following
string delimits elements 1 and 2, and elements 3 and 4:
1I2F3I4V5

 F Field mark. For example, the field mark (F) in the following
string delimits elements FLD1 and VAL1:
FLD1FVAL1VSUBV1SSUBV2

Documentation Conventions
 ix

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Preface
2/4/09
The following conventions are also used:

Syntax definitions and examples are indented for ease in reading.
All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.
Syntax lines that do not fit on one line in this manual are continued on subse-
quent lines. The continuation lines are indented. When entering syntax, type
the entire syntax entry, including the continuation lines, on the same input
line.

Hungarian Naming Conventions
As explained in Chapter 8, “UCI Functions,” certain elements of the Hungarian
naming convention are used as prefixes and tags in the detailed descriptions of UCI
calls. Examples include:

 V Value mark. For example, the value mark (V) in the following
string delimits elements VAL1 and SUBV1:
FLD1FVAL1VSUBV1SSUBV2

 S Subvalue mark. For example, the subvalue mark (S) in the
following string delimits elements SUBV1 and SUBV2:
FLD1FVAL1VSUBV1SSUBV2

 T Text mark. For example, the text mark (T) in the following string
delimits elements 4 and 5: 1F2S3V4T5

Prefix or Tag Description

ipar index parameter

pib pointer to an index byte

rgb range (array) of bytes

UCI Prefixes and Tags

Convention Usage

Documentation Conventions (Continued)
x UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Help
To get Help about UCI, choose Programs -> IBM U2 -> UniDK -> UCI – Help from
the Start menu.
 xi

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Preface
2/4/09
UniVerse Documentation
UniVerse documentation includes the following:

UniVerse Installation Guide: Contains instructions for installing UniVerse 10.3.

UniVerse New Features Version 10.3: Describes enhancements and changes made
in the UniVerse 10.3 release for all UniVerse products.

UniVerse BASIC: Contains comprehensive information about the UniVerse BASIC
language. It includes reference pages for all UniVerse BASIC statements and
functions. It is for experienced programmers.

UniVerse BASIC Commands Reference: Provides syntax, descriptions, and
examples of all UniVerse BASIC commands and functions.

UniVerse BASIC Extensions: Describes the following extensions to UniVerse
BASIC: UniVerse BASIC Socket API, Using CallHTTP, and Using WebSphere MQ
with UniVerse.

UniVerse BASIC SQL Client Interface Guide: Describes how to use the BASIC
SQL Client Interface (BCI), an interface to UniVerse and non-UniVerse databases
from UniVerse BASIC. The BASIC SQL Client Interface uses ODBC-like function
calls to execute SQL statements on local or remote database servers such as
UniVerse, IBM, SYBASE, or INFORMIX. This book is for experienced SQL
programmers.

Administering UniVerse: Describes tasks performed by UniVerse administrators,
such as starting up and shutting down the system, system configuration and mainte-
nance, system security, maintaining and transferring UniVerse accounts, maintaining
peripherals, backing up and restoring files, and managing file and record locks, and
network services. This book includes descriptions of how to use the UniVerse Admin
program on a Windows client and how to use shell commands on UNIX systems to
administer UniVerse.

Using UniAdmin: Describes the UniAdmin tool, which enables you to configure
UniVerse, configure and manager servers and databases, and monitor UniVerse
performance and locks.

UniVerse Security Features: Describes security features in UniVerse, including
configuring SSL through UniAdmin, using SSL with the CallHttp and Socket
interfaces, using SSL with UniObjects for Java, and automatic data encryption.
xii UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse Transaction Logging and Recovery: Describes the UniVerse transaction
logging subsystem, including both transaction and warmstart logging and recovery.
This book is for system administrators.

UniVerse System Description: Provides detailed and advanced information about
UniVerse features and capabilities for experienced users. This book describes how to
use UniVerse commands, work in a UniVerse environment, create a UniVerse
database, and maintain UniVerse files.

UniVerse User Reference: Contains reference pages for all UniVerse commands,
keywords, and user records, allowing experienced users to refer to syntax details
quickly.

Guide to RetrieVe: Describes RetrieVe, the UniVerse query language that lets users
select, sort, process, and display data in UniVerse files. This book is for users who
are familiar with UniVerse.

Guide to ProVerb: Describes ProVerb, a UniVerse processor used by application
developers to execute prestored procedures called procs. This book describes tasks
such as relational data testing, arithmetic processing, and transfers to subroutines. It
also includes reference pages for all ProVerb commands.

Guide to the UniVerse Editor: Describes in detail how to use the Editor, allowing
users to modify UniVerse files or programs. This book also includes reference pages
for all UniVerse Editor commands.

UniVerse NLS Guide: Describes how to use and manage UniVerse’s National
Language Support (NLS). This book is for users, programmers, and administrators.

UniVerse SQL Administration for DBAs: Describes administrative tasks typically
performed by DBAs, such as maintaining database integrity and security, and
creating and modifying databases. This book is for database administrators (DBAs)
who are familiar with UniVerse.

UniVerse SQL User Guide: Describes how to use SQL functionality in UniVerse
applications. This book is for application developers who are familiar with UniVerse.

UniVerse SQL Reference: Contains reference pages for all SQL statements and
keywords, allowing experienced SQL users to refer to syntax details quickly. It
includes the complete UniVerse SQL grammar in Backus Naur Form (BNF).
 xiii

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Preface
2/4/09
Related Documentation
The following documentation is also available:

UniVerse GCI Guide: Describes how to use the General Calling Interface (GCI) to
call subroutines written in C, C++, or FORTRAN from BASIC programs. This book
is for experienced programmers who are familiar with UniVerse.

UniVerse ODBC Guide: Describes how to install and configure a UniVerse ODBC
server on a UniVerse host system. It also describes how to use UniVerse ODBC
Config and how to install, configure, and use UniVerse ODBC drivers on client
systems. This book is for experienced UniVerse developers who are familiar with
SQL and ODBC.

UV/NET II Guide: Describes UV/Net II, the UniVerse transparent database
networking facility that lets users access UniVerse files on remote systems. This book
is for experienced UniVerse administrators.

UniVerse Guide for Pick Users: Describes UniVerse for new UniVerse users familiar
with Pick-based systems.

Moving to UniVerse from PI/open: Describes how to prepare the PI/open
environment before converting PI/open applications to run under UniVerse. This
book includes step-by-step procedures for converting INFO/BASIC programs,
accounts, and files. This book is for experienced PI/open users and does not assume
detailed knowledge of UniVerse.
xiv UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
API Documentation
The following books document application programming interfaces (APIs) used for
developing client applications that connect to UniVerse and UniData servers.

Administrative Supplement for APIs: Introduces IBM’s seven common APIs, and
provides important information that developers using any of the common APIs will
need. It includes information about the UniRPC, the UCI Config Editor, the
ud_database file, and device licensing.

UCI Developer’s Guide: Describes how to use UCI (Uni Call Interface), an interface
to UniVerse and UniData databases from C-based client programs. UCI uses ODBC-
like function calls to execute SQL statements on local or remote UniVerse and
UniData servers. This book is for experienced SQL programmers.

IBM JDBC Driver for UniData and UniVerse: Describes UniJDBC, an interface to
UniData and UniVerse databases from JDBC applications. This book is for experi-
enced programmers and application developers who are familiar with UniData and
UniVerse, Java, JDBC, and who want to write JDBC applications that access these
databases.

InterCall Developer’s Guide: Describes how to use the InterCall API to access data
on UniVerse and UniData systems from external programs. This book is for experi-
enced programmers who are familiar with UniVerse or UniData.

UniObjects Developer’s Guide: Describes UniObjects, an interface to UniVerse and
UniData systems from Visual Basic. This book is for experienced programmers and
application developers who are familiar with UniVerse or UniData, and with Visual
Basic, and who want to write Visual Basic programs that access these databases.

UniObjects for Java Developer’s Guide: Describes UniObjects for Java, an interface
to UniVerse and UniData systems from Java. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with Java, and who want to write Java programs that access these databases.

UniObjects for .NET Developer’s Guide: Describes UniObjects, an interface to
UniVerse and UniData systems from .NET. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with .NET, and who want to write .NET programs that access these databases.
 xv

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Preface
2/4/09
Using UniOLEDB: Describes how to use UniOLEDB, an interface to UniVerse and
UniData systems for OLE DB consumers. This book is for experienced programmers
and application developers who are familiar with UniVerse or UniData, and with
OLE DB, and who want to write OLE DB programs that access these databases.
xvi UCI Developer’s Guide

:\Prog
ebrua
1Administering UniData on Windows NT or Windows 2000
0

1
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Introduction
What Is an SQL Call Interface? 1-3
 SQL Call Interface Versus Embedded SQL 1-3
 Advantages of Call Interfaces 1-4
Language Support 1-5
Operating Platforms 1-6
Compliance with the ODBC 2.0 Standard 1-7
Requirements for UCI Applications 1-8
les\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch1TOC.fm
09 9:57 am Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch1
2/4/09
This chapter provides an introduction to UCI (Uni Call Interface). UCI is a
C-language application programming interface (API), enabling application
programmers to write client programs that use SQL function calls to access data in
UniVerse and UniData databases.

UCI is designed for use by third-party application developers, tools vendors, and end-
user developers who want to write C-hosted, SQL-based client programs for use with
tables and files in a database account.
1-2 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
What Is an SQL Call Interface?
UCI is referred to as an SQL call interface because it is an API that uses function calls
to invoke dynamic SQL statements.

Dynamic SQL functionality lets a client application both generate and execute SQL
statements at run time. Generally, each SQL statement is prepared before execution,
with the database server generating a data access plan and a description of the result
set; the statement can then be executed repeatedly using the same access path,
reducing processing overhead. Another significant feature of dynamic SQL is the
ability to include parameters in SQL statements. Parameters are like host variables in
embedded SQL, with values assigned to the parameters before execution or retrieved
from them after execution.

SQL Call Interface Versus Embedded SQL
An SQL call interface differs from an embedded SQL interface in how it invokes
SQL. An application containing embedded SQL must first be passed through a
precompiler to convert the embedded SQL statements into the language of the host
program. The output from this precompilation is then compiled by the host language
compiler, and the compiled code is bound to the database and executed.

An application using an SQL call interface requires neither precompilation nor
binding. Instead, it calls upon a standard set of functions to execute SQL statements
at execution time. Call interfaces are straightforward and easy to use for
programmers familiar with function call libraries. Host variables and other artifacts
of embedded SQL are not needed. Instead of passing the SQL statements through a
precompiler, application programmers use the interface directly.

Advantages of Call Interfaces
The call interface approach enhances application portability since there is no need for
a product-specific precompiler. Client applications can be distributed as compiled
applications or run-time libraries instead of as source code that must be precompiled.
Moreover, a call interface application does not need application-controlled global
data areas such as SQLCA and SQLDA used in the embedded SQL approach.
Instead, the call interface allocates and manages these structures, providing a handle
with which the application can refer to them.
 1-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch1
2/4/09
Language Support
UCI is targeted to application development in C, but the library is linkable with and
works with client programs written in other languages, including C++.

UCI fully supports the UniVerse programmatic SQL language, as defined in UCI
Developer’s Guide.
1-4 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Operating Platforms
The database server can be either on the same platform as the application or on a
different platform accessible through either a TCP/IP or a LAN Manager network
(network software must be installed even for local access). Neither UniVerse nor
UniData needs to be installed on the client platform.

The network connection uses the UniRPC, a remote procedure call library.
 1-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch1
2/4/09
Compliance with the ODBC 2.0 Standard
UCI is modelled on the ODBC (Open Database Connectivity) standard as defined in
Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide. UCI is an API
oriented to UniVerse and UniData; it is not a UNIX or Windows ODBC product. It
models only the API side of the ODBC standard, not the driver/transport side. UCI is
a look-alike ODBC interface that should reduce the learning curve, training costs,
and development expenses for those familiar with ODBC specifications, or with the
UniVerse BASIC SQL Client Interface (also modelled on the ODBC standard).
1-6 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Requirements for UCI Applications
To run UCI applications, you need the following:

On a UNIX server:
UniVerse Release 8.3.3 or later; or UniData Release 5.1 or later
TCP/IP
UniRPC daemon (unirpcd) running

On a Windows server:
UniVerse Release 9.3.1 or later; or UniData Release 5.1 or later
TCP/IP, if connected to a UNIX client
TCP/IP or LAN Manager, if connected to a Windows client
UniRPC service (unirpc) running

On a UNIX client:
TCP/IP
Required UCI files copied from the software development kit (SDK)

On a Windows client:
TCP/IP, if connected to a UNIX server
TCP/IP or LAN Manager, if connected to a Windows server
Required UCI files copied from the software development kit (SDK)

To develop UCI applications, C-language development tools must be available on
your development system.
 1-7

:\Prog
ebrua
1Administering UniData on Windows NT or Windows 2000
0

2
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Getting Started
Installing UCI. 2-3
 On UNIX Systems 2-3
 On Windows Systems 2-4
 Version Compatibility 2-4
Creating and Running the Sample Application 2-6
Creating and Running Client Programs 2-8
UCI Administration 2-10
 Maintaining the UCI Configuration File 2-10
 Administering the UniRPC 2-10
les\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch2TOC.fm
09 9:57 am Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch2
2/4/09
This chapter explains how to:

Install UCI
Create and run the sample application
Create and run client application programs developed using UCI
Perform the necessary system administration
2-2 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Installing UCI
The installation of UCI is different on UNIX and Windows platforms.

On UNIX Systems
The UCI software development kit (SDK) is included on the UniVerse installation
media for UNIX systems. It is installed from the UCI group as part of the standard
UniVerse installation.

The installation process creates a directory called ucisdk in the unishared directory,
whose path is stored in the file /.unishared. The ucisdk directory contains the
following files:

File Description

UCI.h A C header file used when compiling UCI application programs.

UCI.a A library file used when linking UCI application programs.

ucimsg.text A message text file used when running UCI applications.

uci.config A configuration file used when running UCI applications.

ucisample.c C source code for a sample UCI program ucisample. Program code for
ucisample.c is in Appendix B, “The UCI Sample Program.”

Make.UCI A make file for building ucisample. Make.UCI varies from platform to
platform. The Make.UCI supplied is customized for your platform.

version A text file containing the current version of UCI.

ucisdk Directory Files
 2-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch2
2/4/09
On Windows Systems
UCI is available for 32-bit Windows only. It is one of several APIs in the UniDK (Uni
Development Kit). The UniDK is installed using the standard Microsoft Windows
installation procedure. The following UniDK files are used for UCI development:

platform is either i386 or ALPHA.

Version Compatibility
New versions of the UCI server components in the unishared directory are backward-
compatible with earlier versions, so you can always upgrade the unishared directory.
However, if you upgrade unishared in a new location, you can revert to the older
unishared directory by doing the following:

1. Shut down the database.

File Description

include\UCI.h A C header file used when compiling UCI
application programs.

lib\uci.lib A library file used when linking UCI appli-
cation programs.

bin\uci.dll A DLL used when running UCI applications.

bin\unirpc32.dll A DLL used when running UCI applications.

redist\platform\shared\ucimsg.text A message text file used when running UCI
applications.

samples\platform\uci\uci.config A configuration file used when running UCI
applications.

samples\platform\uci\ucisample.c C source code for a sample UCI program
ucisample. Program code for ucisample.c is in
Appendix B, “The UCI Sample Program.”

UniDK Files for UCI Development
2-4 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
2. If you have done any of the following since you last used the older
unishared directory:

Uninstalled the database without reinstalling in the same directory.
Upgraded the database in a different directory
Installed a new instance of the database

Copy the following files from the newer unishared directory to the older
one:

unishared\sharedby
unishared\unirpc\unirpcservices

Make sure these files have the same permissions and ownership as before.
3. On UNIX systems: Update the file /.unishared to contain the absolute

pathname of the older unishared directory.
On Windows platforms: Do the following:

Update the Registry Value
HKEY_LOCAL_MACHINE\SOFTWARE\ibm\unishared\path to contain the
absolute path of the older unishared directory.
Update the Registry Value
HKEY_LOCAL_MACHINE\SYSTEM\CurrentCon-
trolSet\Services\unirpc\ImagePath to contain the following path:
unishared\unirpc\unirpcd.exe
unishared is the full path of the older unishared directory.
Copy the file unishared\unirpc\unirpc32.dll.bak from the old directory
to the Windows\system32 directory, then rename it unirpc32.dll.
Restart your PC.

4. Restart the database.
 2-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch2
2/4/09
Creating and Running the Sample Application
The easiest way to create and run the sample application program is to do it on a
system where the database is installed, with the client connecting to localuv. You
cannot set up the data on a nonserver Windows system, because it is necessary to
invoke the database to run the sample.

To create and run the sample program ucisample, do the following:

1. On a UNIX server, change directories to the ucisdk directory and invoke
UniVerse, creating a database account if none exists.
On a Windows server, change directories to
UNIDK\SAMPLES\platform\UCI. platform can be i386 or ALPHA.

2. To create the 10 database demonstration files and populate them, at the
database prompt enter the following command on the server:
MAKE.DEMO.FILES
These files are used by the ucisample program.

3. On a UNIX server, exit the database and enter the following command:
make -f Make.UCI ucisample
Note: The system must contain development tools such as a C compiler,
linker, make utility, and the like. It must also contain a TCP/IP library.
On a Windows server, exit the database and enter the following command:
nmake ucisample
Note: nmake requires Microsoft Visual C/C++ V2, V4, V5, or the
equivalent.

4. If the make was successful, enter the following command on the client to run
the sample program:
ucisample

5. At the prompt, enter:
localuv
2-6 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
6. At the prompt, enter the location of the demo data files on the server. You
can specify the location as one of the following:

The name of a schema
The name of a database account
The full path of a schema directory

7. At the prompt, enter a user name that is valid on the server.
8. At the prompt, enter the user’s password. The password is not echoed to the

screen.
The sample program uses UCI to issue SQL statements against the files
created in step 2. As the program executes, it informs you of its progress.
 2-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch2
2/4/09
Creating and Running Client Programs
You can run your client application on any platform similar to the platform where you
created it. UniVerse need not be present on the system on which the client application
is running.

On a UNIX server, the UniRPC daemon (unirpcd) must be running. On a
Windows server, the unirpc service must be running. The unirpcservices file must
have an entry for uvserver or udserver. These conditions must be satisfied even if the
application is connecting to the local database. The procedures for administering the
UniRPC are described in the Administrative Supplement for Client APIs.

To create and run your own client application programs, complete the following
steps:

1. Use ucisample.c and Make.UCI or Makefile as examples.
On a UNIX client, to work in a directory other than ucisdk in the unishared
directory, copy ucisample.c and Make.UCI to the other directory, and mod-
ify Make.UCI to find the UCI.h include file and the UCI.a archive file. Now
create your own UCI program and compile and link it.
On a Windows client, to work in a directory other than \UNIDK\SAMPLES,
copy ucisample.c and Makefile to that directory and modify Makefile to find
the UCI.h include file and the UCI.lib library. Now create your own UCI
program and compile and link it.

2. To run your program on another system, copy the executable to an
appropriate directory on the other system. If your program is to run on a
Windows system, see the Redistribution Notes shipped with the UniDK for
details on distributing UCI-based applications.

3. Copy the UCI configuration file and ucimsg.text to an appropriate directory
on the client system, such as the /etc directory. These files must be in one of
the following directories:

Your current working directory.
The UV account directory. On UNIX systems, this directory is pointed
to by /.uvhome. On Windows systems, the directory is listed in the
Windows Registry.
On UNIX systems, the /etc directory. On Windows systems, one of the
directories specified in the PATH variable.
2-8 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
4. Before running the application, edit the UCI configuration file to define the
data source to which the application will connect. Use the UCI Config
Editor to create data source definitions in the UCI configuration file (for
details see Administrative Supplement for Client APIs).
The supplied UCI configuration file includes two data source definitions,
localuv and localud, for the local database. If your application needs to
connect to some other database, you must edit the UCI configuration file.
Chapter 3, “Configuring UCI,” provides more information about this
configuration file.
 2-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch2
2/4/09
UCI Administration
Once UCI has been installed, it needs little administration. The only major tasks are:

Maintaining the UCI configuration file (on the client)
Administering the UniRPC (on the server)

Maintaining the UCI Configuration File
On the client, system administration consists of maintaining the appropriate entries
in the UCI configuration file, described in Chapter 3, “Configuring UCI.” Changes
to this file should be relatively infrequent, and the system administrator can maintain
it using the UCI Config Editor or a text editor.

The client searches for the UCI configuration file (and the ucimsg.text file) in the
following places:

1. The current working directory.
2. The UV account directory.
3. On a UNIX system, the /etc directory. On a Windows platform, each

directory specified in the PATH environment variable.

Administering the UniRPC
On the server the UniRPC handles requests from client machines. The UniRPC is
required even if the server and client machines are the same. The UniRPC uses
TCP/IP or LAN Manager transport layer software to communicate between the client
and the server.

In particular, the UniRPC daemon (unirpcd) on UNIX systems, and the unirpc
service on Windows platforms, receive SQLConnect requests and start the appro-
priate server processes to support each UCI application. On UNIX each UCI
application has two supporting processes (uvserver and uvsrvhelpd) on the server
while the application is connected. On Windows platforms, a helper thread runs as
part of the uvserver process. The uvserver process uses the same amount of system
resources as a local database user.
2-10 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Before any UCI client applications can run, the administrator of the database server
must ensure that the UniRPC daemon or service is running on the server. The UNIX
server machine must be running Release 8.3.3 or later of UniVerse. The Windows
server machine must be running Release 9.3.1 or later.

See Administrative Supplement for Client APIs for more information about the
UniRPC, including how to do the following:

Start and stop the UniRPC daemon or service manually
Start the UniRPC daemon or service automatically
On UNIX, add nodes to and remove nodes from the network
Change the number of the UniRPC port

Note: Any change you make to the UniRPC service or the UniRPC daemon affects
all databases that use it.

Administrative Supplement for Client APIs also describes the structure and function
of the unirpcservices file in the unirpc directory. The unirpcservices file contains
entries for uvserver and udserver.
 2-11

:\Prog
ebrua
2Administering UniData on Windows NT or Windows 2000
0

3
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Configuring UCI
Configuring a Database Server for UCI. 3-3
 UniRPC . 3-3
 UniVerse NLS 3-4
Configuring a Client System for UCI 3-5
 Configuration Parameters. 3-5
 Editing the UCI Configuration File. 3-8
 Changing UCI Configuration File Parameters 3-10
 Configuring UCI for an NLS-Enabled UniVerse Server 3-12
les\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch3TOC.fm
09 9:57 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes how to configure both the client and the server systems for
UCI.
 3-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch3
2/4/09
Configuring a Database Server for UCI
The process of configuring a server system is minimal.

As of Release 8.3.3, any UniVerse system on a UNIX platform can be a
server for UCI client application programs.
As of Release 9.3.1, any UniVerse system on a Windows platform can be a
server for UCI client application programs.
As of Release 5.1, any UniData system on a UNIX or Windows platform
can be a server for UCI client application programs.

UniRPC
The UniVerse server (uvserver) uses the UniRPC facility (remote procedure call),
which is installed with UniVerse. To make UniVerse available as a server, the
UniRPC daemon (unirpcd) must be running on UNIX systems, or the unirpc service
must be running on Windows systems.

On UNIX systems, the UniRPC services file, unirpcservices, on the server must
contain an entry similar to the following:

uvserver /usr/ibm/uv/bin/uvsrvd * TCP/IP 0 3600

On Windows systems, the entry would be:

uvserver C:\IBM\UV\bin\uvsrvd.exe * TCP/IP 0 3600

When the client system requests a connection to a service on the server, the local
UniRPC daemon or service uses the unirpcservices file to verify that the client can
start the requested service, which in this case is uvserver. Once the daemon or service
is started, UCI clients can connect to the database server.

For more information about the UniRPC, see the Administrative Supplement for
Client APIs.
3-3 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse NLS
If UniVerse is running with NLS enabled, you must install any character maps needed
by clients. If you need to modify existing maps or derive appropriate new maps to
install, use the UniVerse NLS menus, described in the UniVerse NLS Guide. The
easiest way to ensure that client programs use that map is to see that the client’s UCI
configuration file contains the name of the new map.
 3-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch3
2/4/09
Configuring a Client System for UCI
Various parameters in the UCI configuration file on the client system control the
operation of UCI.

The following sections deal with those parameters of interest to UCI clients. Do not
change any of the other parameters in the UCI configuration file.

Configuration Parameters
Configuration parameters of interest to UCI developers are described in the following
table.

Warning: You can change the values of MAPERROR, MAXFETCHBUFF, and
MAXFETCHCOLS. If the UniVerse server to which you are connecting has NLS
enabled, you can also change the values of the NLS and NLSLC parameters.
Changing other parameters can make UCI unusable.

Parameter Description Default

AUTOINC Produces an SQLColAttributes report if the
column is an auto-increment column.

No

CASE Produces an SQLColAttributes report if the
column is case-sensitive.

Yes

DBMSTYPE Specifies the type of database you want to access
(UNIDATA, UNIVERSE, or any other database
type, such as DB2).

none

DESCB4EXEC Indicates if the database’s describe operation is
legal before executing the SQL statement (for
internal use only).

Yes

DSPSIZE Produces an SQLColAttributes report showing
the column display size.

Yes

HOST Specifies the name of the server machine or its
network IP address.

none

Configuration Parameters
3-5 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
MAPERROR Maps UniVerse error codes to standard ODBC
SQLSTATE error codes. Whenever the server
returns one of the mapped codes as an error
condition, UCI sets the SQLSTATE variable equal
to the five-character code defined in the ODBC
standard.

List

MARKERNAME Indicates if the database uses names for parameter
markers. If not, the ? (question mark) is the marker
character.

No

MAXFETCHBUFF Controls the maximum buffer size on the server to
hold data rows. The server usually fills this buffer
with as many rows as possible before sending data
to the client. If any single row exceeds the length of
MAXFETCHBUFF, SQLFetch fails, and you
should increase the value of this parameter.

8192
bytes

MAXFETCHCOLS Controls the maximum number of column values
the server can put in the buffer before sending data
to the client. If the number of columns in the result
set exceeds the number specified by
MAXFETCHCOLS, SQLFetch fails, and you
should increase the value of this parameter.

400
column
values

NETWORK Specifies the network used to access the data source
(TCP/IP or LAN).

none

NLSLCALL Specifies all components of a locale. none

NLSLCCOLLATE Specifies the name of a locale whose sort order to
use.

none

NLSLCCTYPE Specifies the name of a locale whose character type
to use.

none

NLSLCMONETARY Specifies the name of a locale whose monetary
convention to use.

none

NLSLCNUMERIC Specifies the name of a locale whose numeric
convention to use.

none

NLSLCTIME Specifies the name of a locale whose time
convention to use.

none

Parameter Description Default

Configuration Parameters (Continued)
 3-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch3
2/4/09
NLSLOCALE Specifies all components of a locale. none

NLSMAP Specifies the name of the server’s NLS map for the
connection. For a client to connect to the server
successfully, the server must be able to locate the
specified map, which must also be installed in the
server’s shared memory segment.

none

NULLABLE Produces an SQLDescribeCol and
SQLColAttributes report if the column is
nullable.

Yes

SEARCH Produces an SQLColAttributes report if the
column is searchable.

Yes

SERVICE Specifies the name of the server process for the
DBMSTYPE you specified. For UniData, specify
udserver; for UniVerse, specify uvserver.

none

TXBEHAVIOR Defines default autocommit/manual-commit trans-
action behavior. Normally, UniVerse is autocommit
by default.

1

TXCOMMIT Database SQL statement for committing a trans-
action (for internal use only).

No

TXROLL Database SQL statement for rolling back a trans-
action (for internal use only).

No

TXSTART Database SQL statement for starting a transaction
(for internal use only).

No

TYPENAME Produces an SQLColAttributes report showing
the name of the SQL TYPE for the column.

Yes

UNSIGNED Produces an SQLColAttributes report if the
column is UNSIGNED.

No

UPDATE Produces an SQLColAttributes report if the
column is updatable.

Yes

Parameter Description Default

Configuration Parameters (Continued)
3-7 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following parameters are not used by UCI. They control the UniVerse BASIC
SQL Client Interface, which allows data interchange between a UniVerse client
BASIC program and a non-UniVerse or UniVerse database.

Warning: Do not define these parameters for any data source that points to a
UniVerse or UniData database. If you do, the results may be unpredictable.

Editing the UCI Configuration File
To create or modify data source definitions, edit the UCI configuration file.

On UNIX client systems running UniVerse

Use the UniVerse System Administration menus or any text editor to edit the UCI
configuration file. The UniVerse System Administration menus are described in
UniVerse BASIC SQL Client Interface Guide.

On UNIX client systems not running UniVerse

Use any text editor to edit the UCI configuration file.

On Windows client systems

Use the UCI Config Editor or any text editor to edit the UCI configuration file. For
information about the UCI Config Editor, see the Administrative Supplement for
Client APIs.

DATEFETCH EODCODE MAXVARCHAR SMINTPREC

DATEFORM FLOATPREC PRECISION SQLTYPE

DATEPREC INTPREC REALPREC SSPPORTNUMBER

DBLPREC MAXCHAR SCALE USETGITX
 3-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch3
2/4/09
Default UCI Configuration File

On UNIX systems

The default UCI configuration file shipped with the database looks like this:

[ODBC DATA SOURCES]
<localuv>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = localhost

On Windows systems

The default UCI configuration file shipped with the database looks like this:

[ODBC DATA SOURCES]
<localuv>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = localhost
<localud>
DBMSTYPE = UNIDATA
NETWORK = TCP/IP
SERVICE = udserver
HOST = localhost

Warning: On Windows systems, do not change the HOST parameters of the
<localuv> and <localud> entries.

This default UCI configuration file lets you access a database on the same hardware
platform as the one on which your application is running.

Adding Data Source Definitions to the UCI Configuration File

You can add as many data source entries as you want, each with a different data
source name.
3-9 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
To access a remote database on a different platform, add an entry to the configuration
file for that database. For example, if the remote system you want to access is named
hq1, make up a data source name such as corp and change the UCI configuration file
as follows:

[ODBC DATA SOURCES]
<localuv>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = localhost
<corp>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = hq1

Note: The spaces surrounding the equal signs are required.

Changing UCI Configuration File Parameters
Two parameters you might want to change are MAXFETCHBUFF and
MAXFETCHCOLS. Use these parameters to increase the amount of data in each
buffer sent from the server to the client. This will improve performance by reducing
the number of data transfers between server and client.

MAXFETCHBUFF specifies the size of the buffer the server uses to hold data rows
before sending them to the client. MAXFETCHCOLS specifies the number of
column values the server can put in the buffer before sending them to the client. For
example, if MAXFETCHCOLS is set to 100 column values and you do a SELECT
of 40 columns, no more than two rows can be sent in any buffer, because the total
number of column values in two rows is 80. Three rows would contain 120 column
values, which exceeds the value of MAXFETCHCOLS.
 3-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch3
2/4/09
You can change these parameters for specific data sources or for all database
connections. Using the sample configuration file shown previously, you might add
entries for MAXFETCHBUFF and MAXFETCHCOLS as shown below to change
the internal default for those parameters to 16000 and 600, respectively:

[ODBC DATA SOURCES]
<localuv>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = localhost
<corp>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = hq1
[UNIVERSE]
MAXFETCHBUFF = 16000
MAXFETCHCOLS = 600

To make the data source corp use larger buffers, make the following changes:

[ODBC DATA SOURCES]
<localuv>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = localhost
<corp>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = hq1
MAXFETCHBUFF = 20000
MAXFETCHCOLS = 800
[UNIVERSE]
MAXFETCHBUFF = 16000
MAXFETCHCOLS = 600
3-11 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
In this situation, you have set the default for connections to UniVerse to 16000 and
600, but when you connect to the data source corp, the local settings of 20000 and
800 override the defaults.

Configuring UCI for an NLS-Enabled UniVerse Server
NLS (National Language Support) is fully documented in UniVerse NLS Guide. For
information about connecting to an NLS-enabled server, see Chapter 4, “Developing
UCI Applications.”

If clients need to override the default server map names and locale settings, you can
change the UCI configuration file to contain this information:

For each data source
For all UniVerse server connections

NLS users should note that the configuration file is in ASCII format. When you
specify NLS and locale settings in the configuration file, you need not make changes
to your programs to let client programs work with an NLS-enabled server.

Server Map

Use the NLSMAP parameter to specify the server map to use.

Server Locale

Use the following parameters to specify a locale’s components:

NLSLCTIME
NLSLCNUMERIC
NLSLCMONETARY
NLSLCCTYPE
NLSLCCOLLATE

Use the NLSLOCALE parameter to specify all of a locale’s components.

Use the NLSLCALL parameter to specify a slash-separated list of locale identifiers,
as set up in the server’s NLS.LC tables. The syntax for NLSLCALL is:

NLSLCALL = value1/value2/value3/value4/value5
 3-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch3
2/4/09
For example, you could specify:

NLSLOCALE = DE-GERMAN

Or you could specify:

NLSLCALL = NL-DUTCH/NL-DUTCH/DEFAULT/NL-DUTCH/NL-
DUTCH

This sets all components of the locale for this connection to those indicated by the
entry in the NLS.LC table with ID = NL-DUTCH, except for the LCMONETARY
entry, which is loaded from the NLS.LC.MONETARY table for the DEFAULT entry.

If there is more than one entry in the NLSLCALL entry, all entries must be nonempty
and must represent valid entries in the appropriate NLS.LC.category table.

You can also change only a single component of the locale:

NLSLCCOLLATE = NO-NORWEGIAN

This forces the server’s sort order to be Norwegian.

NLSLCCOLLATE is the most important locale parameter because it affects the order
in which rows are returned to the application.
3-13 UCI Developer’s Guide

:\Prog
ebrua
3Administering UniData on Windows NT or Windows 2000
0

4
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Developing UCI Applications
Writing a UCI Application Program 4-3
Initializing Resources 4-4
 Allocating the Environment 4-4
 Allocating the Connection 4-5
 Connecting to the Server 4-5
 Allocating Statement Handles 4-9
Processing SQL Statements 4-10
 Transaction Modes 4-10
 Function Calls 4-11
 Executing an SQL Statement 4-11
 Processing Output from SQL Statements 4-15
 Checking for Errors 4-17
 Freeing the SQL Statement Environment 4-18
Terminating the Connection 4-19
Transaction Processing 4-20
 Nested Transactions 4-20
 Transaction Isolation Levels 4-22
Handling Multivalued Columns 4-23
 Setting the Data Model Mode 4-23
 Dynamic Normalization and Associations 4-25
les\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4TOC.fm
09 9:57 am Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
This chapter describes the steps to develop a UCI application program. It covers how
to code the three major sections of a program—initializing, processing, and closing—
and then discusses related topics such as how to handle the database’s multivalued
columns and how to check for and handle errors.
4-2 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Writing a UCI Application Program
An application has three major phases, executed in the following sequence:

In addition to these phases, a program must deal with error returns, which can occur
at any point in its execution. It can also request information about the database and
its accessible tables and columns.

Note: In this chapter and those following, certain elements of the Hungarian naming
convention are used when describing the elements of UCI calls (see Use of
Hungarian Naming Conventions in Chapter 8, “UCI Functions.”).

An annotated sample application, ucisample.c, is in Appendix B, “The UCI Sample
Program.”

Phase Description

Initialization Connecting to the server and allocating and initializing resources in
preparation for SQL statement processing.

Processing Either passing SQL statements to UCI to retrieve and modify the data,
or calling and executing procedures stored on the data source.

Termination Freeing allocated resources, mainly data buffers identified by unique
handles, and disconnecting from the server.

Application Phases
 4-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
Initializing Resources
Before you can perform any actual processing, you must establish the necessary
connections. These are the four steps associated with this task:

1. Allocating an environment object (SQLAllocEnv)
2. Allocating a connection object (SQLAllocConnect)
3. Connecting to the data source (SQLConnect)
4. Allocating statement handles (SQLAllocStmt)

These steps dynamically allocate objects to be used by the client interface (UCI) for
storing essential data between calls, create a handle (a pointer to a structure) for these
areas, and return that handle to the application program. Subsequently the application
program can return that handle to the client interface, when necessary, as a parameter
of a call. For each initialization step there is a corresponding step in the termination
process that frees these objects and handles.

Allocating the Environment
SQLAllocEnv, the first call in an application program, allocates an environment and
returns a handle for it. The handle points to the data area that contains information
about the state of UCI, including a list of the connection handles owned by the
application. Some of this information is defined in UCI.h, a file included in the source
modules.

The environment is of use only to UCI software. The client application program has
no need of it, and its only job is to store the returned handle and to release it at the end.

An application must allocate an environment before it can do anything else. Each
application can have only one environment handle.

Allocating the Connection
The second step in initializing an application is to pass back the environment handle
just received and acquire a connection handle. The connection handle points to an
area containing information for the connection managed by UCI. This information
includes general status information, transaction status, and diagnostic information.
4-4 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
As with the environment handle, an application’s only responsibility in regard to the
connection handle is to store the returned handle before connecting to the data source
and to release the handle before terminating. Each application can have multiple
connection handles.

Connecting to the Server
The third step in initialization is to issue an SQLConnect call to connect to a data
source that will handle database operations for the client. A data source, as defined
in UCI, is an entry in the UCI configuration file (see Chapter 3, “Configuring UCI”).
This entry describes such things as the DBMS type (which for UCI is always
UNIVERSE or UNIDATA), the network connection (TCP/IP or LAN Manager), the
name of the required RPC server (uvserver), and the host (either localhost1, if the
server is on the same platform as the client, or the name or IP address of some remote
host).

Before issuing an SQLConnect call, an application can establish certain conditions
for the connection by issuing one or more SQLSetConnectOption calls. The
SQLSetConnectOption call can be used to specify the default transaction isolation
level, specify a data model (first normal form or nonfirst-normal form), specify the
NLS map table and locale information to use, or supply the user ID and password for
the connection, if required.

Use SQLSetConnectOption calls to specify the user name (SQL_OS_UID) and
password (SQL_OS_PWD) for logging in to a remote database server. On all systems
but Windows NT 3.51, if the host specified for this DSN is either localhost or the
TCP/IP loopback address (127.0.0.1), the user name and password are not required
and are ignored if specified. On Windows NT 3.51 systems, the user name and
password are always required, so you must specify localpc as the DSN (for infor-
mation about adding the localpc entry to the UCI configuration file, see Editing the
UCI Configuration File in Chapter 3, “Configuring UCI”).

You must provide several pieces of information to SQLConnect: the connection
pointer that was just returned by the SQLAllocConnect call, a data source name
(DSN), and the name of the SQL schema or database account containing the data.

An application can have more than one connection, for connecting to more than one
schema or account or to more than one database server.

To close a connection, call SQLDisconnect.

1. localpc on Windows NT 3.51 systems.
 4-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
Connecting to a UniVerse Server with NLS Enabled

NLS (National Language Support) is fully documented in the UniVerse NLS Guide.

When a UCI program connects to an NLS-enabled UniVerse server, the map and
locale values the server uses depend on the settings of the parameters in the server’s
uvconfig and UCI configuration files, as well as values from the client’s operating
system and its UCI configuration file. All these values can be explicitly set by the
client.

The UniVerse server honors the following configurable parameters in its uvconfig
file:

When the client application starts, it determines the default map and locale values to
send to the server as follows:

Parameter Description

NLSMODE Switches NLS mode on or off. A value of 1 indicates NLS is on, a
value of 0 indicates NLS is off.

NLSDEFSRVMAP Specifies the default map to be used for passing string arguments to
and from client programs. Used if the client does not assign an
explicit map.

NLSLCMODE Switches locale support on or off. A value of 1 enables locales for
the whole UniVerse system. The value is ignored if NLSMODE is
set to 0. A value of 0 turns off locales even if NLSMODE is set to 1.

NLSDEFSRVLC Specifies the default locale for the server, which is used by all client
programs accessing the server.

Configuration Parameters
4-6 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
1. It gets a map and locale from the client’s operating system.
On UNIX systems:

UCI gets the map from the UV_UCI_CHARMAP environment
variable, if found.
All five locale categories are first set to the value in the UVLANG
environment variable, if found.

On Windows systems:
UCI gets the map through GetACP(), which returns the CodePage and
prefixes it with WIN:. CodePage is an integer like 1252 or 1200 or 932.
UCI gets locale information through GetThreadLocaleString(), which
returns the ThreadLocale and prefixes it with WIN:. ThreadLocale is an
integer like 0409 or 0809 or 0C07.

2. It reads the UCI configuration file, if found, and sequentially replaces values
set by step 1 with values set by the UCI configuration file.

Client programs can use the SQLSetConnectOption call to override any of the
server’s default map and locale values.

If the specified mapping or locale information is incorrect, SQLConnect returns an
error and does not connect to the server.

Matching Client to Server

Certain combinations of clients and servers may not be able to transfer data reliably
because of a mismatch in the character mapping, locale settings, or both at the client
end.

UniVerse Release 9.4 (or Later) Client and Release 9.4 (or Later) Server

The following table shows which combinations of server map specification and
locale specification are allowed depending on the client type and the NLS status of
the server.
 4-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
UniVerse Release 9.3 (or Earlier) Client and Release 9.4 (or Later) Server.

UniVerse releases before 9.4 do not support UniVerse NLS. Therefore, any Release
9.3 (or earlier) client cannot request a map or locale; it uses the server’s current map
and locale settings. If these are the NLS defaults, the results returned are the same as
those from a 9.3 or earlier server.

UniVerse Release 9.4 (or Later) Client and Release 9.3 (or Earlier) Server.

Because UniVerse releases before 9.4 do not support UniVerse NLS, Release 9.4
clients can connect to Release 9.3 (or earlier) servers only if the client does not
request NLS options.

NLS State
of the
Server

Is Client
NLSMA
P Set?

Are Any
Client
Locale
Settings Set? Action

ON Yes Yes NLSMAP and NLSLOCALE are used if the ID
is valid.

Yes No NLSMAP is used if the ID is valid. NLS
DEFAULT locale is used.

No Yes NLS DEFAULT character map is used.
NLSLOCALE is used if the ID is valid.

No No NLS defaults are used for both.

OFF Yes Yes Connection is rejected.

Yes No Connection is rejected.

No Yes Connection is rejected.

No No Connection succeeds.

NLS Map and Locale Settings
4-8 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Allocating Statement Handles
Allocating statement handles is either the last step of the initialization phase or the
first step of the SQL statement processing phase. An application must allocate a
statement handle before executing any statements. Each statement handle is
associated with a specific connection handle. Within an application, UCI allows a
virtually unlimited number of statement handles.

Use the SQLAllocStmt function to allocate a statement handle. A statement handle
points to the data area containing information about an SQL statement managed by
UCI. This information includes dynamic arguments, cursor data, bindings, result
values, status information, and diagnostic information. A statement handle is a
variable of type HSTMT.

You can release statement handles by calling SQLFreeStmt.
 4-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
Processing SQL Statements
Processing SQL statements is the second major phase in an application. This phase
is the heart of the application, where all database operations occur.

Transaction Modes
Two transaction modes are supported: autocommit and manual-commit. By default,
the database is in autocommit mode, but you can put it into manual-commit mode by
calling SQLTransact with the SQL_BEGIN_TRANSACTION flag.

Autocommit Mode

In autocommit mode, each SQL statement is treated as a separate and complete trans-
action, and the server commits one transaction per statement. If no explicit
SQLTransact call is issued, all statements are processed in autocommit mode. Data
definition language (DDL) statements cannot be executed inside a transaction and
must be executed in autocommit mode. All SQLConnect and SQLDisconnect calls
must also be performed in autocommit mode.

Manual-Commit Mode

In manual-commit mode, a transaction begins with an SQLTransact call with an fType
of SQL_BEGIN_TRANSACTION. If another transaction is already active, this
transaction becomes a nested transaction.

The final step in manual-commit mode is to either commit or roll back the transaction
with another call to SQLTransact, this time with an fType of SQL_COMMIT or
SQL_ROLLBACK.

For more details about transaction processing, see “Transaction Processing” on
page 20.
4-10 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Function Calls
SQL statement processing can involve a number of function calls, as shown in the
following figure. This figure illustrates all the steps in SQL statement processing
except error checking. However, certain steps are optional. For example, instead of
releasing the statement handle after each SQL statement is processed and then
allocating a new handle for the next SQL statement, you could unbind the columns
and parameters associated with the handle and then reuse the handle for the next SQL
statement.

Statement processing is divided into the following steps:

1. Start a transaction (optional). If you do not start a transaction, each
succeeding SQL statement is processed as a separate transaction.

2. Process one or more SQL statements. For each statement do the following:
Submit the statement for either direct or prepared execution.
Analyze the result set (if any) produced, assign the storage necessary to
hold the results, and then fetch the results row by row.
Check for errors and, if any occurred, obtain the error codes and take
appropriate action.
Free the SQL statement environment.

3. Terminate the transaction by either committing it or rolling it back
(optional).

Executing an SQL Statement
Using an existing statement handle, the application can submit SQL statements for
execution. There are two ways to do this: executing a statement directly, or preparing
a statement first and then executing it.

Executing an SQL Statement Directly

Executing an SQL statement directly is the simplest and most efficient approach if
the statement is to be executed only once. Direct execution is similar to execute
immediate in embedded SQL.

SQLExecDirect parses and binds an SQL statement to an hstmt and then executes it.
Whenever an application issues an SQLExecDirect call, UCI does the following:
 4-11

Start transaction, set isolation level

SQL Statement Processing Steps

SQLTransact

Allocate statement

SQLAllocStmt

Prepare statement Execute statement directly
SQLPrepare
SQLBind[Mv]Parameter

SQLBind[Mv]Parameter
SQLExecDirect

Execute prepared statement
SQLExecute

Retrieve data
(SELECT)

Manipulate data
(DELETE, INSERT, UPDATE)

Miscellaneous
(ALTER, CREATE, DROP,

GRANT, REVOKE)
SQLNumResultCols

SQLDescribeCol
or
SQLColAttributes

SQLBind[Mv]Col

SQLFetch

SQLGetData

SQLRowCount

Release statement
SQLFreeStmt

SQLTransact

Commit or roll back ---Optional; required only if

---Optional (see above).

---Optional (usually once a
 statement environment has
 been allocated, it is reused)

---Optional (if not used,

DDL operations
cannot be
performed within
a transaction.

 inside a transaction.

 each SQL statement is
 treated as a transaction
 internally).

.

SQLFreeMem

C:\Program
Files\Adobe\FrameMaker8\UniVerse
1. Passes the SQL statement to the server for query plan generation
2. Retrieves information about result set columns from the server if the

operation was a SELECT
3. Gets the current input parameter values, converts them, and sends them to

the data source (see “Using Parameter Markers in SQL Statements” on
page 14).

4. Requests that the server execute the statement with the parameters given
5. Gets output parameters from the data source and stores them in the

designated variables
6. Returns errors, if any

Preparing and Executing an SQL Statement

Instead of using a call to SQLExecDirect to do everything, you can parse and bind a
statement to an hstmt using an SQLPrepare call and then execute it with one or more
calls to SQLExecute.

There are two main advantages to this approach:

1. Greater efficiency for statements that are to be executed many times. The
data source produces an access plan for executing the SQL statement, and
then uses that same plan for each iteration of the statement.

2. The application can obtain information about the result set before actually
executing the statement.
When an application issues an SQLPrepare call, UCI does the following:

3. Passes the SQL statement for parsing
4. Retrieves information about the result set columns from the server if the

operation was a SELECT

The subsequent calls to SQLExecute:

1. Get the current parameter values, convert them, and send them to the data
source (see“Using Parameter Markers in SQL Statements” on page 14)

2. Request that the server execute the SQL statement
3. Get output parameters from the data source and store them in the designated

variables
4. Return errors, if any
 4-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
Using Parameter Markers in SQL Statements

Application variables are associated with parameter markers by a process called
parameter binding. If an SQL statement contains input parameter markers, their
values must be retrieved from the application at execution time. Parameter markers
are commonly used for such tasks as inserting multiple rows of data into an SQL
table.

Parameter markers are represented by a ? (question mark) and indicate places in the
SQL statement where application variables are to be substituted when the statement
is executed. Markers are numbered from left to right, starting with 1.

The SQLBindParameter and SQLBindMvParameter functions bind parameters.
Both functions accept the number of the parameter marker, the C data type of the
variable, the SQL data type of the parameter, and (for SQLBindParameter) a pointer
to the buffer for the variable, its length, and whether to use it for input, output, or
both.

Only the pointer (rgbValue) to the application variable is passed when
SQLBindParameter is called, but the data in the variable is not read until the
statement is executed. In this way the application can modify the data in a bound
parameter variable and reexecute the statement multiple times, each time with a new
value.

For example, if an application is inserting new rows of data into a simple four-column
SUPPLIER table, the INSERT statement might look like this:

INSERT INTO SUPPLIER (COMPANY, ADDRESS, PHONE,
CONTACT_NAME) VALUES (?, ?, ?, ?)

In this example, there are four parameter markers, and the application must call
SQLBindParameter once for each marker.

Then, when the application issues an SQLExecDirect or SQLExecute call to execute
the statement, UCI:

1. Ascertains that the application has called SQLBindParameter for each
parameter marker

2. Gets the current value of each input parameter from its storage area, and
converts the data if necessary

3. Passes the parameter values to the data source
4. Gets output parameters from the data source and stores them in the

designated variables
4-14 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This parameter information is retained following execution of the statement and is
released only after the application issues an SQLFreeStmt call with an
SQL_RESET_PARAMS or SQL_DROP option.

Note: An SQLSetParam function is provided for compatibility with ODBC 1.0 and
the UniVerse BASIC SQL Client Interface. It binds an application buffer to a
parameter marker in an SQL statement, and is essentially a front end to the
SQLBindParameter call. Also, an SQLBindMvParameter function is included as a
database extension to handle parameter markers associated with multivalued
columns (see “Handling Multivalued Columns” on page 23 for more information). It
is usable with singlevalued columns as well.

Processing Output from SQL Statements
SELECT statements and some called procedures return a set of one or more data rows
called a result set. The SQL data manipulation language (DML) statements DELETE,
INSERT, and UPDATE, and some called procedures, do not return result sets but only
a count of the number of rows affected by the statement. Generally the application
does nothing, except in the case of an error return.

SQL data definition language (DDL) statements—ALTER TABLE, SCHEMA,
CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE TRIGGER, DROP
SCHEMA, DROP TABLE, DROP VIEW, DROP INDEX, DROP TRIGGER,
GRANT, and REVOKE—do not query or modify data and need no further
processing, except to check for and handle any error returns that might result from
their execution.

A result set comprises one or more rows of data obtained by a SELECT statement or
called procedure. The application must retrieve the data one row at a time to process
it. When a result set is produced, UCI opens a cursor into that result set. A cursor is
a pointer to the next row of data that a fetch will return from the result set.

Analyzing and retrieving a result set includes the following steps:

1. Analyzing the result set (optional)
2. Binding application variables to columns (optional)
3. Fetching each row of data, one row at a time, putting the column results into

the bound application variables
4. Retrieving data from unbound columns (optional)
 4-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
Analyzing the Result Set

If the SELECT statement is hard-coded, there is no need to analyze the result set
because the application already knows the structure of the result set and data type of
each column.

If the SELECT statement is not hard-coded but instead is generated at run time (for
example, entered ad hoc by a user), or is a SELECT *, the application needs to know
how many columns there are and their data types (as well as the names of the
columns).

An application obtains this information by calling SQLNumResultCols, then
SQLDescribeCol or SQLColAttributes, either after preparing the statement or after
executing it. SQLNumResultCols returns the number of columns in the result set, and
SQLDescribeCol and SQLColAttributes return information about those columns.

If the SQL operation is a DELETE, INSERT, or UPDATE, an application may need
to know how many rows were affected by the operation. Get this information by
calling SQLRowCount.

Binding Application Variables to Columns

An application calls SQLBindCol for each singlevalued column and calls
SQLBindMvCol for each multivalued column in the result set (however, you can use
SQLBindMvCol on all columns, whether singlevalued or multivalued). The fCType
argument of the call determines the type of conversion to be performed on the
column’s data, and the rgbValue (pCArray in the case of SQLBindMvCol) tells the
subsequent SQLFetch where to store the converted data.

Fetching Rows

SQLFetch reads each row of data, one row at a time, and places the content of each
column into the application variable to which it was bound by SQLBindCol (or
SQLBindMvCol). A cursor mechanism keeps track of the current position in the
rows. Each time an application calls SQLFetch, the cursor moves to the next row, the
row’s data is retrieved and converted, and the result for each bound column is placed
into its assigned storage variable. This process continues until there is no more data
to retrieve and SQL_NO_DATA_FOUND is returned. For unbound columns or
columns bound to variables that are too small, the application can issue an
SQLGetData call to get the remainder of the data.
4-16 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Retrieving Data from Unbound Columns

Generally, columns to be retrieved are bound. However, there are times when you
want to retrieve an unbound column, for example, when you want to deal with the
columns individually, or when you are interested in only one column of a table. The
application program must first call SQLFetch to position the cursor at the next row,
then call SQLGetData to get the data from a specific column in that row. You can use
SQLGetData on unbound columns and on columns bound by SQLBindCol, but not
on a column bound by SQLBindMvCol, because SQLBindMvCol allocates enough
storage automatically.

Checking for Errors
Error conditions can result from executing any SQL statement and must be handled
by the application.

Return codes range from SQL_SUCCESS (the function completed successfully), to
SQL_ERROR (the function failed totally).

Along with these return codes are SQLSTATEs, which are alphanumeric strings of
five characters that further define the warning or error condition indicated by the
return code. An application can interrogate the SQLSTATE by calling SQLError,
providing more detailed error information from the server.

Not all return codes provide additional SQLSTATE information, so first check the
return code to see if additional diagnostic information is available. Generally, when
an error occurs in an application, the error subroutine displays or prints the name of
the function, the return code, the content of SQLSTATE, the database error code, and
the diagnostic text.

Freeing the SQL Statement Environment
To terminate processing for a statement, issue a call to SQLFreeStmt. You can do any
of the following:

Unbind all bound columns and parameters associated with the statement
Reset parameter markers associated with the statement
Drop the statement handle and release its associated resources
 4-17

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
After you have unbound its columns and parameters, the statement handle is
available for reuse, unless you choose to drop it.
4-18 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Terminating the Connection
One of the last steps an application does is to close the connection to the database.
This is done through an SQLDisconnect call. Because you cannot issue an
SQLDisconnect call if a transaction exists or is active, an application must commit
or roll back all active transactions before it issues the call.
 4-19

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
Transaction Processing
By default, a client process and connected server processes are initially in
autocommit mode, which means that each SQL statement is treated as a separate and
complete transaction, and the server commits one transaction per statement.

Use the SQLTransact function to enter manual-commit mode and to control
transaction behavior and mark the beginning and end of each transaction or
subtransaction. Every SQLTransact issued on a client sends a request to the
connected server process to begin a transaction or subtransaction on the server. The
nesting level is stored in the client so that it knows how many transaction levels exist
on the server processes.

A commit of an unnested transaction writes all modified data to the database, releases
all locks acquired during the transaction, terminates the transaction, and returns to
autocommit mode. If the transaction is nested, any data written is internally
committed and made available to the higher (parent) transaction.

If the current transaction is not nested, a rollback discards any changes made during
the transaction, and then terminates the transaction. If the transaction is nested, only
those changes made by the nested transaction are discarded.

Nested Transactions
In manual-commit mode, transactions can be nested, for example, an application can
begin a subtransaction when another transaction or subtransaction is active. Because
only one transaction can be active at a time, the subtransaction becomes the current
active transaction while its parent transaction becomes temporarily inactive but
continues to exist. When a subtransaction completes, it is committed to its parent
transaction; it does not commit to the database until the top-level (topmost)
transaction commits. If a higher-level transaction or subtransaction rolls back, all
subtransactions beneath it also roll back.

The number of nesting levels is restricted to 65,000, but in practice is limited by
available memory.

Transaction nesting requires that the transaction mode be manual-commit so that a
transaction and its subtransactions must either all commit to the database, or else
none of them commit and the database remains unchanged.
4-20 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Nested Transactions and SELECT Statements

When a client program requests execution of a SELECT statement on a server, data
is fetched interactively between client and server. Because of this interaction, more
than one SELECT statement can exist at one time. However, since only one SELECT
statement can be active at one time, the active designation switches between the
existing statements.

In manual-commit mode, the SELECT statement does not begin a new
subtransaction. Instead it is executed as part of the active transaction or
subtransaction on the server process.

A call to SQLFetch must be executed at the same isolation level as its corresponding
SQLExecute or SQLExecDirect call.

Nested Transactions and DELETE, INSERT, and UPDATE
Statements

If the statement is a DELETE, INSERT, or UPDATE, a subtransaction is always
begun by the server. The statement is executed, and if it completes successfully, the
subtransaction is committed; otherwise it is rolled back.

Nested Transactions and Called Procedures

A called procedure does not begin a transaction.

Nested Transactions and DDL Statements

SQL DDL statements are not permitted within a transaction because their effects on
the database cannot be rolled back.
 4-21

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
Transaction Isolation Levels
Every transaction or subtransaction runs at a particular transaction isolation level.
The possible isolation levels are:

A UCI client program has an initial default isolation level of 0 (however, you cannot
explicitly start a transaction at this isolation level). You can change this to a different
default value by issuing an SQLSetConnectOption call. Also, in manual-commit
mode, a client can specify an isolation level for a specific transaction when issuing
the SQLTransact call that begins the transaction.

There are two additional rules:

If the transaction is an SQL DML statement, the transaction isolation level
used is the higher of:

The minimum transaction isolation level required by the statement. The
minimum is 0 for SQL SELECT statements, and 2 for SQL DELETE,
INSERT, and UPDATE statements.
The current default transaction isolation level for the user.

A subtransaction’s isolation level cannot be lower than that of its parent
transaction. Consequently, isolation levels can increase as the nesting level
increases, but they cannot decrease. If you attempt to set a subtransaction’s
isolation level lower than its parent’s isolation level, the subtransaction
inherits the parent’s isolation level.

BASIC Isolation Level SQLTransact ftype Modifier

0 No isolation Not applicable

1 Read uncommitted SQL_TXN_READ_UNCOMMITTED

2 Read committed SQL_TXN_READ_COMMITTED

3 Repeatable read SQL_TXN_REPEATABLE_READ

4 Serializable SQL_TXN_SERIALIZABLE

Isolation Levels
4-22 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Handling Multivalued Columns
There are two ways to handle a database table or file that contains multivalued
columns:

As a nonfirst-normal-form (NF2) data structure
As a set of first-normal-form (1NF) tables that can be joined as can any set
of related tables

You choose which data model you want to use by setting the data model mode. In
addition, UniVerse provides a means of dynamically normalizing a nonfirst-normal-
form database. This lets you work in NF2 mode while accessing the data as if it were
normalized.

Setting the Data Model Mode
In UCI, how tables with multivalued columns are treated depends on the mode set
through the SQL_DATA_MODEL fOption of the SQLSetConnectOption call. This
mode is in effect for the duration of the connection.

Setting the fOption of SQLSetConnectOption to SQL_DATA_MODEL and the
vParam to SQL_1NF_MODE_OFF lets UCI “see” and work with all columns of a
base table, whether singlevalued or multivalued; this is called NF2 (nonfirst-normal-
form) mode. Setting vParam to SQL_1NF_MODE_ON lets UCI “see” and work
only with a base table’s singlevalued columns. The base table’s multivalued columns
are accessible as separate virtual tables related to the base table. This is called 1NF
mode.

For application programmers familiar with UniVerse and its NF2 structure, NF2 mode
is the logical choice. For others who prefer to work with normalized (1NF) tables,
operating in 1NF mode is the suggested approach.

Programming for NF2 Mode

To treat a table with multivalued columns as an NF2 structure, which is the standard
UniVerse approach, a UCI client program calls SQLBindMvParameter and
SQLBindMvCol. These two functions, which are extensions to ODBC calls, handle
multivalued columns.
 4-23

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
SQLBindMvParameter binds an array representing multivalued data to a parameter
marker in an SQL statement. SQLBindMvCol does the opposite, turning a multi-
valued dynamic array into a C array.

Programming for 1NF Mode

Because traditional SQL users usually deal exclusively with first-normal-form tables,
1NF mode enables a client SQL program to treat a UniVerse NF2 table as if it were a
set of normalized first-normal-form tables.

Conceptually, a UniVerse NF2 table containing some singlevalued columns, some
associations of multivalued columns, and some unassociated multivalued columns,
becomes, in 1NF mode, a set of related tables. This set of tables comprises:

One table representing all of the singlevalued columns in the base table.
A normalized table for each of the associations of multivalued columns, and
for each unassociated multivalued column. Each association comprises the
primary key of the base table plus all multivalued columns of the
association. Each unassociated multivalued column comprises the primary
key of the base table and the column itself.

When running in 1NF mode:

All tables appear to be first normal form and to contain only singlevalued
columns. References to the name of a base table (tablename) access only the
singlevalued columns in that table. You can access associated and
unassociated multivalued columns (in NF2 base tables) only by using
dynamic normalization (see “Dynamic Normalization and Associations” on
page 25).
SELECT * FROM tablename retrieves data from all singlevalued columns
in the base table but not from any multivalued columns.
If no column list is specified for INSERT INTO tablename, values must be
supplied for all of the base table’s singlevalued columns but not for its
multivalued columns.
4-24 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Dynamic Normalization and Associations
Any set of related multivalued columns in a UniVerse table or file can be defined as
an association. Dynamic normalization allows SQL statements to access the primary
keys of an NF2 base table and the columns of any association within it as a 1NF table.
In other words, a separate association row is generated for each set of values in the
association.

Dynamic Normalization in 1NF Mode

In 1NF mode, a UCI client program sees a base table as having only its primary key
plus any singlevalued columns. The program accesses a base table’s multivalued
columns by dynamically normalizing the table. To access an association of
multivalued columns, UniVerse SQL uses the construct tablename_association. To
access an unassociated multivalued column, it uses the construct
tablename_mvcolumnname. A tablename_association virtual table is defined in
UV_TABLES (TABLE_TYPE is ASSOCIATION), and contains in its COLUMNS
column the names of the base table’s primary key columns and the names of the
association’s columns. Unassociated multivalued columns are not defined in
UV_TABLES.

Dynamic Normalization in NF2 Mode

In NF2 mode, a UCI client program can also use tablename_association to normalize
an association of multivalued columns. Also the SELECT statement can explode an
association using the UNNEST clause.

An SQL DML statement (SELECT, INSERT, UPDATE, or DELETE) can include
tablename_association anywhere that tablename is valid, but tablename_association
cannot be used in the following SQL DDL statements: CREATE TABLE, CREATE
INDEX, CREATE TRIGGER, ALTER TABLE, DROP TABLE, DROP VIEW,
DROP INDEX, DROP TRIGGER, GRANT, or REVOKE.

The primary keys of a dynamically normalized association are always the primary
key values of the base table followed by the association key values, with the keys
separated by text marks. If the association does not have association keys, use the
@ASSOC_ROW keyword to provide a set of virtual association key values.
 4-25

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch4
2/4/09
Dynamic Normalization and DML Statements

Using the tablename_association and tablename_mvcolumnname constructs to
access individual association rows in an NF2 association is called dynamic
normalization.

A DML statement that uses dynamic normalization can name only columns in the
association, for example, the multivalued associated columns and the primary key
columns of the base table.

Data read from or written to a dynamically normalized table must be singlevalued.

SELECT Statements

Data selected from a dynamically normalized table is presented to the client as
singlevalued.

SELECT * FROM tablename_association gets all the association columns in one of
the following ways:

In the order specified in the @SELECT phrase in the dictionary
If there is no @SELECT phrase, in the order specified in the @ phrase in
the dictionary
If there is no @ phrase, in the order specified by the CREATE TABLE
statement that created the base table

Selection criteria in the WHERE clause are used to select association rows. WHEN
clauses are not allowed with dynamic normalization because in effect the multivalued
columns have been normalized into singlevalued columns.

INSERT and UPDATE Statements

Data written to tablename_association must be singlevalued.

If an INSERT statement does not specify a list of columns into which data is to be
inserted, values must be supplied for all association columns (including the base
table’s primary key columns), in one of the following ways:

In the order specified in the @INSERT phrase in the dictionary
If there is no @INSERT phrase, in the order specified in the @ phrase in the
dictionary
4-26 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
If there is no @ phrase, in the order specified by the CREATE TABLE
statement that created the base table

New association rows are inserted according to the positioning rule (INSERT FIRST,
INSERT LAST, etc.) specified by the ASSOC clause of the CREATE TABLE or
ALTER TABLE statement. Existing association rows cannot be assumed to be in
sorted order.

Criteria in the WHERE clause of an UPDATE statement are used to select the
association rows to be updated. WHEN clauses are not allowed with dynamic
normalization.

DELETE Statements

DELETE FROM tablename_association deletes all association rows that meet the
WHERE criteria.

Dynamic Normalization and Referential Integrity

Because of the interrelationships between the base table and the normalized
tablename_association tables created from it by dynamic normalization, referential
integrity must be maintained.

For example, if you delete a row in base table tablename, the change cascades to the
related association rows in tablename_association. Likewise, if you update a primary
key value in tablename to a different value, the change also cascades to the related
association rows in tablename_association. If an INSERT statement on
tablename_association tries to create a primary key that does not exist in the base
table, or if a DELETE statement on tablename_association tries to delete a
nonexistent primary key, the action is disallowed. This phenomenon is sometimes
called implicit referential integrity because there is no code in the CREATE TABLE
statement that explicitly causes it.

Dynamic Normalization and DDL Statements

The ALTER TABLE, DROP SCHEMA, DROP TABLE, DROP VIEW, GRANT, and
REVOKE statements function normally when issued by a UCI program running in
1NF mode and behave as they do in NF2 mode.
 4-27

:\Prog
ebrua
4Administering UniData on Windows NT or Windows 2000
0

5
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Calling and Executing
UniVerse Procedures
What Can You Call as a UniVerse Procedure?. 5-3
Processing UniVerse Procedure Results. 5-5
 Print Result Set 5-5
 Multicolumn Result Set 5-6
 Affected-Row Count 5-6
 Output Parameter Values 5-6
Processing Errors from UniVerse Procedures 5-7
les\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch5TOC.fm
09 9:57 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes how to call and execute procedures stored on a UniVerse data
source.

Client programs can call and execute procedures that are stored on a database server.
Procedures can accept and return parameter values and return results to the calling
program.

Procedures let developers predefine database actions on the server. Procedures can
provide a simple interface to users, insulating them from the names of tables and
columns as well as from the syntax of SQL. Procedures can enforce additional
database rules beyond simple referential integrity and constraints. Such rules need
not be coded into each application that references the data, providing consistency and
easy maintenance.

Procedures can provide a significant performance improvement in a client/server
environment. Applications often have many steps, where the result from one step
becomes the input for the next. If you run such an application from a client, it can
take a lot of network traffic to perform each step and get results from the server. If
you run the same program as a procedure, all the intermediate work occurs on the
server; the client simply calls the procedure and receives a result.
 5-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch5
2/4/09
What Can You Call as a UniVerse Procedure?
Typically you call a UniVerse BASIC subroutine as a procedure. You can also call a
UniVerse BASIC program, a paragraph or stored sentence, a proc (ProVerb), a
UniVerse command, or a remote command. You can call any of your existing
programs, subroutines, and most of your existing paragraphs, stored sentences, and
procs as procedures. You can call almost any UniVerse command as a procedure.

To call a UniVerse procedure, use SQLExecDirect or SQLExecute to execute a
CALL statement. There are two formats of the CALL statement, one for calling
UniVerse BASIC subroutines and the other for calling paragraphs, sentences,
commands, programs, and procs.

If you call a UniVerse BASIC subroutine, you use the following CALL statement
syntax, which lets you pass a comma-separated list of parameters within parentheses
as arguments to the subroutine:

CALL procedure [([parameter [, parameter] …])]
Parameters can be literals or parameter markers. The number and order of parameters
must correspond to the number and order of arguments expected by the subroutine.

For example, to call subroutine SUBX, which requires a file name and a field name
as arguments, you can use SQLExecDirect to execute a call statement such as:

CALL SUBX ('MYFILE','MYFIELD')

Or you could bind parameter number 1 to a program variable, load the desired field
name into that variable, and execute:

CALL SUBX ('MYFILE',?)

The second format for the CALL statement is used to call a UniVerse BASIC
program or a Universe command that accepts a string of arguments after the verb. In
this case you use the standard UniVerse syntax after the procedure name, which lets
you specify keywords, literals, and other tokens as part of the command line. You
cannot use parameter markers with this syntax. You do not use parentheses, nor do
you separate arguments with commas:

CALL procedure [argument [argument] …]
5-3 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
For example, to obtain a listing of the first three records in MYFILE, call the
UniVerse LIST command by executing:

CALL LIST MYFILE SAMPLE 3
 5-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch5
2/4/09
Processing UniVerse Procedure Results
The output of a procedure call, returned to the client application if the procedure
executes successfully, consists of an SQL result and (optionally) output parameter
values. The type and contents of these results are, of course, determined by the
procedure itself.

An SQL result is either a set of fetchable rows (similar to what is returned by a
SELECT statement) or a count of affected rows (similar to what is returned by an
UPDATE statement). Usually the client application is written with the knowledge of
what kind of results are produced by any procedure it calls, but if the client
application does not know the nature of the procedure it is calling, the first thing it
should do after executing the procedure is to call SQLNumResultCols to determine
whether there is a fetchable result set. If there are any result columns the application
can use SQLColAttributes, SQLBindCol, and SQLFetch to retrieve the results in the
usual way.

Note: Information about the SQL result of a CALL statement is not available until
after the statement has been executed. Therefore, if you SQLPrepare a CALL
statement and then want to use SQLNumResultCols, SQLColAttributes, or
SQLRowCount, you must first SQLExecute the statement. Otherwise the SQLNum-
ResultCols (and so forth.) call receives a function sequence error (SQLSTATE =
S1010).

Every call to a UniVerse procedure produces one of the following SQL results:

Print result set
Multicolumn result set
Affected-row count

Print Result Set
One very common UniVerse result set is called a print result set. This is a one-column
result set (SQLNumResultCols returns 1) whose rows are the lines of (screen) output
produced by the called program, paragraph, command, or proc. The client application
should use SQLBindCol to bind the one output column to a program variable, then
use SQLFetch to return each print line into that variable.
5-5 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Multicolumn Result Set
If the called procedure is a UniVerse BASIC subroutine containing SQL SELECT
statements, the result set is called a multicolumn result set (SQLNumResultCols
returns a positive integer). This result set comprises the fetchable rows produced by
the last SELECT issued by the procedure before it exited. The client application
should bind each output column to a program variable, then fetch the rows of output
into those variables.

Affected-Row Count
If there are no result columns (SQLNumResultCols returns 0), the application can
find out how many rows were affected in the database by calling SQLRowCount.

Output Parameter Values
In addition to an SQL result, some procedures return output in one or more output
parameters. Before a client application calls such a procedure, it must use
SQLBindParameter to indicate which parameters are output parameters and to assign
a variable location for each. Then, after the procedure returns, the assigned variables
contain the output values supplied by the procedure.
 5-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch5
2/4/09
Processing Errors from UniVerse Procedures
The client application should always check the status of the SQLExecute or
SQLExecDirect function used to execute a procedure call. If this status indicates an
error, the application should use the SQLError function to obtain the SQLSTATE,
UniVerse error code, and error message text that describe the error.

Calls to some UniVerse procedures return a status of SUCCESS even though the
procedure encountered some kind of error. This is true for many procedures which
produce a print result set (paragraphs, commands, procs, and some UniVerse BASIC
programs). The client application might have to examine the contents of the print
result set or display it for a user, in order to determine whether the procedure executed
correctly. For example, suppose a client issues the following call:

CALL CREATE.INDEX MYFILE BADF

where BADF is not a valid field name in MYFILE. Execution of this call returns
SUCCESS status, and the print result set contains the following error message
produced by the UniVerse server when it tried to execute the CREATE.INDEX
command:

Cannot find field name BADF in file dictionary or VOC,
no index created.
5-7 UCI Developer’s Guide

:\Prog
ebrua
5Administering UniData on Windows NT or Windows 2000
0

6
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
How to Write a UniVerse
Procedure
Using UniVerse Paragraphs, Commands, and Procs as Procedures . . . 6-3
Writing UniVerse BASIC Procedures 6-4
 Parameters Used by a UniVerse BASIC Procedure 6-4
 SQL Results Generated by a UniVerse BASIC Procedure 6-5
 Using @HSTMT in a UniVerse BASIC Procedure to Generate

SQL Results 6-7
 Using the @TMP File in a UniVerse BASIC Procedure 6-9
 Errors Generated by a UniVerse BASIC Procedure. 6-12
 Restrictions in UniVerse BASIC Procedures 6-15
 Fetching Rows and Closing @HSTMT Within a Procedure 6-15
 Hints for Debugging a Procedure 6-16
les\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6TOC.fm
09 9:57 am Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6
2/4/09
A UniVerse procedure is a program that runs on a UniVerse server and can be called
by UCI and BCI client applications. Client applications call a procedure by executing
an SQL CALL statement. A UniVerse procedure can be any of the following:

A UniVerse command
A remote command
A paragraph or stored sentence
A proc (ProVerb)
A UniVerse BASIC program
A UniVerse BASIC subroutine

UniVerse BASIC programs, stored sentences and paragraphs, commands, and
ProVerb procs that are defined in the VOC can always be called as procedures.
UniVerse BASIC programs and subroutines should be locally, normally, or globally
cataloged, although it is also possible to call a UniVerse BASIC program directly if
the source code is stored in the BP file.

This chapter discusses the rules for using paragraphs, commands, and procs as
procedures. It also discusses how to write UniVerse BASIC procedures including
input and output parameters, result set generation, and the types of errors that can be
produced by a UniVerse BASIC procedure.
6-2 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Using UniVerse Paragraphs, Commands, and
Procs as Procedures
You can call most UniVerse paragraphs, commands, and procs as procedures, as long
as they conform to the following rules:

If user input is required (if a paragraph contains the <<...>> syntax for inline
prompting, for example), the input must be supplied by DATA statements.
The paragraph, command, or proc cannot invoke a UniVerse menu.
The paragraph, command, or proc cannot invoke any of the following
UniVerse commands:

When a UniVerse paragraph, command, or proc is called as a procedure, all output
lines that would ordinarily be sent to the terminal screen are stored in a special print
file. These output lines make up what is called a print result set. After the procedure
has finished executing, the calling client application can fetch the contents of the
print result set, one line at a time, and process or display this output.

Note: The special print file used to store a print result set does not affect the behavior
of print-capturing commands, such as COMO or SPOOL, that might be invoked by
the paragraph, command, or proc.

ABORT
ABORT.LOGIN
ANALYZE.SHM
AUTOLOGOUT
CALL
CHDIR
CLEAN.ACCOUNT
GET.STACK
LO
LOGON
LOGOUT
LOGTO
LOGTO.ABORT
MAIL

MAKE
MESSAGE
NOTIFY
PASSWD
PHANTOM
Q
QUIT
RADIX
RAID
REFORMAT
SAVE.STACK
SET.REMOTE.ID
SP.EDIT
SP.TAPE

SREFORMAT
T.BCK
T.DUMP
T.EOD
T.FWD
T.LOAD
T.RDLBL
T.READ
T.REW
T.UNLOAD
T.WEOF
T.WTLBL
UVFIXFILE
VI
 6-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6
2/4/09
Writing UniVerse BASIC Procedures
The most flexible and powerful UniVerse procedures are written as UniVerse BASIC
programs, usually subroutines.

UniVerse BASIC procedures should be compiled and cataloged (locally, normally, or
globally). If a UniVerse BASIC procedure is uncataloged, it can be called if it is in
the BP directory of the account to which the client application is connected.

The writer of a UniVerse BASIC procedure should specify its characteristics so that
client application programmers know how to call the procedure and what results it
will return. These characteristics should include:

The number of parameters to be used when calling the procedure
The definition of each parameter as input, input/output, or output
The nature of data to be supplied in input and input/output parameters
The type of SQL result generated (print result set, multicolumn result set, or
affected-row count)
For a multicolumn result set, how many columns are returned
The name, data type, and so forth, of each column in a multicolumn result
set
The types of SQL errors that may be generated
For each error type, what SQLSTATE and error code are returned

Parameters Used by a UniVerse BASIC Procedure
The SUBROUTINE statement at the beginning of a UniVerse BASIC subroutine
procedure determines how many input and output parameters it requires. The calling
client application program must supply the same number of parameters (or parameter
markers for output parameters) in the same order as they are expected by the
procedure.
6-4 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
For example, a UniVerse BASIC procedure that takes one input parameter (employee
number) and returns one output parameter (person’s name) might be coded roughly
as follows:

SUBROUTINE GETNAME (EMPNO,PERSON)
OPEN "EMPS" TO EMPS ELSE...
READ INFO FROM EMPS,EMPNO ELSE...
PERSON = INFO<1>
RETURN

A client application would call this procedure with program logic such as the
following:

1. SQLBindParameter: Define parameter marker 1 as an output parameter
which is bound to variable NAME.

2. SQLExecDirect: CALL GETNAME(4765,?)
3. Check status for error.
4. If no error, the name of employee 4765 is now in NAME.

Note: A UniVerse BASIC procedure need not define any parameters. An application
that calls a procedure with no parameters should not specify any parameter values
or parameter markers in its call.

SQL Results Generated by a UniVerse BASIC Procedure
Every call to a UniVerse procedure returns one of the following types of SQL result:

Print result set
Multicolumn result set
Affected-row count

This section discusses how the programming of a UniVerse BASIC procedure deter-
mines which type of SQL result it produces.

All output lines that would normally be sent to the terminal screen during the
execution of a procedure are stored in a special print file; in the case of a UniVerse
BASIC procedure, this would, of course, include any PRINT statements issued by the
UniVerse BASIC program. The contents of this special print file will become a one-
column print result set unless the procedure overrides this default behavior and forces
one of the other types of SQL result.
 6-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6
2/4/09
The functionality of client/server procedure calls is greatly enhanced by having the
ability to write procedures that generate multicolumn result sets or affected-row
counts instead of print result sets. Some of the advantages are:

If a multicolumn result set is generated, output results are delivered into
separate program variables in the calling client. There is no need for the
client to scan each output line and extract individual items of information.
The full power of the SQL query language and query optimizer can be used
in a procedure. For example:

Output rows can be generated from SQL joins, subqueries, unions, and
grouping queries.
Output columns can be defined using SQL functions and expressions.
Multivalued data can be dynamically normalized and returned as
singlevalued data.

INSERT, UPDATE, and DELETE statements can be used in a procedure to
modify the database, returning an affected-row count to the caller.
Data definition statements such as CREATE TABLE, ALTER TABLE,
CREATE VIEW, and GRANT can be executed within a procedure.
The power of SQL can be combined with the flexibility of UniVerse BASIC
to perform almost any desired function in a callable UniVerse procedure.
This centralizes complex business logic, simplifies the writing of client
applications, and reduces network traffic in a client/server environment.

Procedures generate multicolumn result sets and affected-row counts by executing
SQL statements using the @HSTMT variable. These are discussed in the following
two sections.

Note: @HSTMT is the only variable that can be used to generate a multicolumn
result set or an affected-row count. Other variables can be allocated and used within
a procedure, but their results are strictly internal to the procedure.
6-6 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Using @HSTMT in a UniVerse BASIC Procedure to
Generate SQL Results
UniVerse BASIC procedures running on a UniVerse server can use the preallocated
variable @HSTMT to execute programmatic SQL statements. If any SQL statements
are executed in this way, the results from the last such statement to be executed
become the SQL result that is returned to the calling client application. This result,
which can be either a multicolumn result set, an affected-row count, or an SQL error,
overrides the default print result set.

The following sample server and client programs show how to use procedures to
simplify a client program’s access to the numbers and names of employees in various
departments. The procedures use a table called EMPS, whose key column is
EMPNUM and whose data columns are EMPNAME and DEPNUM.

Procedure

This UniVerse BASIC subroutine, SHOWDEPT, uses the @HSTMT variable to
execute a SELECT statement on the server. The SELECT statement returns a multi-
column result set containing employee numbers and names from the EMPS table.

SUBROUTINE SHOWDEPT(DEPT)
$INCLUDE UNIVERSE.INCLUDE ODBC.H
SELSTMT = "SELECT EMPNUM, EMPNAME FROM EMPS WHERE DEPNUM=":DEPT
ST = SQLExecDirect(@HSTMT, SELSTMT)
RETURN

Client Program

The following fragment of a BCI client program, LIST.EMPLOYEES, calls the
SHOWDEPT subroutine as a procedure (the same could be done with a UCI client
program):

.

.

.
PRINT "ENTER DEPT NUMBER"
INPUT DEPTNO
ST=SQLBindParameter(HSTMT, 1, SQL.B.BASIC, SQL.INTEGER, 4, 0,
DEPTNO)
ST=SQLExecDirect(HSTMT, "CALL SHOWDEPT(?)")
ST=SQLBindCol(HSTMT, 1, SQL.B.NUMBER, EMPNO)
ST=SQLBindCol(HSTMT, 2, SQL.B.CHAR, NAME)
LOOP
 6-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6
2/4/09
WHILE SQL.SUCCESS = SQLFetch(HSTMT) DO
PRINT EMPNO '4R' : " " : NAME

REPEAT
.
.
.

Sample Output

When the client program runs, output such as the following appears on the terminal
screen:

>RUN BP LIST.EMPLOYEES
ENTER DEPT NUMBER
?123
4765 John Smith
2109 Mary Jones
 365 Bill Gale

.

.

.

Procedure

This UniVerse BASIC subroutine, FIXDEPT, uses the @HSTMT variable to execute
an UPDATE statement on the server, which changes the department number in the
EMPS table for all employees in a particular department:

SUBROUTINE FIXDEPT(OLDDEPT,NEWDEPT)
$INCLUDE UNIVERSE.INCLUDE ODBC.H
UPDSTMT = "UPDATE EMPS SET DEPNUM = ":NEWDEPT
UPDSTMT := " WHERE DEPNUM = ":OLDDEPT
ST=SQLExecDirect(@HSTMT, UPDSTMT)
RETURN

Client Program

The following fragment of a BCI client program, CHANGE.DEPT, calls the
FIXDEPT subroutine as a procedure (the same could be done with a UCI client
program):

.

.

.
PRINT "ENTER OLD DEPT NUMBER: ": ; INPUT OLD
PRINT "ENTER NEW DEPT NUMBER: ": ; INPUT NEW
ST = SQLExecDirect(HSTMT, "CALL FIXDEPT(":OLD:",":NEW:")")
IF ST = 0 THEN
6-8 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
ST = SQLRowCount(HSTMT,ROWS)
PRINT "Department number ":OLD:" has been changed to ":NEW:
PRINT " for ":ROWS:" employees."

END ELSE
PRINT "The EMPS table could not be updated."

END
.
.
.

Sample Output

When the client program runs, output such as the following bold appears on the
terminal screen:

>RUN BP CHANGE.DEPT
ENTER OLD DEPT NUMBER: ?901
ENTER NEW DEPT NUMBER: ?987
Department number 901 has been changed to 987 for 45 employees.

Using the @TMP File in a UniVerse BASIC Procedure
It is relatively easy for a procedure to produce a multicolumn result set when the data
to be returned is already in an existing file, as shown in the examples above. But there
are situations in which you want a procedure to return multicolumn output that is
created on the fly, from a variety of sources, perhaps using complex calculations. It
might be much easier to generate this data by programming in UniVerse BASIC than
by using some complex SQL join or union with SQL expressions. To accommodate
this kind of situation, UniVerse BASIC procedures can use a virtual file called
@TMP.

The general mechanism for using @TMP consists of three steps:

1. Generate the desired data as a dynamic array (referred to below as
DARRAY), using field marks as “row” separators and text marks as
“column” separators.

2. Save the dynamic array as a select list.
3. Execute an SQL SELECT from @TMP, using the select list as input.
 6-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6
2/4/09
When the SQL SELECT is executed, the virtual @TMP file appears to have a
number of rows equal to the number of “rows” in DARRAY. The SQL SELECT can
reference virtual fields in @TMP named F1, F2, F3, …, F23, which represent up to
23 text-mark-separated “columns” in DARRAY. The @TMP file also appears to have
an @ID field containing the entire contents of each “row” in DARRAY (the length
of each “row” is not subject to the 255-character limit usually associated with @ID
in UniVerse files).

The virtual @TMP file can be used in any SQL SELECT statement, including joins
and unions. @TMP cannot be referenced with INSERT, UPDATE, or DELETE state-
ments, however.

The use of @TMP is illustrated in the following example. A client application calls
a UniVerse BASIC procedure to obtain a list of employees whose department is
located in New Hampshire, along with their department number and zip code, sorted
by department number. The EMPS table does not indicate which state and zip code
each department is located in; this information is determined from a list in the
procedure program itself.

Procedure

This UniVerse BASIC subroutine FINDEMPS builds a dynamic array consisting of
department number, zip code, and employee name for each employee who works in
a specified state. It then saves this dynamic array in select list 9, and uses the
@HSTMT variable to execute an SQL SELECT from the virtual @TMP file
specifying select list 9 as the source of the data. The SELECT statement contains an
ORDER BY clause to sort the output by department number.

SUBROUTINE FINDEMPS(INSTATE) ; * Returns dept, zip code, name
sorted

by dept
$INCLUDE UNIVERSE.INCLUDE ODBC.H
DARRAY = ""
OPEN "EMPS" TO FVAR ELSE PRINT "OPEN ERROR" ; RETURN
SELECT FVAR
LOOP
READNEXT EMPNUM THEN

READ EMPREC FROM FVAR,EMPNUM ELSE PRINT "READ ERROR" ; RETURN
NAME = EMPREC<1> ; * EMPREC field 1 contains employee name
DEPT = EMPREC<2> ; * EMPREC field 2 contains department number
GOSUB GETSTATE ; * GETSTATE (not shown) returns STATE & ZIP for

this
DEPT

IF STATE = INSTATE THEN
IF DARRAY <> "" THEN DARRAY := @FM
DARRAY := DEPT:@TM:ZIP:@TM:NAME ;* Add 1 "row" with 3
6-10 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
"columns" to
DARRAY

END
END ELSE EXIT

REPEAT
SELECT DARRAY TO 9 ; * Save DARRAY in select list 9
ST=SQLExecDirect(@HSTMT, "SELECT F1,F2,F3 FROM @TMP SLIST 9 ORDER
BY 1")
RETURN

Client Program

The following fragment of a BCI client program EMPS.IN.STATE calls the
FINDEMPS subroutine as a procedure (the same could be done with a UCI client
program):

.

.

.
PRINT "ENTER STATE: ": ; INPUT SSS
ST = SQLExecDirect(HSTMT, "CALL FINDEMPS('":SSS:"')")
IF ST = 0
THEN

ST = SQLBindCol(HSTMT, 1, SQL.B.NUMBER, DEPTNO)
ST = SQLBindCol(HSTMT, 2, SQL.B.NUMBER, ZIPCODE)
ST = SQLBindCol(HSTMT, 3, SQL.B.CHAR, EMPNAME)
LOOP

WHILE SQL.SUCCESS = SQLFetch(HSTMT) DO
PRINT DEPTNO '4R' :" ":ZIPCODE '5R%5' :" ":EMPNAME

REPEAT
END

.

.

.

Sample Output

When the client program runs, output such as the following appears on the terminal
screen:

>RUN BP EMPS.IN.STATE
ENTER STATE: ?NH
529 03062 Ann Gale
529 03062 Fred Pickle
987 03431 John Kraneman
989 03101 Edgar Poe

.

.

.
 6-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6
2/4/09
Errors Generated by a UniVerse BASIC Procedure
When a client application calls a procedure, several types of output results can be
returned to the caller. But a procedure can also generate an SQL error instead of
normal output results. If an error is generated, the calling client application should
detect this by testing the status returned from its SQLExecDirect or SQLExecute
function call, getting SQL ERROR (–1) instead of SQL SUCCESS (0).

A UniVerse BASIC procedure can generate an SQL error either indirectly (by issuing
an SQL statement that causes an error) or directly (by using the UniVerse BASIC
SetDiagnostics function).

If the last SQL statement issued (using @HSTMT) within the procedure before it
returns to the caller encountered an error, that error condition is passed back to the
calling client application, as shown in the following example.

Procedure

This procedure ADDEMP can be called to add a new employee to the EMPS table:

SUBROUTINE ADDEMP(NEWNUM,NEWNAME,NEWDEPT)
$INCLUDE UNIVERSE.INCLUDE ODBC.H
INSSTMT = "INSERT INTO EMPS VALUES (":NEWNUM
INSSTMT := ",'":NEWNAME:"',":NEWDEPT:");"
ST=SQLExecDirect(@HSTMT, INSSTMT)
RETURN

Client Program

The following fragment of a BCI client program NEW.EMPLOYEE calls the
ADDEMP subroutine as a procedure, providing information about a new employee
but erroneously assigning him an existing employee number (the same could be done
with a UCI client program):

.

.

.
EMPNO = 2109
FIRSTLAST = "Cheng Du"
DEPNO = 123
CALLSTMT = "CALL ADDEMP (":EMPNO
CALLSTMT := ",'":FIRSTLAST
CALLSTMT := "',":DEPNO:");"
PRINT "The CALL statement is: ":CALLSTMT
ST = SQLExecDirect(HSTMT, CALLSTMT)
IF ST <> 0 THEN
6-12 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
ERST =
SQLError(SQL.NULL.HENV,SQL.NULL.HDBC,HSTMT,STATE,CODE,MSG)

PRINT "SQLSTATE = ":STATE:", UniVerse error code = ":CODE:",
Error text ="

PRINT MSG
END

.

.

.

Sample Output

When the client program runs, output such as the following appears on the terminal
screen:

>RUN BP NEW.EMPLOYEE
The CALL statement is: CALL ADDEMP (2109,'Cheng Du',123);
SQLSTATE = S1000, UniVerse error code = 950060,

Error text = [IBM][SQL Client][UNIVERSE]UniVerse/SQL:
Attempt to insert duplicate record "2109" is illegal.

A procedure can force an error condition to be returned by using the UniVerse BASIC
SetDiagnostics function. This function sets a procedure-error condition and stores
error text (supplied by the procedure) in the SQL diagnostics area associated with
@HSTMT. The error condition remains in effect until the next programmatic SQL
statement, or SQLClearDiagnostics, is issued. In particular, the error condition will
be detected by the calling client application if the procedure returns before issuing
another SQL statement.

The use of SetDiagnostics to generate a procedure error condition is illustrated in the
following example.

Procedure

This procedure DELEMP can be called to delete an employee from the EMPS table:

SUBROUTINE DELEMP(OLDNUM)
OPEN "EMPS" TO FVAR ELSE PRINT "OPEN ERROR" ; RETURN
READU REC FROM FVAR,OLDNUM THEN

DELETE FVAR,OLDNUM
END ELSE

JUNK = SetDiagnostics("Employee ":OLDNUM:" does not exist")
END
RETURN
 6-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6
2/4/09
Client Program

The following fragment of a BCI client program RESIGNATION calls the DELEMP
subroutine as a procedure, asking it to delete an employee but providing an incorrect
employee number (the same could be done with a UCI client program):

.

.

.
EMPNO = 555
ST = SQLExecDirect(HSTMT, "CALL DELEMP (":EMPNO:")")
IF ST <> 0 THEN

ERST =
SQLError(SQL.NULL.HENV,SQL.NULL.HDBC,HSTMT,STATE,CODE,MSG)

PRINT "SQLSTATE = ":STATE:", UniVerse error code = ":CODE:",
Error text ="

PRINT MSG
END

.

.

.

Sample Output

When the client program runs, output such as the following appears on the terminal
screen:

>RUN BP RESIGNATION
SQLSTATE = S1000, UniVerse error code = 950681, Error text =
[IBM][SQL Client][UNIVERSE]Employee 555 does not exist

Restrictions in UniVerse BASIC Procedures
Several restrictions must be observed when writing a UniVerse BASIC procedure:

A procedure must not invoke any of the UniVerse commands listed in
“Using UniVerse Paragraphs, Commands, and Procs as Procedures” on
page 3.
A procedure must not pause for user input; for example, if any INPUT
statements are executed, the input must be provided by DATA statements.
A procedure must not execute any (nested) procedure CALL statements
using the @HSTMT variable. Nested procedure calls are allowed only if a
different variable is used.
6-14 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Fetching Rows and Closing @HSTMT Within a
Procedure
If a UniVerse BASIC procedure executes an SQL SELECT using @HSTMT, the
procedure can process the results itself (just like any other UniVerse BASIC
program) using any of the following function calls:

SQLNumResultCols
SQLDescribeCol
SQLColAttributes
SQLBindCol
SQLFetch

If a procedure fetches some of the rows in a SELECT’s result set and then returns to
the calling client application, the remaining rows (but not the fetched rows) are
available for the client to fetch.

If a procedure executes an SQL SELECT, fetches some rows and decides not to
return the remaining rows to the client, it should close the @HSTMT variable:

ST = SQLFreeStmt (@HSTMT, SQL.CLOSE)

It is also necessary to close @HSTMT if the procedure wants to execute another SQL
statement using @HSTMT. Closing @HSTMT discards any pending results and
reinitializes the cursor associated with @HSTMT.

At the time a procedure exits, if @HSTMT has been closed and not reused, and if
SetDiagnostics has not been issued, then a print result set is returned to the caller. If
the procedure executes no PRINT statements, the print result set contains no rows.

Hints for Debugging a Procedure
If a procedure does not produce the expected results, try the following:

Ensure that both the procedure and the calling client application check the
status returned by each SQL Client Interface function call (SQLExecDirect,
SQLFetch, and so on).
 6-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch6
2/4/09
Comment out the SQL Client Interface function calls in the procedure, or
close @HSTMT before exiting, so that the print results are returned to the
client; if necessary, add diagnostic PRINT statements to the procedure
program.
Debug UniVerse BASIC programs and subroutines by running them
directly, before calling them from a client application.
6-16 UCI Developer’s Guide

:\Prog
ebrua
6Administering UniData on Windows NT or Windows 2000
0

7
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Data Types
Data Types and Data Type Coercion. 7-3
 C Data Types Supported 7-3
 SQL Data Types Supported 7-9
 Data Type Coercion 7-10
les\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch7TOC.fm
09 9:57 am Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch7
2/4/09
This chapter is a reference for the data types supported by UCI.
7-2 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Data Types and Data Type Coercion
UCI lets you specify how the application program converts data from the database.
This section covers the C data types and the SQL data types supported by UCI, and
the data coercion performed during data conversion.

In most instances of retrieving data from the data source and storing it in a C
structure, the SQL data type source is compatible with the C data type, and no data
coercion (conversion) is required. For instance, an SQL_CHAR data type can be
stored directly into a C string. However, if the SQL data type of the source is not
compatible with the C data type, the data is coerced (converted) into a comparable
form. For instance, if an SQL VARCHAR value is stored in a numeric C field such
as SQL_C_FLOAT, UCI tries to convert the source data to numeric.

C Data Types Supported
UCI supports all core C data types and some extended C data types from ODBC 2.0,
as shown in the following table. These application data types are used in
SQLBindCol, SQLBindMvCol, SQLGetData, SQLBindParameter, SQLBind-
MvParameter, and SQLSetParam.

UCI Definition C Data Type Comments

SQL_C_CHAR unsigned char The distinction between
SQL_C_CHAR and SQL_C_STRING
is that the SQL_C_CHAR data type is
presumed to be a null-terminated string
while SQL_C_STRING is not. The
native database STRING type corre-
sponds to the SQL_C_STRING data
type.

SQL_C_TINYINT char

SQL_C_STINYINT char

SQL_C_UTINYINT unsigned char

SQL_C_SHORT short

SQL_C_SSHORT short

Supported C Data Types
 7-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch7
2/4/09
SQL_C_USHORT unsigned short

SQL_C_LONG int 32 bits

SQL_C_SLONG int 32 bits

SQL_C_ULONG int 32 bits

SQL_C_FLOAT float

SQL_C_DOUBLE double

SQL_C_STRING struct {
 UDWORD len;
 UCHAR* text;
}

See Comments for SQL_C_CHAR.

SQL_C_TIME struct {
 UWORD hour;
 UWORD minute;
 UWORD second;
}

UCI Definition C Data Type Comments

Supported C Data Types (Continued)
7-4 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The unsupported C data types are:

SQL_C_BIT
SQL_C_BINARY
SQL_C_TIMESTAMP
SQL_C_BOOKMARK

SQL_C_DATE struct {
 SWORD year;
 UWORD month;
 UWORD day;
}

C_ARRAY struct {
 UWORD cDcount;
 UWORD cStorage;
 SWORD fCType;
 SWORD fSqlType;
 SWORD
fParamType;
 SWORD ibscale;
 UDWORD
cbColDef;
 UCIDATUM
Data[1];
}

A special data type reserved for use
with multivalued columns in the
SQLBindMvParameter and
SQLBindMvCol calls. It cannot be
used with SQLBindParameter and
SQLBindCol.

UCI_DATUM struct {
 SDWORD fIndi-
cator;
 union uValue;
}

Outlined here only to detail the
SQL_C_ARRAY structure. See C Data
Type Representation of Multivalued
Columns on page 8 for details of the
uValue union.

UCI_DATUM is analogous to the
SQL_C_STRING data type, but,
unlike SQL_C_STRING, it can be used
for an arbitrary C data type through its
union uValue. UCI_DATUM cannot be
used directly in any UCI calls.

UCI Definition C Data Type Comments

Supported C Data Types (Continued)
 7-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch7
2/4/09
C Data Types and Database Internal/External Formats

UniVerse and UniData maintain data in a specific format and provide mapping
functions known as conversions to convert this internal format into the external
format expected by the application.

By default, UCI server returns, for a bound column, a stripped external format. For
example, if a money column has a conversion code of MD2$, the database internally
stores the value $4.50 as the integer value 450. UCI returns this value to the appli-
cation as 4.50, that is, the correct value numerically, but stripped of all text formatting
such as currency symbols.

Also by default, dates and times are returned as C structures that preserve the full
informational content of those data types. An application can obtain dates and times
in internal format by coercing them as integers (refer to “Data Type Coercion” on
page 10) so that it can manipulate them arithmetically.

When converting data to C data types, be aware that the database supports string math
and can operate on numbers that cannot be mapped into standard C data types.
UniVerse and UniData store all data as text strings, and any attempt to convert
database numerics that exceed the limits of a C numeric data type (as specified by the
fCType parameter in an SQLBindCol call) will fail when fetching data from the
server. However, numerics can be bound as SQL_C_STRING or SQL_C_CHAR to
reduce the possibility of conversion failure.
7-6 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Empty Strings

Data of all types frequently contains empty strings. If a column contains an empty
string (that is, the whole field in a singlevalued column is an empty string, or a
singlevalue in a multivalued column is an empty string), the value is returned as
follows:

As the table shows, an empty string maps to 0 for numeric data types and to a zero-
length string for nonnumeric data types. Because an empty string in a DATE or TIME
field cannot be mapped logically to a reasonable date or time, zeros are returned
along with a return value of SQL_SUCCESS, and the pcbValue of SQLBindCol and
SQLGetData is set to SQL_BAD_DATA.

You may want your client program to return empty string data from the data source
as null values, and to convert null values to empty strings when inserting or updating
data on the data source. To do this, do the following:

Add an X-descriptor called @EMPTY.NULL to the dictionary of the table
or file. The only data in the descriptor should be an X in field 1.
In your client program, set the SQL_EMPTY_NULL option of the
SQLSetConnectOption function in your client program to
SQL_EMPTY_NULL_ON.

Data Type Value Returned

CHAR
STRING

Zero-length string

LONG
SHORT
BYTE
DOUBLE
FLOAT

0

DATE SQL_BAD_DATA
0 year, 0 month, 0 day

TIME SQL_BAD_DATA
0 hour, 0 minute, 0 second

Empty String Return Values
 7-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch7
2/4/09
C Data Type Representation of Multivalued Columns

UCI supports a structure called C_ARRAY, which holds data read into a bound
multivalued column and writes it back through a parameter for a multivalued column.
This structure provides a natural C data type mapping of a dynamic array:

typedef struct tagC_ARRAY

{
 UWORD cDcount; /* count of the number of values in Data
array */
 UWORD cStorage; /* size of Data array for which memory was
allocated */
 SWORD fCType; /* the C data type pointed to by Data array
*/
 SWORD fSqlType; /* the SQL data type of the columns for
parameters */
 SWORD fParamType; /* input only */
 SWORD ibScale; /* not currently used by the database*/
 UDWORD cbColDef; /* not currently used by the database*/
 UCI_DATUM Data[1]; /* array of UCI_DATUMs, one for each value
*/
} C_ARRAY

typedef struct tagUCI_DATUM
{
 SDWORD fIndicator; /* set to SQL_NULL_DATA to indicate null
value */
 union
 {
 double dbl; /* for SQL_C_DOUBLE */
 float flt; /* for SQL_C_FLOAT */
 SCHAR sbyte; /* for SQL_C_TINYINT and
SQL_C_STINYINT */
 UCHAR ubyte; /* for SQL_C_UTINYINT */
 SWORD sword; /* for SQL_C_SHORT and SQL_C_SSHORT
*/
 UWORD uword; /* for SQL_C_USHORT */
 SDWORD sdword; /* for SQL_C_LONG and SQL_C_SLONG */
 UDWORD udword; /* for SQL_C_ULONG */
 STRING string; /* for SQL_C_STRING and SQL_C_CHAR +
length */
 TIME_STRUCT time; /* for SQL_C_TIME */
 DATE_STRUCT date; /* for SQL_C_DATE */
 } uValue
} UCI_DATUM;
7-8 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQL Data Types Supported
UCI recognizes all minimum and core SQL data types from ODBC 2.0, plus dates
and times, as shown in the following table.

A column with a conversion code beginning with D is assumed to be an SQL_DATE
type. A column with a conversion code beginning with MT is assumed to be an
SQL_TIME type.

SQL Data Type C Application Type UniVerse SQL Data Type

SQL_CHAR SQL_C_STRING CHAR[ACTER]
SQL_VARCHAR SQL_C_STRING VARCHAR[ACTER]
SQL_DECIMAL SQL_C_DOUBLE DEC[IMAL]
SQL_NUMERIC SQL_C_DOUBLE NUMERIC

SQL_INTEGER SQL_C_SLONG INT[EGER]
SQL_SMALLINT SQL_C_SLONG INT[EGER]
SQL_REAL SQL_C_FLOAT REAL

SQL_FLOAT SQL_C_DOUBLE FLOAT

SQL_DOUBLE SQL_C_DOUBLE DOUBLE PRECISION

SQL_DATE SQL_C_DATE DATE

SQL_TIME SQL_C_TIME TIME

SQL Data Types
 7-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch7
2/4/09
Data Type Coercion
Data returned by the server can be coerced into other data types, as shown in the
following table. UCI tries to perform all data type coercions sensibly, except for date-
to-time and time-to-date, which cannot be performed in any logical way.

SQL Data Type Target C Data Type Comments

SQL_CHAR,
SQL_VARCHAR

SQL_C_CHAR,
SQL_C_STRING

Application is responsible if the data
contains the number 0.

SQL_C_TINYINT Converted to numeric if possible.

SQL_C_SHORT Converted to numeric if possible.

SQL_C_LONG Converted to numeric if possible.

SQL_C_DOUBLE Converted to numeric if possible.

SQL_C_FLOAT Converted to numeric if possible.

SQL_DATE SQL_C_SHORT Returns internal format.

SQL_C_LONG Returns internal format.

SQL_C_CHAR Returns a null-terminated string in ISO
format.

SQL_C_STRING Returns a string of length 10 in ISO
format.

SQL_TIME SQL_C_SHORT Returns UniVerse internal format of
time.

SQL_C_LONG Returns UniVerse internal format of
time.

SQL_C_CHAR Returns a null-terminated string in ISO
format.

SQL_C_STRING Returns a string of length 8 in ISO
format.

SQL_SMALLINT,
SQL_INTEGER

SQL_C_CHAR Returns a null-terminated string.

SQL_C_STRING Returns a string with length.

Data Type Coercions
7-10 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Parameter Coercion

If a numeric C-type parameter is bound to a database column of type SQL_DATE or
SQL_TIME, the numeric value is coerced to a date as the number of days before or
since December 31, 1967, or to a time as the number of seconds since midnight,
respectively. This is the reverse conversion to that performed when a numeric C data
type is bound to a column of type SQL_DATE or SQL_TIME for fetching data.

UCI supports SQL_C_DATE in the range 0001-01-01 through 12-31-9999, and
SQL_C_TIME in the range 00:00:00 through 23:59:59. UCI does not perform range
checking on parameters for columns of numeric data types; that is, UCI lets you store
a value in an SQL_REAL column from a bound SQL_C_DOUBLE parameter that
exceeds the range of an SQL_C_FLOAT type. Also, UCI does not check the length
of bound parameters of types SQL_CHAR and SQL_VARCHAR because UCI takes
full advantage of the database’s ability to store data of any length in any column.

Generally, you should use a data type of SQL_C_DOUBLE for approximate
numerics. If precision is less important than memory, you can use SQL_C_FLOAT
in the range from 1.17549e–38 through 3.402823e+38.

Coercing approximate numeric SQL data types into integer C data types is legal, but
in cases where the approximate numeric contains a fractional part, UCI truncates the
fractional part and returns the integer part. It also returns
SQL_SUCCESS_WITH_INFO, indicating that one or more columns of data were
truncated. If the integer part of the approximate number is too large to fit into the
designated C data type, UCI returns SQL_ERROR.

Precision, Scale, and Display Size Definitions

The calls SQLDescribeCol and SQLColAttributes allow an application to
determine the database values for precision, scale, display size, and other qualities.
UCI always ignores scale and precision when binding parameters and columns.

SQL_REAL,
SQL_FLOAT,
SQL_DECIMAL,
SQL_DOUBLE,
SQL_NUMERIC

SQL_C_CHAR Returns a null-terminated string.

SQL_C_STRING Returns a string with length.

SQL Data Type Target C Data Type Comments

Data Type Coercions (Continued)
 7-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch7
2/4/09
When binding columns, a data truncation error is issued after an SQLFetch call if, for
example, the server returns a value of 257 for a column bound to an
SQL_C_TINYINT. But that sort of error is based on the actual data returned for a
particular row, not on the column’s precision and scale.

Tables

The following table shows the precision, scale, and display size for supported SQL
data types for columns in UniVerse and UniData tables:

SQL Data Type Precision Scalea

a. The scale of an SQL_DECIMAL or SQL_NUMERIC data type comes from the column’s
definition; if it is not defined, the scale is 0.

Display
Sizeb

b. Any FORMAT specification overrides the defaults shown in the table.

SQL_CHAR From the definition. If
not defined, precision
is 1.

0 Same as
precision.

SQL_VARCHAR From the definition. If
not defined, precision
is 254.

0 10

SQL_SMALLINT 5 0 10

SQL_INTEGER 10 0 10

SQL_REAL 7 0 10

SQL_FLOAT 15 0 16

SQL_DOUBLE 15 0 30

SQL_DECIMAL,
SQL_NUMERIC

From the definition. If
not defined, precision
is 9.

See footnote 1 precision + 2

SQL_DATE 10 (yyyy-mm-dd) 0 11

SQL_TIME 8 (hh:mm:ss) 0 8
7-12 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse Files

The following table shows the precision, scale, and display size for supported SQL
data types for fields in database files:

SQL Data Type Precision Scalea

a. The scale of an SQL_DECIMAL or SQL_NUMERIC data type comes from the column’s
definition; if it is not defined, the scale is 0.

Display
Sizeb

b. Any FORMAT specification overrides the defaults shown in the table.

SQL_CHAR From SQLTYPE or FORMAT 0 10

SQL_VARCHAR From SQLTYPE or FORMAT 0 10

SQL_SMALLINT 5 0 10

SQL_INTEGER 10 0 10

SQL_REAL 7 0 10

SQL_FLOAT 15 0 10

SQL_DOUBLE 15 0 10

SQL_DECIMAL,
SQL_NUMERIC

From SQLTYPE or FORMAT See footnote 1 10

SQL_DATE 10 (yyyy-mm-dd) 0 10

SQL_TIME 8 (hh:mm:ss) 0 10
 7-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch7
2/4/09
Expressions

The following table shows the precision, scale, and display size for supported SQL
data types for expressions in database tables and files. By default, expressions use
only the following data types:

SQL Data Type Precision Scale Display Sizea

a. Any FORMAT specification overrides the defaults shown in the table.

SQL_VARCHAR Computed. If not computed,
precision is 254.

0 Computed. If not
computed, 254.

SQL_INTEGER 10 0 11

SQL_DOUBLE 15 0 22

SQL_DATE 10 0 10

SQL_TIME 8 0 8
7-14 UCI Developer’s Guide

:\Prog
ebrua
7Administering UniData on Windows NT or Windows 2000
0

8
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
UCI Functions
Function Call Summary 8-4
 Variables . 8-5
 Search Patterns 8-6
 Return Values 8-7
 Error Codes 8-7
 Use of Hungarian Naming Conventions 8-8
Functions . 8-10
SQLAllocConnect 8-11
SQLAllocEnv. 8-13
SQLAllocStmt 8-15
SQLBindCol . 8-17
SQLBindMvCol 8-22
SQLBindMvParameter 8-25
SQLBindParameter 8-27
SQLCancel . 8-32
SQLColAttributes 8-34
SQLColumns . 8-40
SQLConnect . 8-44
SQLDataSources 8-48
SQLDescribeCol 8-51
SQLDisconnect 8-54
SQLError . 8-56
SQLExecDirect 8-59
SQLExecute . 8-63
SQLFetch . 8-65
SQLFreeConnect. 8-68
SQLFreeEnv . 8-70
les\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8TOC.fm
09 9:57 am Administering UniData on Windows NT or Windows 2000

8-2 UC

g
February 4, 2009 9:57 am Administering UniData on Windows NT or Windows 2000

Beta
SQLFreeMem . 8-72
SQLFreeStmt . 8-73
SQLGetData . 8-75
SQLGetFunctions 8-79
SQLGetInfo . 8-83
SQLNumParams 8-91
SQLNumResultCols 8-93
SQLParamOptions 8-95
SQLPrepare . 8-98
SQLRowCount 8-102
SQLSetConnectOption 8-104
SQLSetParam . 8-110
SQLTables . 8-112
SQLTransact . 8-116
SQLUseCfgFile 8-120
I Developer’s Guide

and
lues

ion

tax

age

ion

sed

ow
ion

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Return values
SQLSTATE va

Name of funct

Function syn

Detailed description of us

When to use funct

Arguments u

SQLFunction

A brief description.

Syntax
 RETCODE SQLFunction (variables)

Input Variables

Output Variables

Description
Information about how to use the function.

Return Values
SQL_SUCCESS

SQLSTATE Values
S1001 Memory allocation failure.

Example
#include "UCI.h"

Type Argument Description

Type Argument Description

Example showing h
to use funct

This chapter is a reference for UCI function calls, listed in alphabetical order. The
following diagram illustrates a typical function reference page.
 8-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Function Call Summary
The following table lists UCI ODBC function calls according to how they are used.

Use Functions

Initializing SQLAllocConnect
SQLAllocEnv
SQLAllocStmt
SQLConnect
SQLPrepare
SQLSetConnectOption
SQLUseCfgFile

Exchanging data SQLBindCol
SQLBindMvCol
SQLBindMvParameter
SQLBindParameter
SQLColAttributes
SQLColumns
SQLDataSources
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLFetch
SQLGetData
SQLGetFunctions
SQLGetInfo
SQLNumParams
SQLNumResultCols
SQLParamOptions
SQLRowCount
SQLSetParam
SQLTables
SQLTransact

Functions and Their Uses
8-4 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Variables
In the following syntax the variable henv is the environment handle returned from
SQLAllocEnv, and the variable phdbc is a pointer to where the connection handle is
to be stored. Names of return variables, input variables, and output variables are user-
defined.

RETCODE SQLAllocConnect (henv, phdbc)

All calls use handles that represent a pointer to an underlying data structure. The data
structures are defined by the UCI.h include file. Handles form a hierarchy as follows:

1. The application allocates an environment (of data type HENV).
2. Using that environment, one or more connections (of data type HDBC) are

established.
3. Once a connection has been established, one or more statements (of data

type HSTMT) can be allocated. Each statement is associated with only one
connection.

Call arguments are summarized in the following table.

Memory management SQLFreeMem

Processing errors SQLError

Disconnecting SQLCancel
SQLDisconnect
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt

Argument Comment

HDBC (void *)

HENV (void *)

HSTMT (void *)

Arguments in UCI Calls

Use Functions

Functions and Their Uses (Continued)
 8-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
In the syntax section of each function, variable descriptions are divided into two
groups: input variables and output variables. An input variable is an argument that
you must supply to the function for use in its execution. An output variable represents
data returned by the function; however, you must still provide a value for it in the call
(usually a pointer to where the data is to be stored).

Search Patterns
Information returned by a function can, in some cases, be controlled by a search
pattern that you pass as an argument to that function. For example, SQLColumns
returns a result set describing the columns from the tables specified in the search
pattern. Besides the standard alphanumeric characters, you can use the following
characters as wildcards:

PTR (void *)

RETCODE Always 32 bits

SDWORD Always 32 bits

SWORD Always 16 bits

UCHAR Always 8 bits

UDWORD Always 32 bits

UWORD Always 16 bits

Character Description

_ An underscore in a pattern represents any single character.

% A percent sign in a pattern represents a sequence of zero or more characters.

\ A backslash is an escape character, which is placed before the _ or % to
indicate that the _ or % represents itself in the search pattern and is not a
wildcard.

Wildcard Characters

Argument Comment

Arguments in UCI Calls (Continued)
8-6 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
As an example, to cause SQLColumns to return the columns from all tables that are
named REF_TBLx, use the search pattern REF_TBL_. The first underscore, which
is preceded by a backslash, is interpreted as a literal backslash, whereas the second
underscore is interpreted as any single character. Note that using a search pattern of
% represents an empty pointer and, in this example, returns all tables.

Return Values
UCI functions return a value to the status variable. Return values are the following:

Error Codes
Any UCI function call can generate errors. Use the SQLError function after any other
function call for which the returned status indicates an error condition. UCI follows
the guidelines dictated by the Microsoft ODBC specification in returning these error
codes. For a list of UCI function error codes, see SQLError later in this chapter,
Appendix A, “Error Codes” for more detail.

Return Value Meaning

SQL_SUCCESS Function call completed successfully.

SQL_SUCCESS_WITH_INFO Function call completed successfully with a possible
nonfatal error. Your program can call SQLError to
get information about the error.

SQL_ERROR Function call failed. Your program can call SQLError
to get information about the error.

SQL_INVALID_HANDLE Function call failed because one of the three handles
(environment, connection, or SQL statement) is
invalid.

SQL_NO_DATA_FOUND All rows from the result set have been retrieved.

Return Values
 8-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Use of Hungarian Naming Conventions
In the function syntax that follows, some elements of the Hungarian naming
convention are used as prefixes to variable names, and some variable names also
include a tag after the prefix.

The prefixes are:

The tags are:

Prefix Meaning

c count of

h handle to

i index of

p pointer to

rg range (array) of

Tag Meaning

b byte

col column (of a result set)

dbc database connection

env environment

f flag; unsigned integer

par parameter

row row (or a result set)

stmt statement

sz null-terminated string

v value of unspecified type
8-8 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
For example, hdbc is a handle for a database connection, ipar is an index parameter,
pib is a pointer to an index byte, and rgb is a range array of bytes.
 8-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Functions
UCI function calls are presented on the following pages in alphabetical order. Each
function is described in terms of syntax, input and output variables, description,
return values, and SQLSTATE values. Some functions also have an example.

Programmatic SQL statements are case-sensitive. You must code all SQL statement
names (such as CREATE TABLE, SELECT, and INSERT), SQL keywords (such as
INTEGER, WHERE, FROM, and GROUP BY), and database-specific keywords
(such as ROWUNIQUE and UNNEST) in uppercase letters. You must code identi-
fiers such as table and column names to match the format of the identifier as
originally defined.

Note: An asterisk (*) following a Type entry in a table of input or output variables
indicates that the argument is the address of a variable that is a pointer. A double
asterisk (**) indicates that the argument is a pointer to a pointer.
8-10 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLAllocConnect
SQLAllocConnect allocates memory for a connection handle within the environment
identified by henv. You must issue a call to SQLAllocConnect before you try to
connect to a server.

Syntax
RETCODE SQLAllocConnect (henv, phdbc)

Input Variable
The following table describes the input variable:

Output Variable
The following table describes the output variable:

Description
Use this function to create a connection environment to connect to a particular data
source. SQLAllocConnect stores the environment handle in phdbc.

One environment can have several connection handles, one for each data source.

Type Argument Description

HENV henv Environment handle returned in an SQLAllocEnv call.

SQLAllocConnect Input Variable

Type Argument Description

HDBC * phdbc Pointer to where the connection handle is stored. If an error is
returned, phdbc is set to SQL_NULL_HDBC.

SQLAllocConnect Output Variable
 SQLAllocConnect 8-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLSTATE values:

SQLSTATE Description

S1001 Memory allocation failure.

S1009 phdbc is a null pointer.

SQLSTATE Values
8-12 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLAllocEnv
SQLAllocEnv allocates memory for an environment handle and initializes the
interface for use by the client application. This must be the first call issued before any
other UCI function.

Syntax
RETCODE SQLAllocEnv (phenv)

Output Variable
The following table describes the output variable:

Description
Use this function to allocate memory for an environment. The address is stored in
phenv.

You cannot allocate more than one environment.

Return Values
SQL_SUCCESS
SQL_ERROR

SQLSTATE Values
No SQLSTATE can be returned on an error, because there is no valid henv for the
SQLError call. If the call fails, the failure is caused by one of the following:

Type Argument Description

HENV * phenv Pointer to where the environment handle is stored.

SQLAllocEnv Output Variable
 SQLAllocEnv 8-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Memory allocation failed.
The phenv argument is 0.
The application already allocated an environment handle.

Note: Only one environment handle is permitted to be active at one time.
8-14 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLAllocStmt
SQLAllocStmt allocates memory for a statement handle and associates the statement
handle with the connection specified by hdbc.

Syntax
RETCODE SQLAllocStmt (hdbc, phstmt)

Input Variable
The following table describes the input variable.

Output Variable
The following table describes the output variable.

Description
A statement handle represents a single SQL statement and holds all information that
UCI needs to describe results, return data rows, and so forth.

Type
Argumen
t Description

HDBC hdbc Connection handle.

SQLAllocStmt Input Variable

Type Argument Description

HSTMT * phstmt Pointer to where the statement handle is stored.

SQLAllocStmt Output Variable
 SQLAllocStmt 8-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
An application should not call SQLAllocStmt with a pointer to a valid statement
environment, because UCI will overwrite the pointer with the address of the newly
allocated environment, causing the memory allocated by the previous HSTMT
handle to be lost.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLSTATE values.

Value Description

S1009 phstmt argument was null.

08003 No connection has been established.

SQLAllocStmt SQLSTATE Values
8-16 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLBindCol
SQLBindCol assigns storage for loading data from a column in a result set and
specifies any data conversion to be performed.

Syntax
RETCODE SQLBindCol (hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD icol Column number of the result set, numbered left to right
starting at 1. This value must be from 1 through the
number of columns returned in an operation.

SWORD fCType C data type into which to convert the incoming data.
See C Data Types Supported in Chapter 7, “Data
Types,” for a complete list of valid C data types.

PTR rgbValue Pointer to the storage area allocated to hold the result
set. For an SQL_C_STRING data type, this should be
the address of the structure’s text member, and
pcbValue should be the address of the length part of the
structure.

SDWORD cbValueMax Maximum length of the rgbValue buffer. For character
data, this must include space for the null terminator.

SDWORD * pcbValue If the cell value is null, this will contain
SQL_NULL_DATA.

For character data, this contains the number of bytes
available to return. If this is greater than or equal to
cbValueMax, the data returned is truncated to cbVal-
ueMax – 1 bytes.

SQLBindCol Input Variables
 SQLBindCol 8-17

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Description
Use this function to tell UCI where to return the results of an SQLFetch call.
SQLBindCol defines where data values retrieved from the database by SQLFetch are
to be stored in the application and specifies the data conversion (fCType) to be
performed on the fetched data.

SQLBindCol is designed for use on singlevalued data primarily. If you use it for a
column and at SQLFetch time that column is found to contain multivalues, only the
first value is returned, coerced into the requested data type. A return code of
SQL_SUCCESS_WITH_INFO is also returned with an SQLSTATE of IM981 to
indicate that the multivalued data was truncated to the first value. Successive calls to
SQLGetData fetch successive values for that column. However, this approach is
much less efficient than using SQLBindMvCol, which is the recommended method.
Using both binding methods for the same hstmt is permitted, and may in fact be
necessary to deal with those queries that generate a mix of single-valued and
multivalued data.

Note: Issuing this call does not fetch data from the database, but only performs the
setup for SQLFetch. SQLBindCol has no effect until SQLFetch is used.

Normally you call SQLBindCol once for each column of data in the result set. Issuing
SQLFetch moves data from the result set at the data source to the variables specified
in the SQLBindCol call, overwriting any existing contents.

If an SQL_DATE or SQL_TIME column contains an
empty string, SQL_SUCCESS is returned, but
pcbValue is set to SQL_BAD_DATA.

For binary data, this contains the number of bytes
available to return. If this is greater than cbValueMax,
the data returned is truncated to cbValueMax bytes.

For all other data types, this contains the size of the
application data type specified.

Type Argument Description

SQLBindCol Input Variables (Continued)
8-18 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Data is converted from the data source to the data type requested by the SQLBindCol
call, if possible. If data cannot be converted to fCType, an error occurs and the column
is not bound. See C Data Types Supported in Chapter 7, “Data Types,” for
information about data conversion types.

Values are returned only for bound columns when a call to SQLFetch is issued.
Unbound columns are ignored and are not accessible unless you call SQLGetData.

For example, if a SELECT statement returns three columns, but you called
SQLBindCol for only two columns, data from the third column is accessible to your
program only by using SQLGetData on the column. If you bind more variables than
there are columns in the result set, an error is returned. If you bind no columns and
SQLFetch is issued, the cursor advances to the next row of results and no program
variables are loaded with data.

Do not use SQLBindCol with SQL statements that do not produce result sets.

Note: Be careful when executing a new SQL statement with a statement handle that
already has columns bound with SQLBindCol. If you do not use the SQLFreeStmt
call with the SQL_UNBIND option first, UCI assumes that the previous column
bindings are still in effect. If the new SQL statement generates fewer columns than
the previous SQL statement, the new SQL statement fails with an SQLSTATE of
S1002, indicating that the wrong number of columns were bound. This error might
also lead to data conversion errors if the columns for the new SQL statement cannot
be converted according to the previous bindings.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
 SQLBindCol 8-19

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLSTATE Values
The following table describes the SQLSTATE values.

Example
This program fragment determines the number of columns generated from the
execution of an SQL statement and, if there are results, binds up to 10 columns to a
column array.

Note: The code to allocate environments, connections, and the like is not shown here.

#define MAXCOLS 10
#define COLUMN_WIDTH 132

#include <stdio.h>
#include "UCI.h"

struct column
{
 char column_buffer [COLUMN_WIDTH];
 SDWORD column_outlen;
};

SWORD numcols;

SQLSTATE Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1002 Illegal column number. The value of icol is greater than the number of
columns in the result set or is less than 1.

S1003 The fCType argument is not a recognized data type.

S1009 rgbValue is a null pointer.

S1090 The value of cbValueMax is less than 0.

SQLBindCol SQLSTATE Values
8-20 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
HSTMT hstmt;
struct column columns[10]; /* Max of 10 columns */

main()
{
 int indexs;
 /* All allocation, connection, etc., code goes here */
 SQLExecDirect (hstmt, "SELECT * FROM MYTABLE");
 /* Get the number of columns produced. If there are any,
 * bind them all to character strings in the column
 * array. */
 SQLNumResultCols (hstmt, &numcols);

 if (numcols)
 {
 for (indexs = 1; indexs <= MAXCOLS; indexs ++)
 {
 SQLBindCol(hstmt, indexs,
 SQL_C_CHAR,
 &columns[indexs].column_buffer,
 COLUMN_WIDTH,
 &columns[indexs].column_outlen);
 }
 }
}

 SQLBindCol 8-21

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLBindMvCol
SQLBindMvCol is a database-specific extension of the SQLBindCol function. It
simplifies the fetching of multivalued data by normalizing it into arrays of C program
variables allocated by UCI. UCI allocates storage based on the number of values
returned, so you do not need to know how much storage to allocate in advance.

Syntax
RETCODE SQLBindMvCol (hstmt, icol, fCType, pCArray)

Input Variables
The following table describes the input variables.

Description
This extension to SQLBindCol allows a simple model to be used in dealing with
multivalued columns. UCI allocates storage for these values and returns addresses to
the application in the form of an array.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD icol Column number of the result set, numbered left to right
starting at 1.

SWORD fCType The data type for storing the data, in the UCI_DATUM
union.

C_ARRAY ** pCArray Address of a pointer to an array where the returned data is
to be stored following an SQLFetch call.

SQLBindMvCol Input Variables
8-22 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The user application specifies the application data type into which to convert the data.
UCI allocates a data structure for each value it encounters in a particular column, and
returns to the application the address of that array of values. As the application need
not be concerned with allocating storage before fetching a row of data, there is no
cbValueMax parameter in this call.

You can also use SQLBindMvCol with singlevalued data whenever you want UCI to
allocate storage.

When the contents of the attribute evaluate to an empty string, a subsequent
SQLFetch returns a C_ARRAY structure whose cDcount field is 0, rather than
returning one value whose content is the empty string.

The SQLBindMvCol function allocates memory as necessary to hold multivalued
data, and returns a pointer to the allocated memory. The program is responsible for
freeing the allocated memory with the SQLFreeMem function.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1002 Illegal column number. The value of icol specified is greater than the number
of columns in the result set.

S1003 A data type in the array is not a recognized data type.

SQLBindMvCol SQLSTATE Values
 SQLBindMvCol 8-23

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Example
The following fragment of pseudocode shows how to use this call to print some
results. The example assumes a two-column result set, with the first column being
single-valued, and the second column being a multivalued column containing
integers.

#include "UCI.h"

UCHAR col1buff[100];
HSTMT hstmt;
SDWORD col1size;
UWORD nv;
RETCODE status;
C_ARRAY *pCArray;
UCI_DATUM *ud;
SQLExecDirect (hstmt, "SELECT COL1, COL2 FROM MYTABLE");
SQLBindCol (hstmt, 1, SQL_C_CHAR, col1buff, 100, &col1size);
SQLBindMvCol (hstmt, 2, SQL_C_INTEGER, &pCArray);
while ((status = SQLFetch(hstmt)) == SQL_SUCCESS)
{
 printf(" %s\n ", col1buff);
 nv = pCArray->cDcount;
 ud = pCArray->Data;
 while (nv--)
 {
 if (ud->fIndicator == SQL_NULL_DATA)
 {
 printf("\t NULL \n");
 }
 else if (ud->fIndicator == SQL_BAD_DATA)
 {
 printf("\t Data could not be converted \n");
 }
 else
 {
 printf("\t %d\n", ud->uValue.int);
 }
 ud++;
 }
}
SQLFreeMem (*pCArray);
8-24 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLBindMvParameter
SQLBindMvParameter is a database-specific extension of the SQLBindParameter
function. It allows an application to write a multivalued column from an array of C
variables (which is the form read by SQLFetch after SQLBindMvCol has been
called).

Syntax
RETCODE SQLBindMvParameter (hstmt, ipar, pCArray)

Input Variables
The following table describes the input variables.

Description
This function allows data to be used in the form returned by SQLBindCol anywhere
in the SQL grammar that a parameter marker can be used. The array of data of type
fCType is processed by UCI into a dynamic array in a form that the database can use
internally—the reverse of how a multivalued dynamic array is processed into a C
array by SQLBindCol.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD ipar Parameter number, ordered sequentially from the right
starting at 1.

C_ARRAY* pCArray Pointer to an array that specifies the number of values,
the data types, an array of pointers to the data, and an
array of indicator/length values.
fParamType is always SQL_PARAM_INPUT, no
matter what value is used in the array. Multivalued
output and input/output parameters are not supported.

SQLBindMvParameter Input Variables
 SQLBindMvParameter 8-25

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
The pCArray argument is the address of an array of C_ARRAY structures that you
must manage in your application program. If the memory is allocated from system
memory with the malloc command, be sure that you free that memory when you no
longer need it.

For further information, refer to SQLBindParameter.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values

The following table describes the SQLSTATE values.

SQLSTAT
E Description

IM977 Multivalued parameter markers can only be SQL_PARAM_INPUT.

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1003 The argument fCType is not a recognized data type.

S1093 ipar was less than 1 or greater than the number of parameters in the SQL
statement.

SQLBindMvParameter SQLSTATE Values
8-26 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLBindParameter
SQLBindParameter binds an application buffer to a parameter marker in an SQL
statement. It is functionally similar to the SQLSetParam call in the ODBC 1.0
specifications. SQLSetParam has also been provided in UCI for compatibility.

Syntax
RETCODE SQLBindParameter (hstmt, ipar, fParamType, fCType, fSqlType,
cbColDef, ibScale, rgbValue, cbValueMax, pcbValue)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD ipar Parameter number, ordered sequentially from left to right
starting at 1.

SWORD fParamType Can be one of the following:
SQL_PARAM_INPUT
Use for parameters in an SQL statement that does not call a
procedure, or for input parameters in a procedure call.
SQL_PARAM_OUTPUT
Use for parameters that mark the return value of a procedure
or an output parameter in a procedure.
SQL_PARAM_INPUT_OUTPUT
Use for an input/output parameter in a procedure.

SWORD fCType C data type from which to convert the incoming data. See C
Data Types Supported in Chapter 7, “Data Types,” for a
complete list of valid C data types supported.

SWORD fSqlType SQL data type of the parameter. For more information, see
“The fSqlType Parameter” on page 29.

SQLBindParameter Input Variables
 SQLBindParameter 8-27

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Description
Use this function when parameter markers (represented by the ? character) are used
as part of the SQL statement syntax. This call identifies the program variables that
are used to hold values for each parameter marker in the statement. When you issue
an SQLExecDirect or an SQLExecute call, UCI extracts the value now in place for
each marker, checks for any data conversion errors, and delivers the values to the
server, where they are inserted into the SQL statement. The statement is then
executed.

You need to call SQLBindParameter only once for each marker. From that point on
UCI remembers where to find each marker and what its characteristics are.

UDWORD cbColDef Not currently used, but reserved for precision of the column
or expression of the associated parameter marker. You must
set it to SQL_UV_DEFAULT_PARAMETER. For more
information, see “The cbColDef and ibScale Parameters” on
page 29.

SWORD ibScale Not currently used, but reserved for scale of the column or
expression of the associated parameter marker. You must set
it to SQL_UV_DEFAULT_PARAMETER. For more
information, see “The cbColDef and ibScale Parameters” on
page 29.

PTR rgbValue Pointer to the buffer for the parameter’s data. If you are
using SQLParamOptions, rgbValue points to an array of
data values.

SDWORD cbValueMax Maximum length of the rgbValue buffer.

SDWORD * pcbValue Pointer to the buffer holding the parameter’s length. If you
are using SQLParamOptions, pcbValue points to an array
of parameter lengths. For more information, see “The
pcbValue Parameter” on page 30.

Type Argument Description

SQLBindParameter Input Variables (Continued)
8-28 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The fSqlType Parameter

For the database, if fSqlType is set to either SQL_DATE or SQL_TIME, the
parameter is used as follows:

Generally, fSqlType is used to ensure that the data presented to UCI for the parameter
marker is compatible with the data type of the marker. For example, if the application
specifies a numeric SQL type for a marker, and the data presented at execution is a
text string rather than a numeric string, UCI returns SQLSTATE 22005.

The cbColDef and ibScale Parameters

According to the ODBC 2.0 specification, cbColDef contains the precision of the
parameter marker, and ibScale contains the scale of the marker. Both of these depend
on the value loaded into fSqlType, and ibScale is relevant only for DECIMAL and
NUMERIC SQL types. As of Release 8.3.3, these fields are ignored, and you should
set these arguments to SQL_UV_DEFAULT_PARAMETER.

fSqlType
Parameter Description

SQL_DATE Any fCType value is permitted with SQL_DATE except for
SQL_C_TIME. However, if SQL_C_CHAR or SQL_C_STRING
is specified, the data literal must be in the form yyyy-mm-dd, as
specified in the ODBC 2.0 specification. This removes ambiguities
related to European date formats.

SQL_TIME Any fCType value is permitted with SQL_TIME except for
SQL_C_DATE. However, if SQL_C_CHAR or SQL_C_STRING
is specified, the time literal must be in the form hh:mm:ss, as
specified in the ODBC 2.0 specification.

fSqlType Parameters
 SQLBindParameter 8-29

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
The pcbValue Parameter

The pcbValue parameter has several different meanings, as shown in the following
table:

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

fCType pcfValue Description

All If pcbValue points to a location that contains the constant
SQL_NULL_DATA, the value that will be used for the
parameter is the null value.

SQL_C_CHAR or
SQL_C_STRING

If the pcbValue pointer is 0, or the location it points to is 0,
rgbValue is interpreted as the address of a null-terminated
character string. In this case, data up to the first 0x00 byte is
sent to the server.
If pcbValue points to a valid program variable, that variable
should contain the length of the data pointed to by rgbValue.
This value is valid only if fParamType is
SQL_PARAM_INPUT or SQL_PARAM_INPUT_OUTPUT.
If fParamType is SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT, the pcbValue cannot be 0.

Note: UCI ignores the contents of pcbValue if it does not point
to a location containing SQL_NULL_DATA and fCType is not
SQL_C_CHAR or SQL_C_STRING.

SQL_NTS The rgbValue is a null-terminated string.

pcbValue Parameters
8-30 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSTATE Values
The following table describes the SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1003 The fCType argument is not a recognized data type.

S1090 The value of cbValueMax is less than 0.

S1093 ipar is less than 1 or greater than the number of parameters in the SQL
statement, or fParamType is not SQL_PARAM_INPUT, or cbColDef or
ibScale is not SQL_UV_DEFAULT_PARAMETER.

07006 The fCType data type cannot be converted to the fSqlType data type.

SQLBind Parameter SQLSTATE Values
 SQLBindParameter 8-31

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLCancel
SQLCancel cancels the processing of the current SQL statement and discards any
pending results. SQLCancel is equivalent to SQLFreeStmt with the SQL_CLOSE
option specified.

Syntax
RETCODE SQLCancel (hstmt)

Input Variable
The following table describes the input variable.

Description
This function closes any open cursor for the statement handle supplied and discards
pending results at the data source. hstmt can be reopened by executing it again, using
the same or different parameters.

SQLCancel can also be used to cancel a long-running SQLExecute or
SQLExecDirect operation on an hstmt. To do this, an application must use signal
handlers to trap the ^C (Ctrl-C) interrupt from the terminal. Issuing an SQLCancel
request from the signal handler interrupts the server’s operation and returns an
SQLSTATE of S1008 to the execute request. In the application interrupt handler, the
only legal operation is to cancel the executing hstmt. Virtually all other attempted
functions fail and will return an SQLSTATE of S1010 (Function sequence error) to
the application. An attempt to cancel an hstmt not currently executing also causes an
S1010 error return.

Type Argument Description

HSTMT hstmt Statement handle.

SQLCancel Input Variable
8-32 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1010 Function sequence error. An attempt was made to cancel an hstmt while
another hstmt was still executing.

SQLCancel SQLSTATE Values
 SQLCancel 8-33

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLColAttributes
SQLColAttributes returns more extensive column attribute information than
SQLDescribeCol.

Syntax
RETCODE SQLColAttributes (hstmt, icol, fDescType, rgbDesc, cbDescMax,
pcbDesc, pfDesc)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD icol Column number to describe, numbered sequentially
from left to right starting at 1.

UWORD fDescType A valid descriptor type. Refer to “Description.”

SWORD cbDescMax Maximum length of the rgbDesc descriptor area.

SQLColAttributes Input Variables
8-34 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Output Variables
The following table describes the output variables.

Description
Depending on the attribute requested, SQLColAttributes can return the result as
either a character string or an integer value.

You can call SQLColAttributes only after the statement has been prepared by either
SQLPrepare or SQLExecDirect; before either of these two calls, the information is
not available. If the statement is an SQL procedure call, column information is not
available until after the statement is executed. Integer information is returned in
pfDesc as a 32-bit value.

Type Argument Description

PTR rgbDesc Pointer to storage for character strings returned as results.

SWORD * pcbDesc Pointer to the location used to hold the total number of
bytes available to return in rgbDesc.

SDWORD * pfDesc Pointer to the location used to hold the description infor-
mation for numeric descriptor types.

SQLColAttributes Output Variables
 SQLColAttributes 8-35

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
All other formats are returned in rgbDesc (the use of which depends on fDescType).
The following table shows where each result is returned.

If fDescType is...

Informatio
n is
returned
in... Description

SQL_COLUMN_AUTO_INCREMENT pfDesc TRUE if the values in the
column are automatically
incremented, otherwise
FALSE

SQL_COLUMN_CASE_SENSITIVE pfDesc TRUE for character data.
FALSE for all other.

SQL_COLUMN_CONVERSION rgbDesc The CONV entry for this
column in the file dictionary.

SQL_COLUMN_COUNT pfDesc Number of columns in the
result set. The icol argument
must be a valid column
number in the result set.

SQL_COLUMN_DISPLAY_SIZE pfDesc See Precision, Scale, and
Display Size Definitions in
Chapter 7, “Data Types,” for
details.

SQL_COLUMN_FORMAT rgbDesc The FMT entry for this
column in the file dictionary.

SQL_COLUMN_LABEL rgbDesc Column heading. If
COL.HDG, DISPLAYLIKE,
or DISPLAYNAME is used
in the query, the descriptor
contains the column heading,
otherwise the descriptor
contains the column name. If
the column has no heading or
name, an empty string is
returned.
8-36 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQL_COLUMN_LENGTH pfDesc The amount of data
transferred using SQLFetch.
See Precision, Scale, and
Display Size Definitions in
Chapter 7, “Data Types,” for
details.

SQL_COLUMN_MULTI_VALUED pfDesc TRUE if this is a multivalued
column, otherwise FALSE.

SQL_COLUMN_NAME rgbDesc Name of the column. If the
column is an expression, an
empty string is returned.

SQL_COLUMN_NULLABLE pfDesc SQL_NULLABLE if the
column can contain nulls,
otherwise
SQL_NO_NULLS.

SQL_COLUMN_PRECISION pfDesc See Precision, Scale, and
Display Size Definitions in
Chapter 7, for details.

SQL_COLUMN_PRINT_RESULT pfDesc Can be either TRUE or
FALSE, indicating that the
column is or is not a one-
column PRINT result set
from a called procedure. See
Processing UniVerse
Procedure Results in Chapter
5, “Calling and Executing
UniVerse Procedures,”for
details.

SQL_COLUMN_SCALE pfDesc For a file, always 0; for a
table column that is
DECIMAL or NUMERIC,
the scale is taken from the
column definition in the
dictionary.

If fDescType is...

Informatio
n is
returned
in... Description
 SQLColAttributes 8-37

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Note: SQL_COLUMN_CONVERSION, SQL_COLUMN_FORMAT, and
SQL_COLUMN_MULTI_VALUED are specific to the database; the remainder are
part of standard ODBC.

The values returned for some of these column attributes are of limited use to database
applications. For example, in databases constrained to fixed-length columns, the
precision of a column is typically of fundamental importance, and can be viewed as
an internal constraint on the data stored in that column. The database does not enforce
such constraints, so although a column may be defined as CHAR(30), the database
does not prohibit entry of more than 30 characters. Likewise, the attributes
SQL_COLUMN_DISPLAY_SIZE, SQL_COLUMN_PRECISION,
SQL_COLUMN_SCALE, and SQL_COLUMN_LENGTH are only approximations
and do not place constraints on the data that the application can insert.

SQL_COLUMN_SEARCHABLE pfDesc Always
SQL_SEARCHABLE.

SQL_COLUMN_TABLE_NAME rgbDesc Name of the table to which
the column belongs. If the
column is an expression, an
empty string is returned.

SQL_COLUMN_TYPE pfDesc A number representing the
column’s SQL data type.

SQL_COLUMN_TYPE_NAME rgbDesc Name of the column’s data
type.

SQL_COLUMN_UNSIGNED pfDesc TRUE for nonnumeric data
types, otherwise FALSE.

SQL_COLUMN_UPDATABLE pfDesc As of Release 9, any
expressions or computed
columns return
SQL_ATTR_READONLY,
and stored data columns
return SQL_ATTR_WRITE.

If fDescType is...

Informatio
n is
returned
in... Description
8-38 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO

SQLSTATE Values
The following table describes the SQLSTATE values.

SQLSTATE Description

S1000 General error for which there is no specific SQLSTATE code defined.

S1001 Memory allocation failure.

S1002 Illegal column number. The value of icol is less than 1 or is greater than
the number of columns in the result set.

S1009 rgbDesc or pcbDesc is null, or the result returned will be an integer and
pfDesc is null.

S1010 Function sequence error. SQLColAttributes was called before calling
either SQLPrepare or SQLExecDirect. In the case of a procedure call
statement, SQLColAttributes was called before calling either
SQLExecute or SQLExecDirect.

S1090 The value of cbDescMax is less than 0.

01004 The rgbDesc buffer was too small. The pcbDesc parameter holds the
length of the untruncated value. The string in rgbDesc is truncated to
cbDescMax – 1 bytes. SQL_SUCCESS_WITH_INFO is returned as the
status code.

24000 hstmt has no result set pending. There are no columns to describe.

SQLColAttributes SQLSTATE Values
 SQLColAttributes 8-39

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLColumns
SQLColumns returns a result set listing the columns matching the search patterns.

Syntax
RETCODE SQLColumns (hstmt, szTableQualifier, cbTableQualifier, szTableOwner,
cbTableOwner, szTableName, cbTableName, szColumnName, cbColumnName)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

UCHAR * szTableQualifier Qualifier (schema) name search pattern.

SWORD cbTableQualifier Length of szTableQualifier.

UCHAR * szTableOwner Table owner number search pattern.

SWORD cbTableOwner Length of szTableOwner.

UCHAR * szTableName Table name search pattern.

SWORD cbTableName Length of szTableName.

UCHAR * szColumnName Column name search pattern.

SWORD cbColumnName Length of szColumnName.

SQLColumns Input Variables
8-40 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
This function returns a result set in hstmt as a cursor of 13 columns describing those
columns found by the search pattern (refer to SQLTables). As with SQLTables, the
search is done on the SQL catalog. This is a standard result set that can be accessed
with SQLFetch. The ability to obtain descriptions of columns does not imply that a
user has any privileges on those columns.

If the application is running in 1NF mode, szTableOwner and szColumnName are
ignored, and a null value is returned for the owner.

Note: szTableOwner is the user ID of the person who created the table. SQLColumns
accepts the TableOwner search pattern as a character string, but the character string
must equate to an integer value and must not contain wildcards.

The result set contains 13 columns:

NF2 Mode 1NF Mode

TABLE_SCHEMA CHAR(18) CHAR(18)

OWNER INTEGER VARCHARa

a. In 1NF mode, OWNER is always NULL.

TABLE_NAME CHAR(18) CHAR(18)

COLUMN_NAME CHAR(18) CHAR(18)

DATA_TYPE_NULLb VARCHAR VARCHAR

TYPE_NAME CHAR(18) CHAR(18)

NUMERIC_PRECISION INTEGER INTEGER

CHAR_MAX_LENGTH INTEGER INTEGER

NUMERIC_SCALE INTEGER INTEGER

NUMERIC_PREC_RADIX INTEGER INTEGER

NULLABLE_UV VARCHAR VARCHAR

REMARKS CHAR(254) CHAR(254)

MULTI_VALUEc CHAR(1) VARCHAR

SQLColumns Result Set
 SQLColumns 8-41

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
The application is responsible for binding variables for the output columns and
fetching the results using SQLFetch. The result set contains one column in addition
to those columns listed in the ODBC 2.0 interface description. This is the
MULTI_VALUE column, which returns S for single-valued columns and M for
multivalued columns.

If no search criteria are specified, the SQL statement executed by SQLColumns is:

SELECT A.TABLE_SCHEMA, OWNER, A.TABLE_NAME, COLUMN_NAME,
 NULL COL.HDG 'Data Type' AS DATA_TYPE_NULL,
 DATA_TYPE COL.HDG 'Type Name' AS TYPE_NAME,
NUMERIC_PRECISION,
 CHAR_MAX_LENGTH, NUMERIC_SCALE, NUMERIC_PREC_RADIX,
 EVAL B.'IF NULLABLE="NO" THEN 0 ELSE 1' COL.HDG 'Nullable'
 AS NULLABLE_UV, B.REMARKS, MULTI_VALUE
 FROM UNNEST UV_TABLES ON COLUMNS A, UV_COLUMNS B
 WHERE A.TABLE_SCHEMA = B.TABLE_SCHEMA
 AND A.TABLE_NAME = B.TABLE_NAME
 AND A.COLUMNS = B.COLUMN_NAME
 ORDER BY 1, 2, 3;

In SQL_1NF_MODE_ON mode, the SQL statement executed by SQLColumns is:

SELECT TABLE_SCHEMA, NULL COL.HDG 'Owner' AS OWNER, TABLE_NAME,
 COLUMN_NAME, NULL COL.HDG 'Data Type' AS DATA_TYPE_NULL,
 DATA_TYPE COL.HDG 'Type Name' AS TYPE_NAME,
NUMERIC_PRECISION,
 CHAR_MAX_LENGTH, NUMERIC_SCALE, NUMERIC_PREC_RADIX,
 EVAL 'IF NULLABLE="NO" THEN 0 ELSE 1' COL.HDG 'Nullable'
 AS NULLABLE_UV, REMARKS, 'S' COL.HDG 'Single/Multivalued'
 AS MULTI_VALUE_S
 FROM UV_COLUMNS
 WHERE MULTI_VALUE = 'S'
 ORDER BY 1, 3;

If search criteria are specified, they are added as part of the SQL WHERE clause.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO

b. DATA_TYPE_NULL is always NULL.

c. In 1NF mode, MULTI_VALUE_S.
8-42 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSTATE Values
The following table describes the SQLColumns SQLSTATE values.

SQLSTATE Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1008 Cancelled. Execution of the statement was stopped by an SQLCancel
call.

S1010 Function sequence error. The hstmt specified is currently executing an
SQL statement.

S1C00 The table owner field was not numeric.

24000 Invalid cursor state. Results are still pending from the previous SQL
statement. Use SQLCancel to clear the results.

42000 Syntax error or access violation. This can happen for a variety of reasons.
The native error code returned by the SQLError call indicates the specific
database error that occurred.

SQLColumns SQLSTATE Values
 SQLColumns 8-43

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLConnect
SQLConnect connects to a data source, which can be either a local or a remote
UniVerse database. You cannot use SQLConnect inside a transaction.

Syntax
RETCODE SQLConnect (hdbc, szDSN, cbDSN, szSchema, cbSchema)

Input Variables
The following table describes the input variables.

Description
The server uses the supplied data source name (szDSN) as a key to the UCI
configuration file uci.config, which maps the name to a specific database account or
schema on a specific system. A skeleton version of this file, shipped with UCI, allows
connection to the local host using the name localuv. To add remote database entries,
the system administrator must edit this configuration file. For more information
about the UCI configuration file, see Chapter 3, “Configuring UCI.”

The account identifier string must be one of the following:

The schema name in the UV_SCHEMA table to which the server will attach
itself

Type Argument Description

HDBC hdbc Connection handle.

UCHAR * szDSN Pointer to a data source name (see “Description”).

SWORD cbDSN Length of the szDSN string.

UCHAR * szSchema Pointer to a schema name or account to log on to.

SWORD cbSchema Length of the szSchema string.
8-44 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
An account name in the UV.ACCOUNT file
A full path to define the directory to which the server will attach itself

The account identifier (szSchema) must point to a directory that has been set up to
run UniVerse.

If the string does not begin with / (slash) or, on Windows systems, \ (backslash), both
the UV_SCHEMA table and the UV.ACCOUNT file are examined. If the name is
unambiguous (that is, it is defined in only one file or has the same definition in both
files), it is used. If it is ambiguous, it is rejected.

Within an environment, UCI supports multiple connections to the same source as
well as to different sources.

You can also specify certain connect time options with the SQLSetConnectOption
call, and these take effect for the duration of the connection only.

Before issuing a call to SQLConnect, use SQLSetConnectOption calls to specify the
user name (SQL_OS_UID) and password (SQL_OS_PWD) for logging in to a
remote database server. On all systems but Windows NT 3.51, if the host specified
for this DSN is either localhost or the TCP/IP loopback address (127.0.0.1), the user
name and password are not required and are ignored if specified. On Windows NT
3.51 systems the user name and password are always required, so you must specify
localpc as the DSN (for information about adding the localpc entry to the UCI
configuration file, see Editing the UCI Configuration File in Chapter 3, “Configuring
UCI”).

If the DSN is not the local host, the client passes the requested user name, password,
and schema/account name through to the server. The server verifies the user
name/password combination with the operating system and if that is valid, verifies
that the requested schema is a valid schema or valid account on the server. Finally,
the NLS map and locale settings, if set, are sent to the server. If any of these steps
fails, an error is returned, indicating that the server rejected the connection request.

You must establish all connections before you can start a transaction.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
 SQLConnect 8-45

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLSTATE Values
The following table describes the SQLConnect SQLSTATE values.

SQLSTATE Description

IM002 The specified data source was not found in the UCI configuration file.

IM980 A user password is required to connect to this data source.

IM982 A user identification is required to connect to this data source. This user
must be found in the password file at the server.

IM984 UCI does not allow connections to data sources other than UniVerse.

IM987 Bad MAPERROR statement. A malformed MAPERROR statement was
found in the UCI configuration file.

IM997 An illegal option was found in the UCI configuration file.

IM999 A network type other than TCP/IP or LAN Manager is specified for the
data source.

S1000 General error for which no SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1090 szSchema is 0 or cbSchema is less than or equal to 0.

08001 The connection could not be established. See “Error Codes” for more
information.

08002 The hdbc used already has an active connection in place.

08004 The server rejected the connection. See “Error Codes.”

08S01 The communication link failed during the function.

SQLConnect SQLSTATE Values
8-46 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Error Codes
An SQLSTATE return of 08001 or 08004 indicates that, for one of several reasons,
the connection to the server could not be established. In such cases, further infor-
mation can be obtained by issuing a call to SQLError and examining the native error
code parameter. The most common reasons for a connect failure are as follows:

Code Description

80011 The user name specified could not be found in the server system’s password
file.

81002 The server name specified in the data source was not found in the
unirpcservices file on the server.

81011 The host specified in the uci.config file for the data source could not be found
on the network.

81013 The unirpcd daemon on the UNIX server, or the unirpc service on the
Windows server, could not open the unirpcservices file in the server’s
unishared directory.

81014 The service requested by the client could not be located or run by the server.
Check the data source entry in the uci.config file to ensure that the service
name in the entry is a valid entry in the unirpcservices file on the server.

81016 The unirpcd daemon on the UNIX server, or the unirpc service on the
Windows server, is not running. Start the daemon or service on the server.

930098 The server could not create the helper process for the connection.

930127 The directory pointed to by szSchema is not a database account.

930133 szSchema was not an absolute pathname and was not found to be either a
valid account or a schema.

930137 Cannot attach to the directory pointed to by szSchema.

Connect Error Codes
 SQLConnect 8-47

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLDataSources
SQLDataSources returns information about data sources.

Syntax
RETCODE SQLDataSources (henv, fDirection, szDSN, cbDSNMax, pcbDSN,
szDescription, cbDescriptionMax, pcbDescription, DBMSType)

Input Variables
The following table describes the input variables.

Type Argument Description

HENV henv Environment handle.

UWORD fDirection Determines which data source to return information
about. fDirection can be:
SQL_FETCH_FIRST
SQL_FETCH_NEXT

SWORD cbDSNMax Maximum length of the data source name buffer, in
bytes.

SWORD cbDescriptionMax Maximum length of the configuration information
buffer, in bytes.

SQLDataSources Input Variables
8-48 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Output Variables
The following table describes the output variables.

Description
An application can call SQLDataSources multiple times to retrieve all data source
names. When there are no more data source names, UCI returns
SQL_NO_DATA_FOUND. If SQLDataSources is called with SQL_FETCH_NEXT
immediately after it returns SQL_NO_DATA_FOUND, it returns the first data source
name.

Type Argument Description

UCHAR * szDSN Pointer to the data source name buffer.

SWORD * pcbDSN Number of bytes available to return in
szDSN. If pcbDSN > cbDSNMax, the
name is truncated and
SQL_SUCCESS_WITH_INFO is
returned.

UCHAR * szDescription Pointer to the configuration information
buffer.

SWORD * pcbDescription Number of bytes available to return in
szDescription. If pcbDescription >
cbDescriptionMax, the configuration
information is truncated and
SQL_SUCCESS_WITH_INFO is
returned.

SWORD * DBMSType Database type, which can be:
1 – UniVerse
2 – UniData
0 – Neither UniVerse nor UniData
999 – Not specified

SQLDataSources Output Variables
 SQLDataSources 8-49

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Return Values
SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR
SQL_NO_DATA_FOUND

SQLSTATE Values
When SQLDataSources returns SQL_ERROR or SQL_SUCCESS_WITH_INFO,
you can call SQLError to get the associated SQLSTATE value. Common SQLSTATE
values returned are:

SQLSTATE Description

01004 Data truncated. Either the data source name buffer or the configuration
information buffer is too small. Use the other arguments to determine
which one is too small.

IA003 Bad argument. You must use either SQL_FETCH_FIRST or
SQL_FETCH_NEXT.

IM998 UCI configuration file error. Either the configuration file does not exist, or
an error was found in the file.

S1001 Memory allocation failure.

SQLDataSources SQLSTATE Values
8-50 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLDescribeCol
SQLDescribeCol returns limited descriptive information (column name, data type,
precision, scale, and nullability) about a specified column. This call can be used only
after the statement has been prepared by an SQLPrepare or SQLExecDirect call.
The SQLColAttributes function provides access to more information than
SQLDescribeCol.

Syntax
RETCODE SQLDescribeCol (hstmt, icol, szColName, cbColNameMax,
pcbColName, pfSqlType, pcbColDef, pibScale, pfNullable)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD icol Column number to describe, numbered sequentially
from left to right starting at 1.

SWORD cbColNameMax Maximum length of the szColName buffer.

SQLDescribeCol Input Variables
 SQLDescribeCol 8-51

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Output Variables
The following table describes the output variables.

Description
The information returned by SQLDescribeCol is a subset of the information returned
by SQLColAttributes and is of limited use to database applications. In first-normal-
form databases constrained to use fixed-length columns, the precision of a column is
of fundamental importance to the database and can be viewed as an internal CHECK
constraint on the data coming into the column. However, the database, being more
flexible, has no need to enforce such constraints, and although a column may be
defined as CHAR(30), the database does not prevent a user application from entering
longer strings.

Type Argument Description

UCHAR * szColName Pointer to storage for the column name. If the
column name is an expression, the expression is
returned.

SWORD * pcbColName Total number of bytes available to return in
szColName excluding the null byte. If this value is
larger than cbColNameMax, the returned string is
truncated to cbColNameMax – 1 bytes.

SWORD * pfSqlType The SQL data type of the column. See SQL Data
Types Supported in Chapter 7, “Data Types,” for a
list of SQL data types that can be returned.

UDWORD * pcbColDef The precision of the column. See Precision, Scale,
and Display Size Definitions in Chapter 7, “Data
Types,” for a discussion of the precision and scale
of a column. Can be 0.

SWORD * pibScale The scale of the column if it is SQL data type
DECIMAL or NUMERIC, otherwise it is 0.

SWORD pfNullable Indicates if the column can contain nulls, and
contains either SQL_NO_NULLS or
SQL_NULLABLE. If the column is an expression,
SQL_NULLABLE_UNKNOWN is returned.

SQLDescribeCol Output Variables
8-52 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO

SQLSTATE Values
The following table describes the SQLDescribeCol SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1002 The value in icol is greater than the number of columns in the result set.

S1009 szColName, pcbColName, or pfSqlType is null.

S1010 Function sequence error. SQLDescribeCol was called before calling either
SQLPrepare or SQLExecDirect for hstmt.

S1090 The value specified in cbColNameMax is less than or equal to 0.

01004 The szColName buffer was too short for the name to be returned and the
result was truncated (SQL_SUCCESS_WITH_INFO).

24000 The SQL statement associated with hstmt did not return a result set.

SQLDescribeCol SQLSTATE Values
 SQLDescribeCol 8-53

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLDisconnect
SQLDisconnect closes the connection associated with a particular connection handle.
You cannot use SQLDisconnect inside a transaction.

Syntax
RETCODE SQLDisconnect (hdbc)

Input Variable
The following table describes the input variable.

Description
An application must explicitly issue a COMMIT or ROLLBACK statement for any
active transactions before attempting to issue an SQLDisconnect call. If an
application should terminate either normally or abnormally with transactions still
active, an implicit ROLLBACK statement is executed at the server.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO

Type Argument Description

HDBC hdbc Connection handle to be closed.

SQLDisconnect Input Variable
8-54 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSTATE Values
The following table describes the SQLDisconnect SQLSTATE values.

SQLSTATE Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1010 Function sequence error. The connection handle has a statement handle
that is currently being executed by the server.

01002 An error occurred during the disconnect, but the connection has been
broken (SQL_SUCCESS_WITH_INFO).

08003 The connection specified by hdbc has not been established.

25000 An active transaction is present on the connection and remains active
following this error return.

SQLDisconnect SQLSTATE Values
 SQLDisconnect 8-55

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLError
SQLError returns error information and status from the server.

Syntax
RETCODE SQLError (henv, hdbc, hstmt, szSqlState, pfNativeError, szErrorMsg,
cbErrorMsgMax, pcbErrorMsg)

Input Variables
The following table describes the input variables.

Output Variables
The following table describes the output variables.

Type Argument Description

HENV henv Environment handle or SQL_NULL_HENV.

HDBC hdbc Connection handle or SQL_NULL_HDBC.

HSTMT hstmt Statement handle or SQL_NULL_HSTMT.

SWORD cbErrorMsgMax Maximum length of the szErrorMsg buffer.

SQLError Input Variables

Type Argument Description

UCHAR * szSqlState Pointer to storage for a null-terminated string
containing the SQLSTATE (storage for six
characters is required).

SQLError Output Variables
8-56 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
Typically, an application calls SQLError whenever a previous call returns
SQL_ERROR or SQL_SUCCESS_WITH_INFO, but it can be used after any call.

Error status information can be retrieved for an error associated with an environment,
a connection, or a statement as follows:

Because more than one error or warning message can be posted for a single UCI call,
an application should call SQLError until the function returns the value
SQL_NO_DATA_FOUND. For each error, SQL_SUCCESS is returned and the error
is removed from the error list.

SDWORD * pfNativeError Pointer to the database error code number.

UCHAR * szErrorMsg Pointer to storage for error text (storage for 256
characters is recommended).

SWORD * pcbErrorMsg Pointer to the total number of bytes (excluding
the null terminator) available to return in
szErrorMsg. If this exceeds cbErrorMsgMax, the
message text returned is truncated to
cbErrorMsgMax, and
SQL_SUCCESS_WITH_INFO is returned.

To retrieve errors
associated with... Do this...

Environment Pass the environment’s henv, and pass SQL_NULL_HDBC in
hdbc and SQL_NULL_HSTMT in hstmt. The error status of the
ODBC function most recently called with henv is returned.

Connection Pass the connection’s hdbc, and pass SQL_NULL_HSTMT in
hstmt (any henv argument is ignored). The error status of the
ODBC function most recently called with hdbc is returned.

Statement Pass the statement’s hstmt (any henv and hdbc arguments are
ignored). The error status of the ODBC function most recently
called with hstmt is returned.

Error Status Information

Type Argument Description

SQLError Output Variables (Continued)
 SQLError 8-57

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
The error text is returned in the form:

[IBM] [component name] error message text

For example:

[IBM] [UniVerse] . . .
[IBM] [RPC] . . .

All errors for a given handle are removed when SQLError is called repeatedly for that
handle or when that handle is used in a subsequent function call. However, errors for
a given handle are not removed by a call to a function using an associated handle of
a different type.

SQLSTATE values are always five characters long, so szSqlState must point to
storage for a maximum of six characters. Error messages vary widely in length, so
the user application must allocate storage and inform UCI how much storage has
been allocated via the cbErrorMsgMax parameter. It is recommended that at least 256
characters be reserved for error messages. For example:

#define cbErrorMsgMax 256
SCHAR szSqlState[6];
SCHAR szErrorMsg[cbErrorMsgMax];

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO
SQL_NO_DATA_FOUND

SQLSTATE Values
The SQLError function does not post errors for itself. However, if an error message
to be returned is larger than the buffer allocated to store it, the value
SQL_SUCCESS_WITH_INFO is returned from the SQLError call, and the buffer
contains truncated error text.
8-58 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLExecDirect
SQLExecDirect executes a preparable SQL statement or procedure call using the
current values of any parameter markers that are set up for the statement.

Syntax
RETCODE SQLExecDirect (hstmt, szSqlStr, cbSqlStr)

Input Variables
The following table describes the input variables.

Description
This function both prepares and executes an SQL statement or procedure call. It
differs from SQLExecute in that SQLExecDirect does not require a call to
SQLPrepare. Use SQLExecDirect as the easiest way to execute an SQL statement or
procedure when you do not need to execute it repeatedly.

The SQL statement or procedure call can contain parameter markers, which must be
defined to UCI by an SQLBindParameter call before issuing SQLExecDirect. Before
the SQL statement or procedure is executed, the current values of the markers are
delivered to the server. Any data conversion problems caused by erroneous parameter
marker values are detected when this call is given.

Type Argument Description

HSTMT hstmt Statement handle.

UCHAR * szSqlStr Pointer to either an SQL statement or a call to an SQL
procedure, to be executed at the data source.

SDWORD cbSqlStr Length of szSqlStr.

SQLExecDirect Input Variables
 SQLExecDirect 8-59

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
If the SQL statement is a SELECT statement or procedure call, there could be data
that can be retrieved by SQLFetch as a result of executing SQLExecDirect. You can
issue a call to SQLNumResultCols to determine if any result columns were produced
by executing the SQL statement or procedure.

Calling SQL Procedures

To call an SQL procedure, use one of the following syntaxes:

call procedure [([parameter [, parameter] …])]
call procedure [argument [argument] …]

The following table describes each parameter of the syntax.

If SQLBindParameter defines a procedure’s parameter type as
SQL_PARAM_OUTPUT or SQL_PARAM_INPUT_OUTPUT, values are returned
to the specified program variables.

When SQLExecDirect calls a procedure, it does not begin a transaction. If a
transaction is active when a procedure is called, the current transaction nesting level
is maintained.

Parameter Description

procedure Name of the procedure. If this name contains characters other than letters
or numbers, enclose the name in double quotation marks. To embed a
single quotation mark in the procedure name, use two consecutive double
quotation marks.

parameter Either a liternal value or a parameter marker that indicates where to insert
values to send to or receive from the data source. Programmatic SQL uses
a ? (question mark) as a parameter marker.
You cannot use SQLBindMvParameter to bind parameter marks used
in a call statement.
Use parameters only if the procedure is a subroutine. The number and
order of parameters must correspond to the number and order of the
subroutine arguments.

argument Any valid keyword, literal, or other token you can use in a database
command line.

call Parameters
8-60 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLExecDirect SQLSTATE values.

SQLSTAT
E Description

IA000 An SQL statement was not executed because it contains the EXPLAIN
keyword. The EXPLAIN output is returned as error message text (see
SQLError).

S0001 Table or view already exists. Several database error codes can produce this
SQLSTATE. The specific reason is returned in the native error code
argument of the SQLError call.

S0002 Table or view not found. Several database error codes can produce this
SQLSTATE. The specific reason is returned in the native error code
argument of the SQLError call.

S0021 Column already exists. Several database error codes can produce this
SQLSTATE. The specific reason is returned in the native error code
argument of the SQLError call.

S0022 Column not found. Several database error codes can produce this
SQLSTATE. The specific reason is returned in the native error code
argument of the SQLError call.

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1008 Cancelled. Execution of the statement was stopped by an SQLCancel call.

S1010 Function sequence error. The hstmt specified is currently executing an SQL
statement.

01004 A data value in a parameter marker was truncated, resulting in loss of
precision.

SQLExecDirect SQLSTATE Values
 SQLExecDirect 8-61

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
07001 Not all parameter markers in the SQL statement have been specified with
SQLBindParameter.

21S01 Insert value list does not match the value list.

21S02 Number of columns in derived table does not match the column list.

22001 A parameter marker value was sent, but fractional truncation occurred.

22005 A value in a parameter marker is incompatible with the SQL data type of
that marker.

23000 Integrity constraint violation.

24000 Invalid cursor state. Results are still pending from the previous SQL
statement. Use SQLCancel to clear the results.

40001 An SQL statement with the NOWAIT keyword was not executed because
it encountered a lock conflict. The application may choose to sleep and
retry the operation a few times before giving up.

42000 Syntax error or access violation. This can happen for a variety of reasons.
The native error code returned by the SQLError call indicates the specific
database error that occurred.

SQLSTAT
E Description

SQLExecDirect SQLSTATE Values (Continued)
8-62 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLExecute
SQLExecute executes an SQL statement that has been prepared with SQLPrepare,
using the current values of any parameter markers.

Syntax
RETCODE SQLExecute (hstmt)

Input Variable
The following table describes the input variable.

Description
This function is commonly used for such operations as inserting multiple rows into
an SQL table.

You must call SQLPrepare to prepare the SQL statement before you can use
SQLExecute. If the SQL statement specified in the SQLPrepare call contains
parameter markers, you must also issue an SQLBindParameter or SQLSetParam call
for each marker in the SQL statement before calling SQLExecute. After you load the
parameter marker variables with data to send to the data source, you can issue a call
to SQLExecute. By setting new values in the parameter marker variables and calling
SQLExecute, new data values are sent to the data source and the SQL statement is
executed using those values.

If the SQL statement uses parameter markers, SQLExecute performs any data
conversions required by the SQLSetParam calls for the parameter markers.

Type Argument Description

HSTMT hstmt Statement handle.

SQLExecute Input Variable
 SQLExecute 8-63

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLExecute SQLSTATE values.

SQLSTATE Description

IA000 An SQL statement was not executed because it contains the EXPLAIN
keyword. The EXPLAIN output is returned as error message text (see
SQLError).

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1008 Cancelled. Execution of the statement was stopped by an SQLCancel
call.

S1010 Function sequence error. Either the SQL statement has not been prepared,
or there is an SQL statement already executing on the statement handle.

01004 A data value in a parameter marker was truncated, resulting in loss of
precision.

07001 Not all parameter markers in the SQL statement have been bound with
SQLBindParameter.

22005 A value in a parameter marker is incompatible with the SQL data type of
that marker.

23000 Integrity constraint violation.

24000 Invalid cursor state. Results are still pending from the previous SQL
statement. Use SQLCancel to clear the results.

40001 An SQL statement with the NOWAIT keyword was not executed because
it encountered a lock conflict. The application may choose to sleep and
retry the operation a few times before giving up.

SQLExecute SQLSTATE Values
8-64 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLFetch
SQLFetch returns the next row of data from a result set. Column data for all columns
specified in a preceding SQLBindCol call is returned into the variables that were
bound to the columns in the result set. If a column was bound with SQLBindMvCol,
UCI allocates a correctly sized C_ARRAY structure and returns its address in the
pCArray argument of the SQLBindMvCol call for each column.

Syntax
RETCODE SQLFetch (hstmt)

Input Variable
The following table describes the input variable.

Description
This function retrieves the next row’s column values from the result set and puts them
into the variables specified with SQLBindCol or SQLBindMvCol. If the data was
bound by a call to SQLBindCol and the data returned from the server is found to be
multivalued, only the first value is returned in the bound parameter, along with a
status of SQL_SUCCESS_WITH_INFO. Call SQLGetData to get subsequent
values.

SQLFetch performs any required data conversions (see C Data Types Supported in
Chapter 7, “Data Types,” for details). SQL_SUCCESS_WITH_INFO is returned if
numeric data is truncated or rounded when converting SQL values to database values.

Each SQLFetch call logically advances the cursor to the next row in the result set (the
database supports only forward scrolling cursors). When there is no more data to
retrieve, SQL_NO_DATA_FOUND is returned.

Type Argument Description

HSTMT hstmt Statement handle.

SQLFetch Input Variable
 SQLFetch 8-65

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Use SQLFetch only when a result set is pending at the data source.

Transactional Notes

Two rules govern the fetching of data in manual-commit mode:

You must fetch data at the same transaction isolation level as that at which
the original SELECT statement was executed:

SQLTransact (SQL_HULL_HENV, hdbc,
 SQL_BEGIN_TRANSACTION + SQL_TXN_READ_COMMITTED);
 SQLBindCol (hstmt, 1, ...);
 SQLBindCol (hstmt, 2, ...);
 SQLExecDirect (hstmt, "SELECT COL1, COL2 FROM TABLE"
);
 .
 .
 .
SQLTransact (SQL_HULL_HENV, hdbc,
 SQL_BEGIN_TRANSACTION);

SQLFetch (hstmt);

The previous code sequence is legal. The following sequence fails because the
SELECT statement is executed in a transaction started at isolation level
READ_COMMITTED, whereas the SQLFetch is executed from a higher transaction
isolation level (REPEATABLE_READ). Because the locking strategy for the
SELECT statement is determined when SELECT is executed, trying to fetch data at
a higher isolation level is not allowed because the data would be fetched using the
lower level.

SQLTransact (SQL_HULL_HENV, hdbc,
 SQL_BEGIN_TRANSACTION + SQL_TXN_READ_COMMITTED);
 SQLBindCol (hstmt, 1, ...);
 SQLBindCol (hstmt, 2, ...);
 SQLExecDirect (hstmt, "SELECT COL1, COL2 FROM TABLE"
);
 .
 .
 .
SQLTransact (SQL_HULL_HENV, hdbc,
 SQL_BEGIN_TRANSACTION + SQL_TXN_REPEATABLE_READ);

SQLFetch (hstmt);

Once COMMIT or ROLLBACK is issued for a transaction in which a
SELECT statement was executed, no further fetches from that cursor are
permitted because the cursor has been closed by COMMIT or ROLLBACK.
Attempting to fetch from the closed cursor returns an SQLSTATE of 24000.
8-66 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO
SQL_NO_DATA_FOUND

SQLSTATE Values
The following table describes the SQLFetch SQLSTATE values.

SQLSTATE Description

IM981 One value was returned from multivalued data bound by SQLBindCol.
The condition returns SQL_SUCCESS_WITH_INFO.

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1002 Invalid column number. icol is 0 or is greater than the number of columns
in the result set.

S1010 Function sequence error. Either hstmt is not in an executed state, or there is
an SQL statement already executing on hstmt.

01004 One or more columns was truncated. If string data, data is truncated on the
right. If numeric data, the fractional part is truncated. The condition causes
a return of SUCCESS_WITH_INFO.

07006 Data could not be converted into the type specified by fCType in the
SQLBindCol call.

24000 No results are pending on hstmt.

40001 The next row of results from an SQL SELECT with the NOWAIT keyword
was not fetched because a lock conflict was encountered. The application
may choose to sleep and retry the SQLFetch a few times before giving up.

SQLFetch SQLSTATE Values
 SQLFetch 8-67

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLFreeConnect
SQLFreeConnect releases a connection handle and frees all resources associated with
it.

Syntax
RETCODE SQLFreeConnect (hdbc)

Input Variable
The following table describes the input variable.

Description
You must use SQLDisconnect to disconnect the connection handle before you release
the connection environment with SQLFreeConnect, otherwise an error is returned.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

Type Argument Description

HDBC hdbc Connection handle to be freed.

SQLFreeConnect Input Variable
8-68 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSTATE Values
The following table describes the SQLFreeConnect SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1010 Function sequence error. The connection on hdbc is still active.

SQLFreeConnect SQLSTATE Values
 SQLFreeConnect 8-69

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLFreeEnv
SQLFreeEnv frees the environment handle and releases memory associated with it.

Syntax
RETCODE SQLFreeEnv (henv)

Input Variable
The following table describes the input variable.

Description
You must use SQLFreeEnv to release all environment handles attached to the ODBC
environment before you release the environment with SQLFreeConnect; otherwise
an error is returned.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

Type Argument Description

HENV henv Environment handle to be freed.

SQLFreeEnv Input Variable
8-70 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSTATE Values
The following table describes the SQLFreeEnv SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1010 Function sequence error. The environment has at least one allocated hdbc.

SQLFreeEnv SQLSTATE Values
 SQLFreeEnv 8-71

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLFreeMem
SQLFreeMem releases memory allocated by UCI software, thus preventing
problems caused by calling different memory managers from the same application.

Syntax
RETCODE SQLFreeMem (memptr)

Input Variable
The following table describes the input variable.

Description
The SQLBindMvCol function allocates memory as necessary to hold multivalued
data, and returns a pointer to the allocated memory. The user is responsible for freeing
the allocated memory, using the SQLFreeMem function.

Type Argument Description

PTR memptr Address of the memory that SQLBindMvCol allocated when
data was fetched from the server.

SQLFreeMem Input Variable
8-72 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLFreeStmt
SQLFreeStmt allows you to perform one of several operations on a statement handle,
depending on the option chosen.

Syntax
RETCODE SQLFreeStmt (hstmt, fOption)

Input Variables
The following table describes the input variables.

Description
Use this function at the end of processing to free resources used by an SQL statement,
to reset parameter marker bindings, or unbind column variables.

If your program uses the same SQL statement environment to execute different SQL
statements, you can use SQLFreeStmt either with the SQL_CLOSE option, which
should be sufficient in most cases, or with the SQL_DROP option. In the latter case,
you need to call SQLAllocStmt to reallocate a new SQL statement environment.

It is good practice to issue a call to SQLFreeStmt with the SQL_CLOSE option when
all results have been read from the data source, even if the SQL statement
environment will not be reused immediately for another SQL statement.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD fOption One of the following values: SQL_CLOSE, SQL_DROP,
SQL_RESET_PARAMS, or SQL_UNBIND (see
“Description”).

SQLFreeStmt Input Variables
 SQLFreeStmt 8-73

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
fOption can be any one of the following:

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLFreeStmt SQLSTATE values.

fOption Description

SQL_CLOSE Closes any open cursor associated with the SQL statement
environment and discards pending results at the data source.
Using the SQL_CLOSE option cancels the current query. All
parameter markers and columns remain bound to the variables
specified in the SQLBindCol and SQLBindParameter (or
SQLSetParam) calls. No more data can be fetched from this
hstmt until the SQL statement associated with the hstmt is
executed again with SQLExecute. Note that reexecuting an
hstmt which has not been prepared is not permitted. This option
is functionally equivalent to SQLCancel.

SQL_DROP In addition to including all available options, SQL_DROP also
deallocates the statement environment.

SQL_RESET_PARAMS Releases all parameter marker variables set by
SQLBindParameter.

SQL_UNBIND Releases all bound column variables bound by SQLBindCol
or SQLBindMvCol for this SQL statement environment.

SQLFreeStmt fOptions

SQLSTATE Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1092 fOption is not a valid value.

SQLFreeStmt SQLSTATE Values
8-74 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLGetData
SQLGetData retrieves data that exceeds the buffer space allocated for it. It also
retrieves data from columns in the result set that were not bound.

Syntax
RETCODE SQLGetData (hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD icol Column number in the result set, numbered left to right
starting at 1.

SWORD fCType C data type of the result for the column. See C Data Types
Supported in Chapter 7, “Data Types,” for a complete list.

SDWORD cbValueMax If nonzero, this value specifies, for binary and character
data, the maximum size allocated for the rgbValue buffer.

SQLGetData Input Variables
 SQLGetData 8-75

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Output Variables
The following table describes the output variables.

Description
This function is used in either of two circumstances:

To get data from a column that returns a data truncation error because the
application’s buffer is too small to contain all of the column data.
To get data from a column not bound by SQLBindCol. (You cannot use
SQLGetData on columns that have been bound using SQLBindMvCol
because fetching such columns always allocates enough memory
automatically.)

Note: When retrieving data that does not fit into a buffer, SQLGetData retrieves the
remaining data. It does not retrieve from the beginning of the text.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_NO_DATA_FOUND

Type Argument Description

PTR rgbValue Address of the buffer into which this call reads the data.
A value of 0 causes an error return from the function.

SDWORD * pcbValue SQL_NULL_DATA if the cell contains the null value.
SQL_BAD_DATA if the data could not be converted, or
the total number of bytes available to return in rgbValue.
8-76 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSTATE Values
The following table describes the SQLGetData SQLSTATE values.

SQLSTAT
E Description

IM979 The column was previously bound using SQLBindMvCol. Using the
single-valued SQLGetData function is therefore illegal.

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1002 Either icol is 0 or exceeds the number of columns in the result set.

S1009 The rgbValue or pcbValue argument is 0.

S1010 hstmt is not in an executed state. You must invoke SQLExecDirect or
SQLExecute before fetching data.
or
No SQLFetch has been issued for hstmt to position the cursor on a data row
prior to SQLGetData.

01004 Not all data for the column could be retrieved in this operation.

07006 Data could not be converted into the type specified by fCType in the
SQLGetData call.

24000 No results are pending on hstmt.

SQLGetData SQLSTATE Values
 SQLGetData 8-77

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Example
The following pseudo-code shows how an application might deal with a situation
where the original buffer allocated for the data was too small:

SDWORD cbValueMax = 512, pcbValue = 0;
buffer = malloc (cbValueMax);
SQLBindCol (hstmt, 1, SQL_C_STRING, buffer, cbValueMax,
&pcbValue);
if (SQLFetch () == 01004)
{

 buffer = realloc(buffer, pcbValue); /* Get full-size buffer *
 cbValueMax = pcbValue;
 /* Now transfer remaining data into correct sized buffer
 at the appropriate location in that buffer */
 SQLGetData (hstmt, 1, SQL_C_STRING, &buffer[cbValueMax],
 cbValueMax, &pcbValue);

}

8-78 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLGetFunctions
SQLGetFunctions returns information regarding whether a driver supports certain
functions.

Syntax
RETCODE SQLGetFunctions (hdbc, fFunction, pfExists)

Input Variables
The following table describes the input variables.

Output Variable
The following table describes the output variable.

Description
This function is implemented wholly within UCI and is for tools vendors who want
to use general code against UCI to verify that certain functions are available before
deciding how to implement something.

Type Argument Description

HDBC hdbc Connection handle.

UWORD fFunction A #define value that identifies an ODBC function. These
are listed under “fFunction Values.”

SQLGetFunctions Input Variables

Type Argument Description

UWORD * pfExists A single Boolean TRUE value if the function is supported.

SQLGetFunctions Output Variable
 SQLGetFunctions 8-79

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
fFunction Values

The following fFunction values are recognized and are defined in the UCI.h include
file:

SQL_API_SQLALLOCCONNECT
SQL_API_SQLALLOCENV
SQL_API_SQLALLOCSTMT
SQL_API_SQLBINDCOL
SQL_API_SQLCANCEL
SQL_API_SQLCOLATTRIBUTES
SQL_API_SQLCONNECT
SQL_API_SQLDESCRIBECOL
SQL_API_SQLERROR
SQL_API_SQLEXECDIRECT
SQL_API_SQLEXECUTE
SQL_API_SQLFETCH
SQL_API_SQLFREECONNECT
SQL_API_SQLFREEENV
SQL_API_SQLFREESTMT
SQL_API_SQLGETCURSORNAME
SQL_API_SQLNUMRESULTCOLS
SQL_API_SQLPREPARE
SQL_API_SQLROWCOUNT
SQL_API_SQLSETCURSORNAME
SQL_API_SQLSETPARAM
SQL_API_SQLTRANSACT
8-80 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Level 1 Functions

SQL_API_SQLCOLUMNS
SQL_API_SQLDRIVERCONNECT
SQL_API_SQLGETCONNECTIONOPTION
SQL_API_SQLGETDATA
SQL_API_SQLGETFUNCTIONS
SQL_API_SQLGETINFO
SQL_API_SQLGETSTMTOPTION
SQL_API_SQLGETTYPEINFO
SQL_API_SQLPARAMDATA
SQL_API_SQLSETCONNECTIONOPTION
SQL_API_SQLSETSTMTOPTION
SQL_API_SQLSPECIALCOLUMNS
SQL_API_SQLSTATISTICS
SQL_API_SQLTABLES

Level 2 Functions

SQL_API_SQLBROWSECONNECT
SQL_API_SQLCOLUMNPRIVILEGES
SQL_API_SQLDATASOURCES
SQL_API_SQLDESCRIBEPARAM
SQL_API_SQLEXTENDEDFETCH
SQL_API_SQLFOREIGNKEYS
SQL_API_SQLMORERESULTS
SQL_API_SQLNATIVESQL
SQL_API_SQLNUMPARAMS
SQL_API_SQLPARAMOPTIONS
SQL_API_SQLPRIMARYKEYS
SQL_API_SQLPROCEDURECOLUMNS
SQL_API_SQLPROCEDURES
SQL_API_SQLSETPOS
SQL_API_SQLSETSCROLLOPTIONS
SQL_API_SQLTABLEPRIVILEGES

ODBC 2.0 Additions

SQL_API_SQLBINDPARAMETER
SQL_API_SQLDRIVERS
 SQLGetFunctions 8-81

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO

SQLSTATE Values
The following table describes the SQLGetFunctions SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1010 Function sequence error. SQLGetFunctions was called before the
connection was made.

S1095 An invalid fFunction was requested.

SQLGetFunctions SQLSTATE Values
8-82 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLGetInfo
SQLGetInfo returns general information about the driver and the capabilities of the
database release.

Syntax
RETCODE SQLGetInfo (hdbc, fInfoType, rgbInfoValue, cbInfoValueMax,
pcbInfoValue)

Input Variables
The following table describes the input variables.

Output Variables
The following table describes the output variables.

Type Argument Description

HDBC hdbc Connection handle.

UWORD fInfoType Type of information wanted (refer to fInfoType
Values).

SWORD cbInfoValueMax Maximum length of the buffer, including any
null terminator.

SQLGetInfo Input Variables

Type Argument Description

PTR rgbInfoValue Pointer to storage for the returned information.

SWORD * pcbInfoValue Total number of bytes returned, excluding any null
terminator.

SQLGetInfo Output Variables
 SQLGetInfo 8-83

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Description
This function supports all of the possible requests for information defined in the
ODBC 2.0 specification. The #defines for fInfoType are contained in the UCI.h
include file.

For character-type data, SQLGetInfo checks cbInfoValueMax and truncates the
returned value as needed, and sets pcbInfoValue to the total number of bytes
(excluding any null terminator) actually returned, not the total number of bytes
available to return. Thus, if the number of bytes available for return is greater than
the buffer space allocated, there is no indication that bytes are missing.

For noncharacter-type data, cbInfoValueMax is ignored, and pcbInfoValue is not set.

fInfoType Values

The following table lists the valid values for fInfoType and documents the results
returned by the database.

fInfoType rgbInfoValue Type

SQL_ACTIVE_CONNECTIONS 0 16-bit integer

SQL_ACTIVE_STATEMENTS 0 16-bit integer

SQL_DATA_SOURCE_NAME (szDSN from SQLConnect) char string

SQL_DRIVER_HDBC 0 32-bit value

SQL_DRIVER_HENV 0 32-bit value

SQL_DRIVER_HLIB 0 32-bit value

SQL_DRIVER_HSTMT 0 32-bit value

SQL_DRIVER_NAME (empty string) char string

SQL_DRIVER_ODBC_VER “03.00” char string

SQL_DRIVER_VER (empty string) char string

SQL_FETCH_DIRECTION SQL_FD_FETCH_NEXT 32-bit bitmask

SQL_FILE_USAGE SQL_FILE_NOT_SUPPORTED 16-bit integer

fInfoType Values
8-84 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQL_GETDATA_EXTENSIONS SQL_GD_ANY_COLUMN
SQL_GD_ANY_ORDER
SQL_GD_BOUND

32-bit bitmask

SQL_LOCK_TYPES 0 32-bit bitmask

SQL_ODBC_API_CONFORMANCE SQL_OAC_NONE 16-bit integer

SQL_ODBC_SAG_CLI_CONFORMANCE SQL_OSSC_NOT_COMPLIAN
T

16-bit integer

SQL_ODBC_VER (empty string) char string

SQL_POS_OPERATIONS 0 32-bit bitmask

SQL_ROW_UPDATES “N” char string

SQL_SEARCH_PATTERN_ESCAPE (empty string) char string

SQL_SERVER_NAME (empty string) char string

DBMS Product Information

SQL_DATABASE_NAME (not in UCI.h) (deprecated)

SQL_DBMS_NAME “UNIVERSE” or “UNIDATA” char string

SQL_DBMS_VER (current release number,
for example, 09.04.0001)

char string

Data Source Information

SQL_ACCESSIBLE_PROCEDURES “N” char string

SQL_ACCESSIBLE_TABLES “N” char string

SQL_BOOKMARK_PERSISTENCE 0 32-bit bitmask

SQL_CONCAT_NULL_BEHAVIOR 0 16-bit integer

SQL_CURSOR_COMMIT_BEHAVIOR SQL_CB_CLOSE 16-bit integer

SQL_DATA_SOURCE_READ_ONLY “N” char string

SQL_DEFAULT_TXN_ISOLATION SQL_TXN_READ_COMMITTE
D

32-bit bitmask

fInfoType rgbInfoValue Type

fInfoType Values (Continued)
 SQLGetInfo 8-85

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQL_MULT_RESULT_SETS “N” char string

SQL_MULTIPLE_ACTIVE_TXN “Y” char string

SQL_NEED_LONG_DATA_LEN “N” char string

SQL_NULL_COLLATION SQL_NC_HIGH 16-bit integer

SQL_OWNER_TERM “Owner” char string

SQL_PROCEDURE_TERM “procedure” char string

SQL_QUALIFIER_TERM “Schema” char string

SQL_SCROLL_CONCURRENCY SQL_SCCO_LOCK 32-bit bitmask

SQL_SCROLL_OPTIONS SQL_SO_FORWARD_ONLY 32-bit bitmask

SQL_STATIC_SENSITIVITY 0 32-bit bitmask

SQL_TABLE_TERM “Table” char string

SQL_TXN_CAPABLE SQL_TC_DML 16-bit integer

SQL_TXN_ISOLATION_OPTION SQL_TXN_READ_UNCOMMITTE
D
SQL_TXN_READ_COMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE
(but not SQL_TXN_VERSIONING)

32-bit bitmask

SQL_USER_NAME (empty string) char string

SQL_UVNLS_FIELD_MARK (current field mark value) char string

SQL_UVNLS_ITEM_MARK (current item mark value) char string

SQL_UVNLS_MAP (current name of map table) char string

SQL_UVNLS_LC_ALL (current locale names) char string

SQL_UVNLS_LC_COLLATE (current locale name) char string

SQL_UVNLS_LC_CTYPE (current locale name) char string

SQL_UVNLS_LC_MONETARY (current locale name) char string

SQL_UVNLS_LC_NUMERIC (current locale name) char string

SQL_UVNLS_LC_TIME (current locale name) char string

fInfoType rgbInfoValue Type

fInfoType Values (Continued)
8-86 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQL_UVNLS_SQL_NULL (current value used to represent
the null value)

char string

SQL_UVNLS_SUBVALUE_MARK (current subvalue mark value) char string

SQL_UVNLS_TEXT_MARK (current text mark value) char string

SQL_UVNLS_VALUE_MARK (current value mark value) char string

Supported SQL

SQL_ALTER_TABLE SQL_AT_ADD_COLUMN 32-bit bitmask

SQL_COLUMN_ALIAS “Y” char string

SQL_CORRELATION_NAME SQL_CN_DIFFERENT 16-bit integer

SQL_EXPRESSIONS_IN_ORDER_BY “N” char string

SQL_GROUP_BY SQL_GB_GROUP_BY_
CONTAINS_ SELECT

16-bit integer

SQL_IDENTIFIER_CASE SQL_IC_SENSITIVE 16-bit integer

SQL_IDENTIFIER_QUOTE_CHAR " char string

SQL_KEYWORDS (empty string) char string

SQL_LIKE_ESCAPE_CLAUSE “Y” char string

SQL_NON_NULLABLE_COLUMNS SQL_NNC_NON_NULL 16-bit integer

SQL_ODBC_SQL_CONFORMANCE SQL_OSC_MINIMUM 16-bit integer

SQL_ODBC_SQL_OPT_IEF “Y” char string

SQL_ORDER_BY_COLUMNS_IN_SELECT “N” char string

SQL_OUTER_JOINS “Y” char string

SQL_OWNER_USAGE 0 32-bit bitmask

SQL_POSITIONED_STATEMENTS 0 32-bit bitmask

SQL_PROCEDURES “Y” char string

SQL_QUALIFIER_LOCATION SQL_QL_START 16-bit integer

fInfoType rgbInfoValue Type

fInfoType Values (Continued)
 SQLGetInfo 8-87

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQL_QUALIFIER_NAME_SEPARATOR “.” char string

SQL_QUALIFIER_USAGE SQL_QU_DML_STATEMENTS 32-bit bitmask

SQL_QUOTED_IDENTIFIER_CASE SQL_IC_SENSITIVE 32-bit bitmask

SQL_SPECIAL_CHARACTERS (empty string) char string

SQL_SUBQUERIES SQL_SQ_CORRELATED_SUBQUE
RIES
SQL_SQ_COMPARISON
SQL_SQ_EXISTS
SQL_SQ_IN
SQL_SQ_QUANTIFIED

32-bit bitmask

SQL_UNION 0
SQL_U_UNION
SQL_U_UNIONALL

32-bit bitmask

SQL Limits

SQL_MAX_BINARY_LITERAL_LEN 0 32-bit integer

SQL_MAX_CHAR_LITERAL_LEN 0 32-bit integer

SQL_MAX_COLUMNS_IN_GROUP_BY 32 16-bit integer

SQL_MAX_COLUMNS_IN_INDEX 0 16-bit integer

SQL_MAX_COLUMNS_IN_ORDER_BY 32 16-bit integer

SQL_MAX_COLUMNS_IN_SELECT 0 16-bit integer

SQL_MAX_COLUMNS_IN_TABLE 1024 16-bit integer

SQL_MAX_COLUMN_NAME_LEN 18 16-bit integer

SQL_MAX_CURSOR_NAME_LEN 18 16-bit integer

SQL_MAX_INDEX_SIZE 254 32-bit integer

SQL_MAX_OWNER_NAME_LEN 18 16-bit integer

SQL_MAX_PROCEDURE_NAME_LEN 0 16-bit integer

SQL_MAX_QUALIFIER_NAME_LEN 18 16-bit integer

SQL_MAX_ROW_SIZE 0 32-bit integer

fInfoType rgbInfoValue Type

fInfoType Values (Continued)
8-88 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQL_MAX_ROW_SIZE_INCLUDES_LONG “N” char string

SQL_MAX_STATEMENT_LEN 0 32-bit integer

SQL_MAX_TABLES_IN_SELECT 0 16-bit integer

SQL_MAX_TABLE_NAME_LEN 18 16-bit integer

SQL_MAX_USER_NAME_LEN 18 16-bit integer

Scalar Function Information

SQL_CONVERT_FUNCTIONS 0 32-bit bitmask

SQL_NUMERIC_FUNCTIONS 0 32-bit bitmask

SQL_STRING_FUNCTIONS 0 32-bit bitmask

SQL_SYSTEM_FUNCTIONS 0 32-bit bitmask

SQL_TIMEDATE_ADD_INTERVALS 0 32-bit bitmask

SQL_TIMEDATE_DIFF_INTERVALS 0 32-bit bitmask

SQL_TIMEDATE_FUNCTIONS 0 32-bit bitmask

Conversion Information

SQL_CONVERT_BIGINT 0 32-bit bitmask

SQL_CONVERT_BINARY 0 32-bit bitmask

SQL_CONVERT_BIT 0 32-bit bitmask

SQL_CONVERT_CHAR 0 32-bit bitmask

SQL_CONVERT_DATE 0 32-bit bitmask

SQL_CONVERT_DECIMAL 0 32-bit bitmask

SQL_CONVERT_DOUBLE 0 32-bit bitmask

SQL_CONVERT_FLOAT 0 32-bit bitmask

SQL_CONVERT_INTEGER 0 32-bit bitmask

fInfoType rgbInfoValue Type

fInfoType Values (Continued)
 SQLGetInfo 8-89

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO

SQLSTATE Value
The following table describes the SQLGetInfo SQLSTATE value.

SQL_CONVERT_LONGVARBINARY 0 32-bit bitmask

SQL_CONVERT_LONGVARCHAR 0 32-bit bitmask

SQL_CONVERT_NUMERIC 0 32-bit bitmask

SQL_CONVERT_REAL 0 32-bit bitmask

SQL_CONVERT_SMALLINT 0 32-bit bitmask

SQL_CONVERT_TIME 0 32-bit bitmask

SQL_CONVERT_TIMESTAMP 0 32-bit bitmask

SQL_CONVERT_TINYINT 0 32-bit bitmask

SQL_CONVERT_VARBINARY 0 32-bit bitmask

SQL_CONVERT_VARCHAR 0 32-bit bitmask

SQLSTAT
E Description

S1C00 Driver is not capable of handling any fInfoType not supported by this
function.

SQLGetInfo SQLSTATE Value

fInfoType rgbInfoValue Type

fInfoType Values (Continued)
8-90 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLGetStmtTimeOut
SQLGetStmtTimeOut gets the wait time before terminating an attempt to execute a
command and generating an error.

Syntax
SQLGetStmtTimeOut (hstmt, stmt_timeout)

Input Variables
The following table describes the input variable.

Output Variables
The following table describes the output variable.

Type Argument Description

HSTMT hstmt Statement handle.

SQLSetParam Input Variables

Type Argument Description

SWORD * stmt_timeout The time, in seconds, to wait for the command to
execute.

SQLGetInfo Output Variables
 SQLGetInfo 8-91

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLNumParams
SQLNumParams returns the number of parameters in an SQL statement.

Syntax
RETCODE SQLNumParams (hstmt, pcpar)

Input Variable
The following table describes the input variable.

Output Variable
The following table describes the output variable.

Description
Use this function after preparing or executing an SQL statement or procedure call to
find the number of parameters in an SQL statement. If the statement associated with
hstmt contains no parameters, pcpar is set to 0.

A procedure call must be prepared before SQLNumParams can return a result.

Type Argument Description

HSTMT hstmt Statement handle.

SQLNumParams Input Variable

Type Argument Description

SWORD * pcpar Number of parameters in the statement.

SQLNumParams Output Variable
8-92 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Return Values
SQL_SUCCESS
SQL_INVALID_HANDLE
SQL_ERROR

SQLSTATE Values
The following table describes the SQLNumParams SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1010 Function sequence error. SQLNumResultCols was called without a prior
call to SQLPrepare or SQLExecDirect.

SQLNumParams SQLSTATE Values
 SQLNumParams 8-93

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLNumResultCols
SQLNumResultCols returns the number of columns in a result set.

Syntax
RETCODE SQLNumResultCols (hstmt, pccol)

Input Variable
The following table describes the input variable.

Output Variable
The following table describes the output variable.

Description
Use this function after preparing or executing an SQL statement or procedure call to
find the number of columns in the result set returned. An application can use this
function to test whether a submitted SQL statement was a SELECT statement or a
procedure call that produced a result set. If the prepared or executed statement was
not a SELECT statement and therefore did not return a result set, pccol is set to 0.
Because the process of preparing a DDL statement also executes it, it is not possible
to prepare and test a DDL statement before it is executed.

Type Argument Description

HSTMT hstmt Statement handle.

SQLNumResultCols Input Variable

Type Argument Description

SWORD * pccol Pointer to the number of columns in the result set returned
by hstmt (or 0 if hstmt did not return a result set).

SQLNumResultCols Output Variable
8-94 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
A procedure call must be executed before SQLNumResultCols can return a result.

You can also use this function when the type of SQL statement is unknown or when
the number of columns to be bound to application variables is unknown, for example,
when an application is processing SQL statements entered ad hoc by users.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLNumResultCols SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1010 Function sequence error. SQLNumResultCols was called without a prior
call to SQLPrepare or SQLExecDirect. In the case of a procedure call,
SQLNumResultCols was called without a prior call to SQLExecute or
SQLExecDirect.

SQLNumResultCols SQLSTATE Values
 SQLNumResultCols 8-95

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLParamOptions
SQLParamOptions lets applications specify multiple values for each of the
parameters assigned by SQLBindParameter.

Syntax
RETCODE SQLParamOptions (hstmt, crow, pirow)

Input Variables
The following table describes the input variables.

Return Values
SQL_SUCCESS
SQL_SUCCESS_WITH_INFO
SQL_ERROR
SQL_INVALID_HANDLE

Type Argument Description

HSTMT hstmt Statement handle.

UDWORD crow Number of values for each parameter. If
crow > 1, rgbValue in SQLBindParameter
and SQLBindMvParameter points to an array
of parameter values, and pcbValue points to an
array of lengths.

UDWORD FAR * pirow Pointer to storage for the current row number.
As each row of parameter values is processed,
pirow is set to the number of that row. No row
number is returned if pirow is empty.

SQLParamOptions Input Variables
8-96 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
The ability to specify multiple values for a set of parameters is useful for bulk inserts
and other work requiring the data source to process the same SQL statement multiple
times with various parameter values. An application can, for example, specify twenty
sets of values for the set of parameters associated with an INSERT statement, then
execute the INSERT statement once to perform the twenty insertions.

When SQLExecute or SQLExecDirect is issued after an SQLParamOptions call,
the SQL statement is executed crow times, until another SQLParamOptions call is
issued with a new crow value.

After an SQLParamOptions call, SQLExecute and SQLExecDirect can execute
only the following statements:

INSERT
UPDATE
DELETE

When the SQL statement is executed, all variables are checked, data is converted
when necessary, and all values in the set are verified to be appropriate and within the
bounds of the marker definition. Values are then copied to low-level structures
associated with each parameter marker. If a failure occurs while the values are being
checked, SQLExecDirect or SQLExecute returns SQL_ERROR, and value contains
the number of the row where the failure occurred.

SQLParamOptions works only for input parameter types.

You can use SQLParamOptions before or after you issue an SQLBindParameter or
SQLBindMvParameter call.

Example
This example shows how you might use SQLParamOptions to load a simple table.
Table TAB1 has two columns: an integer column and a CHAR(30) column.

SDWORD crow; /* number of rows SQLParamOption will do */
SDWORD pirow; /* storage for SQLParamOptions reply, rows done
*/

SCHAR szSqlStr2[] = "INSERT INTO TAB1 VALUES (?,?);";
PTR p1[20];
PTR p2[20];
 SQLParamOptions 8-97

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
int pkint[20];

status = SQLAllocEnv(&henv);
status = SQLAllocConnect(henv, &hdbc);
status = SQLSetConnectOption(hdbc, (UWORD)SQL_OS_UID, 0, OsUid);
status = SQLSetConnectOption(hdbc, (UWORD)SQL_OS_PWD, 0, OsPwd);
status = SQLConnect(hdbc, szDSN, strlen(szDSN),
szSchema,strlen(szSchema));
status = SQLAllocStmt(hdbc, &hstmt);

crow = 20;
status = SQLParamOptions(hstmt, crow, &pirow);
status = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0, p1, 0, 0);

status = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, 0, 0, p2, (SDWORD)23, 0);

status = SQLPrepare(hstmt, szSqlStr2, strlen(szSqlStr2));

for (index = 1; index <= crow; index++)
{
 p1[index - 1] = &(pkint[index - 1]);
 pkint[index - 1] = index;

 p2[index - 1] = itoa(index);
}

status = SQLExecute(hstmt);
printf("%d paramater marker sets were processed\n", pirow);
8-98 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLPrepare
SQLPrepare passes an SQL statement or procedure call to the data source to prepare
it for execution at the server.

Syntax
RETCODE SQLPrepare (hstmt, szSqlStr, cbSqlStr)

Input Variables
The following table describes the input variables.

Description
Use this function to deliver an SQL statement or procedure call to the data source
where it can be prepared for execution. The application subsequently uses SQLEx-
ecute to execute the prepared SQL statement or procedure. However, for DDL
statements (CREATE TABLE, DROP TABLE, GRANT, REVOKE, etc.), you need
only prepare the statement. You do not need to explicitly issue SQLExecute because
SQLPrepare handles the execution.

Type Argument Description

HSTMT hstmt Statement handle.

UCHAR * szSqlStr Pointer to either an SQL statement or a call to an SQL
procedure, to be prepared for execution at the data
source.

SDWORD cbSqlStr Length of szSqlStr.

SQLPrepare Input Variables
 SQLPrepare 8-99

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Use SQLPrepare with SQLExecute when you are issuing SQL statements or calling
a procedure repeatedly. For example, if you are inserting or updating multiple rows
in a table, you can supply the values for a row to a prepared INSERT or UPDATE
statement and issue SQLExecute each time you change the values of the variables
bound to parameter markers. SQLExecute sends the current values of the parameter
markers to the data source and executes the prepared SQL statement or procedure
with the current values.

Note: Before you issue an SQLExecute call, all parameter markers in the SQL
statement or procedure call must be defined using the SQLBindParameter call;
otherwise SQLExecute returns an error.

You cannot prepare a DDL statement while a transaction is active. You must first
either commit or roll back the active transaction; otherwise SQLSTATE S1000 is
returned.

Calling SQL Procedures

To call an SQL procedure, use one of the following syntaxes:

call procedure [([parameter [, parameter] …])]
call procedure [argument [argument] …]
8-100 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

If SQLBindParameter defines a procedure’s parameter type as
SQL_PARAM_OUTPUT or SQL_PARAM_INPUT_OUTPUT, values are returned
to the specified program variables.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

Parameter Description

procedure Name of the procedure. If this name contains characters other
than letters or numbers, enclose the name in double quotation
marks. To embed a single quotation mark in the procedure name,
use two consecutive double quotation marks.

parameter Either a literal value or a parameter marker that indicates where
to insert values to send to or receive from the data source.
Programmatic SQL uses a ? (question mark) as a parameter
marker.
You cannot us SQLBindMvParameter to bind parameter
markers used in a call statement.
Use parameters only if the procedure is a subroutine. The
number and order of parameters must correspond to the number
and order of the subroutine arguments.

argument Any valid keyword, literal, or other token you can use in a
database command line.

call Parameters
 SQLPrepare 8-101

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLSTATE Values
The following table describes the SQLPrepare SQLSTATE values.

SQLSTAT
E Description

IM975 You cannot use SQL_PARAM_OUTPUT parameter markers with an SQL
statement that is not a called procedure.

S0001 Table or view already exists. Several database error codes can produce this
SQLSTATE. The specific reason is returned in the native error code argument
of the SQLError call.

S0002 Table or view not found. Several database error codes can produce this
SQLSTATE. The specific reason is returned in the native error code argument
of the SQLError call.

S0021 Column already exists. Several database error codes can produce this
SQLSTATE. The specific reason is returned in the native error code argument
of the SQLError call.

S0022 Column not found. Several database error codes can produce this
SQLSTATE. The specific reason is returned in the native error code argument
of the SQLError call.

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

21S01 Insert value list does not match the value list.

21S02 Number of columns in derived table does not match the column list.

23000 Integrity constraint violation.

24000 Invalid cursor state. Results are still pending from the previous SQL
statement. Use SQLCancel to clear the results.

42000 Syntax error or access violation. This can happen for a variety of reasons. The
native error code returned by the SQLError call indicates the specific
database error that occurred.

SQLPrepare SQLSTATE Values
8-102 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLRowCount
SQLRowCount returns the number of rows affected by an INSERT, UPDATE, or
DELETE statement.

Syntax
RETCODE SQLRowCount (hstmt, pcrow)

Input Variable
The following table describes the input variable.

Output Variable
The following table describes the output variable.

Description
The value of pcrow returned after executing a stored procedure may not be accurate.
It is accurate for a single INSERT, UPDATE, or DELETE statement. For a SELECT
statement, a 0 row count is always returned, unless the SELECT statement includes
the TO SLIST clause. In that case, SQLRowCount returns the number of rows in the
select list.

Type Argument Description

HSTMT hstmt Statement handle.

SQLRowCount Input Variable

Type Argument Description

SDWORD * pcrow Pointer to the location into which the row count is
stored. If the count cannot be determined, this location
is set to 0.

SQLRowCount Output Variable
 SQLRowCount 8-103

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLRowCount SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1010 Function sequence error. SQLRowCount was called before calling
SQLExecDirect or SQLExecute for hstmt.

SQLRowCount SQLSTATE Values
8-104 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSetConnectOption
SQLSetConnectOption lets an application control the way a particular connection
operates.

Syntax
RETCODE SQLSetConnectOption (hdbc, fOption, vParam, szParam)

Input Variables
The following table describes the input variables.

Type Argument Description

HDBC hdbc Connection handle.

UWORD fOption Option to be set.

UDWORD vParam A 32-bit value associated with fOption when fOption is
SQL_EMPTY_NULL, SQL_TXN_ISOLATION, or
SQL_DATA_MODEL.

UCHAR * szParam Text value associated with fOption when fOption is
SQL_OS_UID, SQL_OS_PWD,
SQL_LIC_DEV_SUBKEY, or one of the SQL_UVNLS
options.

SQLSetConnectOption Input Variables
 SQLSetConnectOption 8-105

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
The vParam values are as follows:

If fOption is... vParam is...

SQL_DATA_MODEL A 32-bit integer value that specifies whether the client is
restricted to accessing first normal form (1NF) only:
SQL_1NF_MODE_OFF = View base tables as containing all
columns (NF2 mode). This is the default.
SQL_1NF_MODE_ON = View base tables as containing only
single-valued columns (1NF mode).

You cannot change the data model if a transaction is running.

SQL_EMPTY_NULL A value that helps control whether UCI interprets empty
strings in the database as equivalent to the null value. vParam
is one of the following:
SQL_EMPTY_NULL_OFF keeps empty strings and null
values as distinct values. This is the default.
SQL_EMPTY_NULL_ON forces empty strings to be treated
as null values in those tables and files whose dictionary
contains an @EMPTY.NULL X-descriptor.

vParam Values
8-106 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The szParam values are as follows:

SQL_TXN_ISOLATION A 32-bit value that determines the default process isolation
level for transactions, effectively setting the locking strategy to
be used for executing the SQL statements. vParam must be one
of the following:

SQL_TXN_READ_UNCOMMITTED (isolation
level 1)
SQL_TXN_READ_COMMITTED (isolation level 2)
SQL_TXN_REPEATABLE_READ (isolation level 3)
SQL_TXN_SERIALIZABLE (isolation level 4)

Used in two ways:
In autocommit mode, vParam determines the isolation level to
be used by the server when executing an SQL statement.
When manual-commit mode is entered with SQLTransact
and the SQL_BEGIN_TRANSACTION option, UCI treats
vParam as if you had issued SQL_BEGIN_TRANSACTION
plus any value established as the process default isolation
level.

If the SQL_TXN_ISOLATION option is used inside a trans-
action, it does not take effect until the current transaction has
been committed or rolled back and a new transaction is started.

If fOption is... szParam is...

SQL_LIC_DEV_SUBKEY A string of up to 24 characters, used to uniquely
identify client devices for database licensing when
an application connects to a database server via a
multiple-tier connection.

SQL_OS_UID The operating system user ID to be used when
SQLConnect is called to make this hdbc active. It
is passed in szParam.

SQL_OS_PWD The operating system password to be used when
SQLConnect is called to make this hdbc active. It
is passed in szParam.

szParam Values

If fOption is... vParam is...

vParam Values (Continued)
 SQLSetConnectOption 8-107

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Description
Once SQLSetConnectOption sets an option for a connection, that option remains set
until it is specifically reset or the connection is released using an SQLFreeConnect
statement.

As of Release 9.4.1, if you are connecting to a server running with NLS enabled, you
can use the SQLSetConnectOption call to specify the NLS map table
(SQL_UVNLS_MAP) and NLS locale information (SQL_UVNLS_LOCALE). You
can change these settings after opening the connection, provided a transaction is not
active.

SQL_UVNLS_LC_ALL A set of values separated by slashes that specifies
all components of a locale.

SQL_UVNLS_LC_COLLATE A value that specifies the name of a locale whose
sort order to use.

SQL_UVNLS_LC_CTYPE A value that specifies the name of a locale whose
character type to use.

SQL_UVNLS_LC_MONETARY A value that specifies the name of a locale whose
monetary conventions to use.

SQL_UVNLS_LC_NUMERIC A value that specifies the name of a locale whose
numeric conventions to use.

SQL_UVNLS_LC_TIME A value that specifies the name of a locale whose
time conventions to use.

SQL_UVNLS_LOCALE A value that specifies all components of a locale.

SQL_UVNLS_MAP A value that defines the server NLS map for the
connection. The server must be able to locate the
map table, and the map table must be installed in
the server’s NLS shared memory segment.
szParam is the name of the map table.

If fOption is... szParam is...

szParam Values (Continued)
8-108 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Note: Certain combinations of clients and servers may not transfer data predictably
because of a mismatch in character mapping, locale settings, or both. See
Connecting to a UniVerse Server with NLS Enabled in Chapter 4, “Developing UCI
Applications” for more information.

Before issuing a call to SQLConnect, use SQLSetConnectOption calls to specify the
user name (SQL_OS_UID) and password (SQL_OS_PWD) for logging in to a
remote database server. On all systems but Windows NT 3.51, if the host specified
for this DSN is either localhost or the TCP/IP loopback address (127.0.0.1), the user
name and password are not required and are ignored if specified. On Windows NT
3.51 systems the user name and password are always required, so you must specify
localpc as the DSN (for information about adding the localpc entry to the UCI
configuration file, see Editing the UCI Configuration File in Chapter 3, “Configuring
UCI”).

If the DSN is not the local host, the client passes the requested user name, password,
and schema/account name through to the server. The server verifies the user
name/password combination with the operating system and if that is valid, verifies
that the requested schema is a valid schema or valid account on the server. Finally,
the NLS map and locale settings, if set, are sent to the server. If any of these steps
fails, an error is returned, indicating that the server rejected the connection request.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLSetConnectOption SQLSTATE values.

SQLSTATE Description

S1000 General error for which no specific SQLSTATE code has been defined.

SQLSetConnectOption SQLSTATE Values
 SQLSetConnectOption 8-109

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
S1001 Memory allocation failure.

S1009 The value of fOption is not valid for the database.

08002 fOption is SQL_OS_UID, SQL_OS_PWD, or SQL_DATA_MODEL, but
hdbc was already connected to a data source.

SQLSTATE Description

SQLSetConnectOption SQLSTATE Values (Continued)
8-110 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSetStmtTimeOut
SQLSetStmtTimeOut sets the wait time before terminating an attempt to execute a
command and generating an error.

Syntax
SQLSetStmtTimeOut (hstmt, stmt_timeout)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

SDWORD stmt_timeout The time, in seconds, to wait for the command to execute.

SQLSetParam Input Variables
 SQLSetConnectOption 8-111

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLSetParam
SQLSetParam is provided for compatibility with ODBC 1.0 and the UniVerse
BASIC SQL Client Interface. It specifies where values for parameter markers can be
found when an SQLExecute or SQLExecDirect call is issued. SQLSetParam is a
front end to SQLBindParameter, which is the preferred interface to this functionality.

Syntax
RETCODE SQLSetParam (hstmt, ipar, fCType, fSqlType, cbColDef, ibScale,
rgbValue, pcbValue)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

UWORD ipar Parameter number, counting sequentially from left to right
starting at 1.

SWORD fCType The C data type of the parameter. Must be one of the
supported C data types as described in Chapter 7, “Data
Types.”

UDWORD cbColDef Precision of the column or expression associated with the
parameter marker. Not used currently.
To ensure appropriate behavior in the future, you must set
this variable to SQL_UV_DEFAULT_PARAMETER.

SWORD ibScale Scale of the column or expression associated with the
parameter marker. Not used currently.
To ensure appropriate behavior in the future, you must set
this variable to SQL_UV_DEFAULT_PARAMETER.

PTR rgbValue Pointer to the buffer containing the parameter’s data.

SDWORD * pcbValue Pointer to the buffer containing the parameter’s length.

SQLSetParam Input Variables
8-112 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
This call is mapped to the SQLBindParameter call as follows:

RETCODE SQLBindParameter (hstmt, ipar, SQL_PARAM_INPUT_OUTPUT,
fCType, fSqlType, cbColDef, ibScale, rgbValue,
SQL_SET_PARAM_VALUE_MAX, pcbValue)

See “SQLBindParameter” on page 27 for further information.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQLSTATE Values
The following table describes the SQLSetParam SQLSTATE values.

SQLSTATE Description

S1000 General error for which no specific SQLSTATE code has been specified.

S1001 Memory allocation failure.

S1003 The fCType argument is not a recognized data type.

S1093 ipar was less than 1 or greater than the number of parameters in the SQL
statement.

07006 The fCType data type cannot be converted to the fSqlType data type.

SQLSetParam SQLSTATE Values
 SQLSetParam 8-113

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLTables
SQLTables returns a result set listing the tables matching the search patterns.

Syntax
RETCODE SQLTables (hstmt, szTableQualifier, cbTableQualifier, szTableOwner,
cbTableOwner, szTableName, cbTableName, szTableType, cbTableType)

Input Variables
The following table describes the input variables.

Type Argument Description

HSTMT hstmt Statement handle.

UCHAR * szTableQualifier Qualifier (schema) name search pattern.

SWORD cbTableQualifier Length of szTableQualifier.

UCHAR * szTableOwner Table owner number search pattern.

SWORD cbTableOwner Length of szTableOwner.

UCHAR * szTableName Table name search pattern.

SWORD cbTableName Length of szTableName.

UCHAR * szTableType Table type search pattern, which can be one of the
following: BASE TABLE, VIEW,
ASSOCIATION, or TABLE.

SWORD cbTableType Length of szTableType.

SQLTables Input Variables
8-114 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
This function returns hstmt as a standard result set of five columns containing the
qualifiers (schemas), owners, names, types, and remarks for all tables found by the
search. The search criteria arguments can contain a literal or an SQL LIKE pattern,
or be empty. If a literal or LIKE pattern is specified, only values matching the pattern
are returned. If a criterion is empty, tables with any value for that attribute are
returned. szTableOwner cannot specify a LIKE pattern. You can access the result set
with SQLFetch. These five columns have the following descriptors:

Note: The table owner is the user ID of the person who created the table. SQLTables
accepts the table owner search pattern as a character string, but that character string
must equate to an integer value and must not contain wildcards.

Special Search Criteria

Three special search criteria combinations enable an application to enumerate the set
of schemas, owners, and tables:

NF2 Mode 1NF Mode

TABLE_SCHEMA CHAR(18) CHAR(18)

OWNER INTEGER VARCHARa

a. In 1NF mode, OWNER is always NULL.

TABLE_NAME CHAR(18) CHAR(18)

TABLE_TYPE VARCHAR(128) VARCHAR(128)

REMARKS CHAR(254) CHAR(254)

hstmt Result Set
 SQLTables 8-115

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Impact of 1NF Mode

The value returned in szTableType is impacted by the setting of the 1NF mode
(specified by SQLSetConnectOption):

The SQL statement used in both modes when all four search patterns are empty is:

SELECT TABLE_SCHEMA, OWNER, TABLE_NAME, TABLE_TYPE, REMARKS
 FROM UV_TABLES
 ORDER BY 4, 1, 2, 3;

Table Qualifer Table Owner Table Name Table Type Return is...

% empty string empty string ignored Set of distinct schema
names

empty string % empty string ignored Set of distinct table
owners

empty string empty string empty string % Set of distinct table
types

Special Search Criteria

1NF Mode Effect

SQL_1NF_MODE_OFF The default. Virtual 1NF tables are returned from the catalog
with their TableType defined as ASSOCIATION to distinguish
them from the underlying physical NF2 tables. Refer to
Handling Multivalued Columns in Chapter 4, “Developing
UCI Applications” for an explanation of NF2 mode.

SQL_1NF_MODE_ON Virtual 1NF tables are returned from the catalog with their
TableType defined as TABLE. This enables 1NF users to treat
them as discrete tables and to aid interfaces that look for the
text TABLE to identify base table objects in the result set of
SQLTables. Virtual 1NF tables are distinguishable from base
tables because their TableType is TABLE, while the TableType
for base tables is BASE TABLE. Refer to Handling Multi-
valued Columns in Chapter 4, “Developing UCI Applications”
for an explanation of 1NF mode.

Impact of 1NF Mode
8-116 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
In 1NF mode, the TABLE_TYPE column is:

EVAL "IF TABLE_TYPE = 'ASSOCIATION' THEN 'TABLE' ELSE TABLE_TYPE"

If one or more search patterns are specified, the appropriate SQL WHERE clause is
inserted.

The ability to obtain information about tables does not imply that you have any privi-
leges on those tables.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE
SQL_SUCCESS_WITH_INFO

SQLSTATE Values
The following table describes the SQLTables SQLSTATE values.

SQLSTATE Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1008 Cancelled. Execution of the statement was stopped by an SQLCancel call.

S1010 Function sequence error. hstmt is currently executing an SQL statement.

S1C00 The table owner field was not numeric.

24000 Invalid cursor state. Results are still pending from the previous SQL
statement. Use SQLCancel to clear the results.

42000 Syntax error or access violation. This can happen for a variety of reasons.
The native error code returned by the SQLError call indicates the specific
database error that occurred.

SQLTables SQLSTATE Values
 SQLTables 8-117

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLTransact
SQLTransact starts a manual-commit mode transaction, or requests a COMMIT or
ROLLBACK for all SQL statements associated with a connection or all connections
associated with an environment.

Syntax
RETCODE SQLTransact (henv, hdbc, fType)

Input Variables
The following tables describes the input variables.

Description
This function provides the UCI programmer with the same transaction functions as
exist in BASIC with the BEGIN TRANSACTION, COMMIT, and ROLLBACK
statements.

Type Argument Description

HENV henv Environment handle.

HDBC hdbc Connection handle or SQL_NULL_HDBC.

UWORD fType One of the following:
SQL_BEGIN_TRANSACTION [+ level],
SQL_COMMIT, or SQL_ROLLBACK

SQLTransact Input Variables
8-118 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can begin a transaction at a particular transaction isolation level by adding the
isolation level to the fType parameter. This is equivalent to the BASIC syntax BEGIN
TRANSACTION ISOLATION LEVEL level. The valid fType parameter values are
as follows:

fType Value Description

SQL_BEGIN_TRANSACTION Puts the database in manual-commit mode.
Otherwise, it is in autocommit mode by default,
meaning that each SQL statement is executed as a
separate transaction. The database supports nested
transactions; for example, if SQLTransact is called
when another transaction is already active, a nested
transaction is begun.

If this is the first transaction started, the isolation
level used is the default level established with
SQLSetConnectOption. If it is not the first trans-
action, the new transaction uses the same isolation
level as the current one used.

SQL_BEGIN_TRANSACTION +
SQL_TXN_READ_UNCOMMITT
ED

Starts a manual-commit mode transaction at isolation
level 1.

SQL_BEGIN_TRANSACTION +
SQL_TXN_READ_COMMITTED

Starts a manual-commit mode transaction at isolation
level 2.

SQL_BEGIN_TRANSACTION +
SQL_TXN_REPEATABLE_READ

Starts a manual-commit mode transaction at isolation
level 3.

SQLTransact fType Values
 SQLTransact 8-119

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
Setting henv to a valid environment handle and hdbc to SQL_NULL_HDBC requests
the client to try to execute the requested action on all hdbcs that are in a connected
state.

If any action fails, SQL_ERROR is returned, and the user can determine which
connections failed by calling SQLError for each hdbc in turn.

If you call SQLTransact with an fType of SQL_COMMIT or SQL_ROLLBACK
when no transaction is active, SQL_SUCCESS is returned.

Return Values
SQL_SUCCESS
SQL_ERROR
SQL_INVALID_HANDLE

SQL_BEGIN_TRANSACTION +
SQL_TXN_SERIALIZABLE

Starts a manual-commit mode transaction at isolation
level 4.

SQL_COMMIT If the current transaction is not nested:
Writes all modified data to the database, releases all
locks acquired by the current transaction, and termi-
nates the transaction.
If the current transaction is nested:
Internally commits any data written during the nested
transaction and makes that data visible to the higher-
level transaction.

SQL_ROLLBACK If the current transaction is not nested:
Discards any changes written during the transaction
and terminates it.
If the current transaction is nested:
Discards only those changes made by the nested
transaction.

fType Value Description

SQLTransact fType Values
8-120 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQLSTATE Values
The following table describes the SQLTransact SQLSTATE values.

SQLSTAT
E Description

S1000 General error for which no specific SQLSTATE code has been defined.

S1001 Memory allocation failure.

S1012 fType did not contain SQL_COMMIT, SQL_ROLLBACK, or
SQL_BEGIN_TRANSACTION.

08003 No connection is active on hdbc.

08007 The connection associated with the transaction failed during the execution
of the function. It cannot be determined if the requested operation completed
before the failure.

SQLTransact SQLSTATE Values
 SQLTransact 8-121

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Ch8
2/4/09
SQLUseCfgFile
SQLUseCfgFile lets an application specify which UCI configuration file to use.

Syntax
RETCODE SQLUseCfgFile (henv, option, pathname)

Input Variables
The following table describes the input variables.

Description
SQLUseCfgFile specifies the full pathname of the UCI configuration file. You can
use SQLUseCfgFile to change the default name of the UCI configuration file from
uci.config to whatever you like. SQLUseCfgFile verifies the existence of the
specified configuration file.

If option is SQL_USE_REGISTRY, the pathname specified by the following registry
entry is used:

\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\UCI\UciCfgFile

Type Argument Description

HENV henv Environment handle.

UWORD option One of the following:
SQL_USE_REGISTRY
SQL_USE_FILE

UCHAR * pathname If option is SQL_USE_REGISTRY, pathname is
ignored. If option is SQL_USE_FILE, pathname is the
full pathname of the UCI configuration file or an empty
string.

SQLUseCfgFile Input Variables
8-122 UCI Developer’s Guide

C:\Program
Files\Adobe\FrameMaker8\UniVerse
If option is SQL_USE_FILE and pathname is empty, the UCI configuration file
specified by a previous call to SQLUseCfgFile is cleared.

If you do not use SQLUseCfgFile to specify a configuration file, UCI locates the
uci.config file by searching the following directories in order:

1. The current working directory
2. The UV account directory
3. On UNIX systems: the /etc directory

On Windows systems: the directories specified by the PATH variable

Return Values
SQL_SUCCESS
SQL_ERROR

SQLSTATE Values
When SQLUseCfgFile returns SQL_ERROR, you can call SQLError to get the
associated SQLSTATE value. Common SQLSTATE values returned are:

SQLSTATE Description

S1009 option must be either SQL_USE_REGISTRY or SQL_USE_FILE.
Only Windows clients can use SQL_USE_REGISTRY.

IA001 Cannot read the registry entry:
\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\UCI\UciCfgFile

IA002 Cannot access the UCI configuration file specified by
SQLUseCfgFile.

S1001 Memory allocation failure.

SQLUseCfgFile SQLSTATE Values
 SQLUseCfgFile 8-123

:\Prog
/4/09
A
Appendix

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Error Codes
This appendix lists the SQLSTATE error codes and the SQL and ODBC
error conditions they represent. General ODBC errors produce the
default SQLSTATE error code of S1000.
ram Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
SQLSTATE Error Codes
The following table lists the SQLSTATE values and the corresponding messages
they generate.

SQLSTATE Message

00000 Successful completion

01002 Disconnect failure

01004 Data has been truncated

07001 Not all parameters markers have been resolved

07006 Unsupported data type

08001 Connect failure

08002 Connection already established

08003 Connection is not established

08007 Transaction commit failure

08S01 Communications link failed during operation

21S01 Number of columns inserted doesn’t match number expected

21S02 Number of columns selected doesn’t match number defined in CREATE
VIEW

22001 Character string truncation

22001 Fractional truncation

22003 Numeric value out of range

22005 Nonnumeric data was found where numeric is required

22005 Error in assignment – Data type mismatch (ODBC)

22008 Illegal date/time value

23000 Integrity constraint violation

24000 Invalid cursor state

SQLSTATE Error Codes
A-2 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
25000 Connect/disconnect with an active transaction is illegal

34000 An invalid cursor name was specified

3C000 A duplicate cursor name was specified

40000 Transaction rolled back

40001 An SQL statement with NOWAIT encountered a conflicting lock.

42000 User lacks SQL privileges or operating system permissions

IA000 Output from the EXPLAIN keyword.

IM001 Unsupported function

IM002 The data source is not in the configuration file

IM003 An unknown DBMS type has been specified

IM975 Output parameter markers are valid only with procedure calls

IM976 UCI connections to databases other than UniVerse and UniData are not
allowed

IM977 Multivalued parameter finding for CALL not allowed

IM978 SQLBindMvCol/SQLBindMvParam illegal on 1NF connection

IM979 SQLGetData on column bound as multivalued is illegal

IM980 Remote password is required

IM981 Multivalued data present, single result returned

IM982 Remote user ID is required

IM982 Only a single environment variable can be allocated

IM983 Nested transactions to databases other than UniVerse and UniData are not
allowed

IM984 The SQL Client Extender is not installed

IM985 Error in RPC interface

SQLSTATE Message

SQLSTATE Error Codes (Continued)
 A-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
IM986 Improper SQLTYPE option

IM987 Improper MAPERROR option

IM988 Row exceeds maximum allowable width

IM989 Illegal expiration date format for the SQL Client Extender

IM990 The SQL Client Extender has not been authorized

IM991 License has expired for the SQL Client Extender

IM992 Exceeded licensed number of users for the SQL Client Extender

IM993 Failed opening SequeLink cursor

IM994 A SequeLink middleware error was detected

IM995 An illegal connect parameter was detected

IM996 Fetching into an ODBC environment variable not allowed

IM997 An illegal configuration option was found

IM998 There is no configuration file, or an error was found in the file

IM999 An illegal network type was specified

S0001 Table or view already exists

S0002 Table or view not found

S0021 Column already exists

S0022 Column not found

S1000 An error occurred at the data source

S1001 Memory allocation failure

S1002 An invalid column number specified

S1003 An illegal SQL data type was supplied

S1004 An unsupported SQL data type was encountered

S1009 A 0 or empty pointer was specified

SQLSTATE Message

SQLSTATE Error Codes (Continued)
A-4 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
S1009 An illegal option value was specified

S1010 Function call is illegal at this point

S1012 Invalid transaction code

S1015 No cursor name was specified

S1090 Invalid parameter length

S1090 Invalid string or buffer length

S1091 An unsupported attribute was specified

S1092 An illegal option value was specified

S1093 An illegal parameter number was specified

S1095 Function type out of range

S1095 Redimensioning arrays containing SQL Client Extender variables, bound
columns, or parameter markers

S1096 Information type out of range

S1C00 An invalid data type has been requested

S1C00 Driver does not support this function

SQLSTATE Message

SQLSTATE Error Codes (Continued)
 A-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
UniVerse SQL Error Codes
The following list shows the UniVerse SQL error codes and error message text
associated with certain SQLSTATE codes. Some texts are shown in abbreviated
form.

Code Message

S0001 Table or view already exists

950458 UniVerse/SQL: Table “tablename” already exists in VOC.

950459 UniVerse/SQL: Table “tablename” is being created twice.

950528 UniVerse/SQL: View “viewname” already exists in VOC.

950529 UniVerse/SQL: View “viewname” is being created twice.

S0002 Table or view not found

950311 UniVerse/SQL: “viewname” is a VIEW, not a BASE TABLE.

950313 UniVerse/SQL: “tablename” is a BASE TABLE, not a VIEW.

950390 UniVerse/SQL: Table “tablename” does not exist.

950455 UniVerse/SQL: View “viewname” does not exist.

950545 UniVerse/SQL: “name” is not a base table.

950596 UniVerse/SQL: “associationname” is an association; not valid for
REFERENCES.

950597 UniVerse/SQL: “associationname” is an association, not a VIEW.

950598 UniVerse/SQL: “associationname” is an association, not a base table or
view.

950599 UniVerse/SQL: “name” is not a base table; not valid for REFERENCES.

UniVerse SQL Error Codes
A-6 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
S0021 Column already exists

950416 UniVerse/SQL: Explicit column name “columnname” is not unique.

950570 UniVerse/SQL: Duplicate column name “columnname”.

S0022 Column not found

950418 UniVerse/SQL: Table constraint has an undefined column “columnname”.

950425 UniVerse/SQL: Column “columnname” not in table.

950428 UniVerse/SQL: Association key column not found.

950522 UniVerse/SQL: Invalid column “columnname” specified in constraint.

950523 UniVerse/SQL: Unknown column “columnname” specified in table
constraint.

21S01 Number of columns INSERTed doesn’t match number expected

950059 UniVerse/SQL: Number of columns inserted doesn’t match number
required.

21S02 Number of columns SELECTed doesn’t match number defined in
CREATE VIEW

950415 UniVerse/SQL: More explicit column names than columns selected.

950417 UniVerse/SQL: More columns selected than explicit column names.

22005 Error in assignment – Data type mismatch (ODBC)

950043 UniVerse/SQL: type1 and type2 types are incompatible in this operation.

950121 UniVerse/SQL: Column “columnname” data type does not match insert
value.

Code Message

UniVerse SQL Error Codes (Continued)
 A-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
950122 UniVerse/SQL: Column “columnname” data type does not match update
value.

950169 UniVerse/SQL: Inconsistent data types in multivalued literal.

950617 UniVerse/SQL: Incorrect data type for literal DEFAULT.

23000 Integrity constraint violation

923012 Integrity Constraint Violation, Index not active

923013 Integrity Constraint Violation, Index not UNIQUE

950136 UniVerse/SQL: constraintname Constraint Violation name on column
“columnname”.

950568 UniVerse/SQL: Can’t update existing rows with NULL default for NOT
NULL column.

950645 UniVerse/SQL: Unable to alter table “tablename”, Integrity constraint
violation.

40000 Transaction rolled back

040065 FATAL: The locks necessary for database operations at the current isolation
level (level) are not held by this process.

909046 Transaction aborted. Roll back attempted.

950604 Fatal error: ISOLATION level cannot be changed during a transaction.

40001 An SQL statement with NOWAIT encountered a conflicting lock

930157 UniVerse/SQL: Locking system failure in CursorOpen

950251 UniVerse/SQL: NOWAIT, Can’t lock record, conflict with another user.

950259 UniVerse/SQL: NOWAIT, Can’t lock file, conflict with another user.

950260 UniVerse/SQL: NOWAIT, Can’t lock record, conflict with user "user".

Code Message

UniVerse SQL Error Codes (Continued)
A-8 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
950261 UniVerse/SQL: NOWAIT, Can’t lock file, conflict with user "user".

42000 User lacks SQL or operating system permissions

001397 User does not have write privileges to current directory.

001422 Insufficient SQL permissions to read name.

001423 Insufficient SQL permissions to write name.

001424 Insufficient SQL permissions to delete name.

020142 Unable to open “filename” file.

036010 Permission Denied.

950072 UniVerse/SQL: Permission needed to delete records in table “tablename”.

950076 UniVerse/SQL: Permission needed to insert records in table “tablename”.

950078 UniVerse/SQL: Permission needed to update records in table “tablename”.

950131 UniVerse/SQL: Permission needed to update column “columnname” in table
“tablename”.

950303 UniVerse/SQL: No read/write permission for username, cannot create
schema.

950304 UniVerse/SQL: No rwx permission for name, cannot create schema.

950305 UniVerse/SQL: username does not have rwx permission for name, cannot
create schema.

950306 UniVerse/SQL: username does not have rw permission for name, cannot
create schema.

950338 UniVerse/SQL: username is not an SQL user.

950343 UniVerse/SQL: username does not have permission to drop schema.

950350 UniVerse/SQL: username does not have permission to create schemas.

950352 UniVerse/SQL: You must be DBA to create a schema for another user.

Code Message

UniVerse SQL Error Codes (Continued)
 A-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
950361 UniVerse/SQL: username does not have DBA privilege.

950362 UniVerse/SQL: Command aborted, you may not revoke your own
privileges.

950365 UniVerse/SQL: No read/write permission for username, cannot create table.

950391 UniVerse/SQL: You do not have sufficient privileges to REVOKE on this
file.

950392 UniVerse/SQL: You do not have sufficient privileges to REVOKE SELECT
on this file.

950393 UniVerse/SQL: You do not have sufficient privileges to REVOKE INSERT
on this file.

950394 UniVerse/SQL: You do not have sufficient privileges to REVOKE DELETE
on this file.

950395 UniVerse/SQL: You do not have sufficient privileges to REVOKE UPDATE
on this file.

950398 UniVerse/SQL: Command aborted. username is not an SQL user.

950405 UniVerse/SQL: You do not have sufficient privileges to GRANT on this file.

950406 UniVerse/SQL: You do not have sufficient privileges to GRANT SELECT
on this file.

950407 UniVerse/SQL: You do not have sufficient privileges to GRANT INSERT
on this file.

950408 UniVerse/SQL: You do not have sufficient privileges to GRANT DELETE
on this file.

950409 UniVerse/SQL: You do not have sufficient privileges to GRANT UPDATE
on this file.

950534 UniVerse/SQL: Unable to alter table “tablename”.

950538 UniVerse/SQL: You do not have sufficient privileges to REVOKE ALTER
on this file.

950539 UniVerse/SQL: You do not have sufficient privileges to REVOKE REFER-
ENCES on this file.

Code Message

UniVerse SQL Error Codes (Continued)
A-10 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta

950540 UniVerse/SQL: You do not have sufficient privileges to GRANT ALTER on
this file.

950541 UniVerse/SQL: You do not have sufficient privileges to GRANT REFER-
ENCES on this file.

950546 UniVerse/SQL: Permission needed to alter table tablename.

950548 UniVerse/SQL: Write permission needed to create or delete index.

950563 UniVerse/SQL: You don’t have enough privileges to DROP “tablename”.

950588 UniVerse/SQL: Cannot write to tablename.

950590 UniVerse/SQL: Unable to open tablename.

950607 UniVerse/SQL: Unable to create REFERENCES on table tablename.

950609 UniVerse/SQL: Permission needed to create REFERENCES to table
tablename.

Code Message

UniVerse SQL Error Codes (Continued)
 A-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppA
2/4/09

Beta
UniRPC Error Codes
Remote procedure call (UniRPC) error codes appear if there is a problem in the
communications between the client and the server, or if the server encounters one of
several error conditions.

Error Code Meaning

81001 Connection closed, reason unspecified.

81002 On an SQLConnect call, this indicates that the service name specified by
the data source was not present on the server, the unirpcservices file was not
found, or the service name was not found in the unirpcservices file.

81003 The UniRPC interface has not been initialized.

81004 Error occurred while trying to store an argument in the transmission packet.

81005 The client and server are running incompatible versions of the UniRPC
protocol.

81006 A sequence number failure was detected on the connection.

81007 No more connections can be processed by the RPC interface.

81008 A bad UniRPC parameter was detected.

81009 An internal UniRPC error was detected.

81010 A mismatch in the number of arguments passed between the client and
server was detected.

81011 Unknown host. The host name or IP address specified in the data source is
not valid for the network.

81012 The UniRPC daemon (unirpcd) could not start the uvserver executable.

81015 The connection timed out.

81016 The connection was refused.

930098 The database server could not fork a helper process.

UniRPC Error Codes
A-12 UCI Developer’s Guide

:\Prog
/4/09
B
Appendix

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
The UCI Sample
Program
This appendix lists the ucisample.c program:

/**

*
* ucisample.c - the uniVerse UCI example program
*
* Moduleucisample.cVersion3.1.1.3 Date09/16/96
*
* (c) Copyright 1993 Ardent Software Inc. - All Rights
Reserved
* This is unpublished proprietary source code of
Ardent Software Inc.
* The copyright notice above does not evidence any
actual or intended
* publication of such source code.
*

*
* Maintenence log - insert most recent change
descriptions at top
*
* Date.... GTAR# WHO
Description...
* 08/23/96 19084 ENF Add destination, uid, pwd to
ucisample
* 07/10/96 18807 AGM Port to Windows
* 08/25/95 17233 ENF Move UCI.h after all other
includes
* 08/17/95 16977 RM Release memoru from C_ARRAY
structure
* 07/24/95 16977 RM Finish sample program for 8.3.3
* 06/24/95 15921 RM New module
*

*******************/
#define __MODULE__ "ucisample.c"
#define __SCCSID__ "3.1.1.3"

#ifdef _WIN32
ram Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta
#include <windows.h>
#include <direct.h>
#include <stdio.h>
#include <conio.h>
#else
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <termio.h>
#endif

#include "UCI.h"

#ifndef _WIN32
/* begin external function declarations */
SCHAR *itoa();
/* end external function declarations */
#endif

/* begin static variable declarations */
staticSCHAR szSqlStr1[] = "SELECT * FROM RIDES.F;";
staticSCHAR szSqlStr2[] = "UPDATE RIDES.F SET OPERATOR = ?

WHERE RIDE.ID = ?;";
staticSCHAR szSqlStr3[] = "SELECT * FROM RIDES.F WHERE RIDE.ID =
?;";
staticSCHAR szDSN[128];
staticSCHAR szBlank[] = " ";
/* end static variable declarations */

/*
 * The ERRCHECK macro shows a way to simplify the checking of
errors
 * returned by UCI functions and obtaining error state and message
from
 * SQLError. This macro cannot be used to check SQLAllocEnv
 */

#define ERRCHECK(fname){ if (ret == SQL_ERROR) {\

ret = SQLError(henv, hdbc, hstmt, szSqlState, &fNativeError,
 szErrorMsg, sizeof(szErrorMsg)-1,

&cbErrorMsg);\
if (ret == SQL_SUCCESS || ret == SQL_SUCCESS_WITH_INFO) {\
printf("\n Died in %s with SQLSTATE %s\n", fname,

szSqlState); \
printf("\n Native error: %d %s\n", fNativeError,

szErrorMsg); }\
exit(EXIT_FAILURE); }}

/*
 * The print_carray function is provided to show how to use the
C_ARRAY
 * structure returned by SQLBindMvCol; it mimics uniVerse VERTICAL
listing
B-2 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta
 */

void print_carray(szLabel, pca)

SCHAR *szLabel;
C_ARRAY *pca;

{
UWORD ui = pca->cDcount;
UCI_DATUM*udptr = pca->Data;

while (ui--)
{

printf("%-11s.", (udptr == pca->Data) ? szLabel : szBlank);
if (udptr->fIndicator == SQL_NULL_DATA)
{

printf(" <null>\n");
}
else if (udptr->fIndicator == SQL_BAD_DATA)
{

printf(" <data could not be converted>\n");
}
else switch (pca->fCType)
{

case SQL_C_CHAR:
case SQL_C_STRING:

printf(" %s\n", udptr->uValue.string.text);
break;

case SQL_C_DOUBLE:
printf(" %f\n", udptr->uValue.dbl);
break;

case SQL_C_FLOAT:
printf(" %f\n", (double)udptr->uValue.flt);
break;

case SQL_C_TINYINT:
case SQL_C_STINYINT:

printf(" %d\n", (int)udptr->uValue.sbyte);
break;

case SQL_C_UTINYINT:
printf(" %d\n", (int)udptr->uValue.ubyte);
break;

case SQL_C_SHORT:
case SQL_C_SSHORT:

printf(" %d\n", (int)udptr->uValue.sword);
break;

case SQL_C_USHORT:
printf(" %d\n", (int)udptr->uValue.uword);
break;

case SQL_C_LONG:
case SQL_C_SLONG:

printf(" %d\n", (int)udptr->uValue.sdword);
break;

case SQL_C_ULONG:
printf(" %d\n", (int)udptr->uValue.udword);
break;

case SQL_C_DATE:
 B-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta
printf(" %02d-%02d-%04d\n",
(int)udptr->uValue.date.day,
(int)udptr->uValue.date.month,
(int)udptr->uValue.date.year);

break;
case SQL_C_TIME:

printf(" %02d:%02d:%02d\n",
(int)udptr->uValue.time.hour,
(int)udptr->uValue.time.minute,
(int)udptr->uValue.time.second);

break;
}
udptr++;

}

return;
}

/*
 * This routine frees a C_ARRAY structure allocated by
SQLBindMvCol
 */

void free_carray(ppca)

C_ARRAY **ppca;
{

C_ARRAY *pca;
UWORD ui;
UCI_DATUM*udptr;

if (!ppca || !(pca = *ppca)) return;

if (pca->fCType == SQL_C_CHAR || pca->fCType == SQL_C_STRING)
{

ui = pca->cDcount;
udptr = pca->Data;
while (ui--)
{

if (udptr->uValue.string.text)
{

free(udptr->uValue.string.text);
}
udptr++;

}
}

free(pca);
*ppca = 0;
return;

}

/*
 * This routine will get the password without echoing it
 */
B-4 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta

char *getpasswd(passwd)

 char *passwd;
{
#ifndef _WIN32

struct termio tio, tiosave;
int status;
char *ptr;

status = ioctl(0, TCGETA, &tio);
tiosave = tio;

tio.c_lflag &= ~ECHO;
tio.c_lflag &= ~ISIG;
status = ioctl(0, TCSETA, &tio);

fgets(passwd, 128, stdin);
status = ioctl(0, TCSETA, &tiosave);
ptr = passwd + strlen(passwd) - 1;
while(*ptr == '\n' || *ptr == '\r') *ptr-- = 0;
return (passwd);

#else
char *ptr = passwd;

 int c = 0;

for(;;)
{

c = getch();
if (c == '\r') break;
*ptr++ = (char)c;

}
*ptr = 0;
return(passwd);

#endif
}

main(argc, argv)

intargc;
char *argv[];

{
HENV henv; /* the environment handle

*/
HDBC hdbc; /* a connection handle

*/
HSTMT hstmt; /* a statement handle

*/
RETCODE ret; /* the return code from UCI functions

*/
SDWORD i; /* local loop counter

*/
SDWORD fNativeError; /* uniVerse error code from SQLError

*/
SWORD cbErrorMsg; /* length of buffer for error text

*/
 B-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta
SDWORD crow; /* storage for return from SQLRowCount
*/

SWORD cbDesc; /* bytes returned by SQLColAttributes
*/

SDWORD fDesc; /* numeric return from
SQLColAttributes */

SCHAR szLabel[5][30]; /* buffers for column headings
*/

SCHAR szErrorMsg[512]; /* buffer for uniVerse error message
*/

SCHAR szSqlState[9]; /* buffer for SQLSTATE from SQLError
*/

SCHAR szSchema[128]; /* path to local uniVerse acc
*/

SCHAR OsUid[64]; /* Server User ID
*/

SCHAR OsPwd[64]; /* Server password
*/

C_ARRAY *pCarray[5]; /* holders for data returned by
SQLFetch*/

C_ARRAY ca1; /* used as parameter in SQLBindMvParam
*/

C_ARRAY ca2; /* used as parameter in SQLBindMvParam
*/

printf("\n\n\tThis is the UCI sample program");
printf("\n\t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
printf("\n\n\tThis program connects to a UniVerse schema or

account ");
printf("\n\tusing a user specified data source, and lists the

RIDES.F
 file.");

printf("\n\tRIDES.F is created by running MAKE.DEMO.FILES in
the

 server\'s");
printf("\n\tdestination account.");
printf("\n");

/*--
*/
/* Connect to the uniVerse server
*/
/*--
*/

henv = (HENV) SQL_NULL_HENV;
hdbc = (HDBC) SQL_NULL_HDBC;
hstmt = (HSTMT) SQL_NULL_HSTMT;

/* Get a data source. On UNIX, localuv WILL work. On NT, it

will only
 work at NT 4.0 */

printf("\n\nEnter the data source to use for the connection:
B-6 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta
");
szDSN[0] = 0;
gets(szDSN);
if (szDSN[0] == 0)
{

printf("\nEmpty data source. Exiting\n");
exit(EXIT_FAILURE);

}

/* Obtain path to the server account */
printf("Enter destination schema name, account name or

full path name: ");
szSchema[0] = 0;
gets(szSchema);
if (szSchema[0] == 0)
{

printf("\nEmpty destination. Exiting\n");
exit(EXIT_FAILURE);

}

if (SQL_ERROR == SQLAllocEnv(&henv))
{

printf("\nDied in SQLAllocEnv\n");
exit(EXIT_FAILURE);

}

ret = SQLAllocConnect(henv, &hdbc);
ERRCHECK("SQLAllocConnect");

/*
 Connect to the UniVerse server(szDSN)
 using the specified destination (szSchema)
*/
printf("Enter valid server User Name: ");

OsUid[0] = 0;
gets(OsUid);
if (OsUid[0] == 0)
{

printf("\nEmpty user name. Exiting\n");
exit(EXIT_FAILURE);

}

printf("Enter password for user %s: ", OsUid);
OsPwd[0] = 0;
getpasswd(OsPwd);
if (OsPwd[0] == 0)
{

printf("\nEmpty user password. Exiting\n");
exit(EXIT_FAILURE);

}

ret = SQLSetConnectOption(hdbc, (UWORD)SQL_OS_UID, 0, OsUid);
 B-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta
ERRCHECK("SQLSetCOnnectOption")

ret = SQLSetConnectOption(hdbc, (UWORD)SQL_OS_PWD, 0, OsPwd);
ERRCHECK("SQLSetCOnnectOption")

ret = SQLConnect(hdbc, szDSN, strlen(szDSN), szSchema,

 strlen(szSchema));
ERRCHECK("SQLConnect");

ret = SQLAllocStmt(hdbc, &hstmt);
ERRCHECK("SQLAllocStmt");

/*--
*/
/* First example
*/
/*--
*/

/* Select the whole file */
ret = SQLExecDirect(hstmt, szSqlStr1, strlen(szSqlStr1));
ERRCHECK("SQLExecDirect");

/*
 (1) Bind all columns using SQLBindMvCol even if they are
 single-valued because it's simpler
 (2) Obtain the column headings for the report
*/
for (i = 0; i < 5; i++)
{

ret = SQLBindMvCol(hstmt, i+1, (i == 1) ? SQL_C_STRING :
SQL_C_USHORT,

 &pCarray[i]);
ERRCHECK("SQLBindMvCol");

ret = SQLColAttributes(hstmt, i+1, SQL_COLUMN_LABEL,

szLabel[i], 30,
 &cbDesc, &fDesc);

ERRCHECK("SQLColAttributes");
}

while (1)
{

ret = SQLFetch(hstmt);
ERRCHECK("SQLFetch");
if (ret == SQL_NO_DATA_FOUND)
{

break;
}
else if (ret == SQL_SUCCESS || ret == SQL_SUCCESS_WITH_INFO)
{

printf("\n");
for (i = 0; i < 5; i++)
{
B-8 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta
print_carray(szLabel[i], pCarray[i]);
free_carray(&pCarray[i]);

}
}

}

/*--
*/
/* Second example
*/
/*--
*/

printf("\nThe next section will:");
printf("\n(1) begin a transaction");
printf("\n(2) update the operator code of the last record

listed
to 999");

printf("\n(3) re-read that record to show the update");
printf("\n(3) roll the transaction back");
printf("\n(4) re-read that record to show original value\n");

/* start a manual-mode transaction */
ret = SQLTransact(henv, hdbc, SQL_BEGIN_TRANSACTION);
ERRCHECK("SQLTransact");

/* bind the parameter for the set clause of the update */
(void) memset((char*)&ca1, 0, sizeof(C_ARRAY));
ca1.cDcount = 1;
ca1.cStorage = 1;
ca1.fCType = SQL_C_USHORT;
ca1.fSqlType = SQL_INTEGER;
ca1.Data[0].uValue.uword = 999;
ret = SQLBindMvParameter(hstmt, 1, &ca1);
ERRCHECK("SQLBindMvParam");

/* bind the primary key for the where clause */
(void) memset((char*)&ca2, 0, sizeof(C_ARRAY));
ca2.cDcount = 1;
ca2.cStorage = 1;
ca2.fCType = SQL_C_USHORT;
ca2.fSqlType = SQL_INTEGER;
ca2.Data[0].uValue.uword = 9;
ret = SQLBindMvParameter(hstmt, 2, &ca2);
ERRCHECK("SQLBindMvParam");

/* update the record */
ret = SQLExecDirect(hstmt, szSqlStr2, strlen(szSqlStr2));
ERRCHECK("SQLExecDirect");

/* verify that the row was updated */
ret = SQLRowCount(hstmt, &crow);
ERRCHECK("SQLRowCount");
if (crow != 1)
 B-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta
{
printf("\nUPDATE statement failed\n");
exit(EXIT_FAILURE);

}
printf("\nUniVerse/SQL: %d record updated.", crow);

/* the next statement only uses one parameter so clear out old

ones */
ret = SQLFreeStmt(hstmt, SQL_RESET_PARAMS);
ERRCHECK("SQLFreeStmt");

/* rebind the primary key as the first parameter */
ret = SQLBindMvParameter(hstmt, 1, &ca2);
ERRCHECK("SQLBindMvParam");

/* read the updated record back in */
ret = SQLExecDirect(hstmt, szSqlStr3, strlen(szSqlStr3));
ERRCHECK("SQLExecDirect");
ret = SQLFetch(hstmt);
ERRCHECK("SQLFetch");
printf("\nValue of operator code after update:\n");
print_carray(szLabel[0], pCarray[0]);
print_carray(szLabel[2], pCarray[2]);
for (i = 0; i < 5; i++)
{

free_carray(&pCarray[i]);
}

/* roll the transaction back */
ret = SQLTransact(henv, hdbc, SQL_ROLLBACK);
ERRCHECK("SQLTransact");

/* read the updated record back in */
ret = SQLExecDirect(hstmt, szSqlStr3, strlen(szSqlStr3));
ERRCHECK("SQLExecDirect");
ret = SQLFetch(hstmt);
ERRCHECK("SQLFetch");
printf("\nValue of operator code after rolling back:\n");
print_carray(szLabel[0], pCarray[0]);
print_carray(szLabel[2], pCarray[2]);
for (i = 0; i < 5; i++)
{

free_carray(&pCarray[i]);
}

/*--
*/
/* Clean up section
*/
/*--
*/

ret = SQLDisconnect(hdbc);
ERRCHECK("SQLDisconnect");
B-10 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\AppB
2/4/09

Beta

ret = SQLFreeConnect(hdbc);
ERRCHECK("SQLFreeConnect");

ret = SQLFreeEnv(henv);
ERRCHECK("SQLFreeEnv");

printf("\n\t*--- End of sample program ---*\n");
return EXIT_SUCCESS;

}

 B-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Glossary
2/4/09 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
Glossary

1NF mode A database mode in which all nonfirst-normal-form (NF2) tables are treated as first-
normal-form (1NF) tables. In 1NF mode, only singlevalued data is available to the
application. Associations of multivalued columns are unnested into singlevalued
tables.

API Application programming interface. A set of function calls that provide services to
application programs.

application
program

A user program that issues function calls to submit SQL statements and retrieve
results, and then processes those results.

association A group of related multivalued columns in a table. The first value in any association
column corresponds to the first value of every other column in the association, the
second value corresponds to the second value, and so on. An association can be
thought of as a nested table. A multivalued column that is not associated with other
columns is treated as an association comprising one column.

autocommit mode A mode of database operation in which each SQL statement is treated as a separate
transaction.

binding The process of associating an attribute with an SQL statement, such as associating
parameters or columns with a statement.

CLI Call level interface. See API.

coercion The conversion of data returned by the server. Using UCI, an application program can
coerce data from a UniVerse table or file into application program variables.

connection
handle

A pointer to memory allocated and initialized with the data necessary to describe and
maintain a connection between the SQL client application and the data source. Each
connection can have multiple statements associated with it.

cursor A virtual pointer to the set of results produced by a query. A cursor points to the
“current row” of the result set, one row of data at a time, and advances one row at a
time.
1 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Glossary
2/4/09 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
DDL Data definition language. A subset of SQL statements used for creating, altering, and
dropping schemas, tables, views, and indexes. These statements include ALTER
TABLE, CREATE SCHEMA, CREATE TABLE, CREATE VIEW, CREATE
INDEX, CREATE TRIGGER, DROP SCHEMA, DROP TABLE, DROP VIEW,
DROP INDEX, DROP TRIGGER, GRANT, and REVOKE.

DLL Dynamic link library. A collection of functions linked together into a unit that can be
distributed to application developers. When the program runs, the application
attaches itself to the DLL when the program calls one of the DLL functions.

DML Data manipulation language. A subset of SQL statements used for retrieving,
inserting, modifying, and deleting data. These statements include SELECT, INSERT,
UPDATE, and DELETE.

DSN Data source name. The name associated with a specific data source entry in the
uvodbc.config file.

data source A source of data, or database engine, represented by the specifications supplied in the
data source entry in the uvodbc.config file. These specifications include the DBMS
type, network, name of the service, and host platform.

dynamic
normalization

On UniVerse systems, a mechanism for allowing first-normal-form data
manipulation language (DML) statements to access an association as a virtual first-
normal-form table.

embedded SQL An interface mechanism that includes SQL statements in source code. The SQL
statements are precompiled, converting the embedded SQL statements into the
language of the host program.

environment
handle

A pointer to a data area that contains information concerning the state of the
application’s data connections, including the valid connection handles.

handle A pointer to an underlying data structure.

isolation level A mechanism for separating a transaction from other transactions running
concurrently, so that no transaction affects any of the others. There are five isolation
levels, numbered 0 through 4.

manual-commit
mode

A mode of database operation in which transactions are delimited by a BEGIN
TRANSACTION statement and ended by a COMMIT or ROLLBACK statement.

multivalued
column

A column that can contain more than one value for each row in a table.
Glossary 2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Glossary
2/4/09 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
NF2 mode A database mode in which all nonfirst-normal-form (NF2) tables are treated as such.
This is the standard mode for UniVerse.

NLS National Language Support.

nested transaction A transaction that begins while another transaction is active.

null value A special value representing an unknown value. This is not the same as 0 (zero), a
blank, or an empty string.

null-terminated
string

A string of characters terminated by a 0 byte.

ODBC Open Database Connectivity. An interface that defines a library of function calls that
permit a client application program to connect to a data source, execute SQL
statements against that source, and retrieve results. It also provides a standard set of
error codes, a way to connect to the data source, and a standard set of data types. The
ODBC specifications from Microsoft for SQL-based database interoperability cover
both the application programming interface and SQL grammar. UCI is modelled on
this standard but is not ODBC compliant.

parameter marker A single ? (question mark) in an SQL statement, representing a parameter or
argument, where there would normally be a constant. For each iterative execution of
the statement, a new value for the parameter marker is made available to the interface.

precision The maximum number of digits defined for an SQL data type.

prepared SQL
statement

An SQL statement that has been processed with the SQLPrepare function. Once
prepared, an SQL statement can be executed repeatedly.

programmatic
SQL
language

A subset of the SQL language. Programmatic SQL differs from interactive SQL in
that certain keywords and clauses used for report formatting in interactive mode are
not supported in programmatic SQL.

registry On Windows systems, a systemwide repository of information describing the
hardware and software products installed on the system. Specific registry Win32 calls
let applications operate on entries in the registry.

result set A set of rows of data obtained via the SQLFetch call. A result set is returned when
an SQL SELECT statement is executed. It is also returned by the SQLColumns and
SQLTables calls.

scale The maximum number of digits allowed to the right of the decimal point.
3 UCI Developer’s Guide

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Glossary
2/4/09 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
single-valued
column

A column that can contain only one value for each row in a table.

statement handle A pointer to memory allocated and initialized to hold the context of an SQL
statement. A statement handle is always associated with a connection handle.

UCI Uni Call Interface. A C application programming interface (API) that lets application
programmers write client application programs that use SQL function calls to access
data in UniVerse databases.

uci.config file The client UCI configuration file, which defines data sources to which an application
can connect in terms of DBMS, network, service, host, and optional extended
parameters.

udserver process A UniData server process that handles requests from the client. For each client
connection to the server there is one udserver process.

UniDK Uni Development Kit. The UniDK comprises UCI, UniObjects, UniObjects for Java,
and InterCall.

UniRPC Remote procedure call. UCI uses a library of calls developed by IBM to implement
remote procedure calls. The UniRPC lets a server system execute a function
(procedure) provided by a client application program. The client application program
passes arguments to the server as well as an identifier specifying the procedure to be
executed on the server. The server executes the procedure, using the arguments
passed to it, and then returns the results to the client.

unirpc service On Windows ervers, the service that waits for a client’s request to connect. When it
receives a request, unirpc creates the connection to the server.

unirpcd daemon On UNIX servers, the daemon that waits for a client’s request to connect. When it
receives a request, unirpcd creates the connection to the server.

unirpcservices
file

The UniRPC services file on the server, used by the UniRPC daemon or service to
locate the UniVerse server executable image (uvserver).

UniVerse BASIC
SQL Client
Interface

Also known as BCI (BASIC Client Interface). A UniVerse BASIC application
programming interface that makes UniVerse a client in a client/server environment.
Using BCI, UniVerse clients can access both UniVerse and non-UniVerse data
sources.

uvserver process A UniVerse server process that handles requests from the client. For each client
connection to the server there is one uvserver process.
Glossary 4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\uci\Glossary
2/4/09 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
Win32 API The primitive Windows operating system interface for Windows platforms. In this
architecture the fundamental size of integers and pointers is 32 bits.
5 UCI Developer’s Guide

@

:\Program Files\Adobe\Fram
ebruary 4 2009 9:55 am

Index

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
Index
Numerics
1NF mode 4-23, 4-24

definition Gl-1
and dynamic normalization 4-24
and INSERT statements 4-24
and SELECT statements 4-24
tables 4-24

A
administering the UniRPC 2-10
affected-row count 5-5, 5-6, 6-5, 6-6,

6-7
allocating memory

for connection handles 4-5, 8-11
for environment handles 4-4, 8-13
for statement handles 4-9

ALTER statements 4-15
analyzing result sets 4-16
API (application programming

interface) 1-3
definition Gl-1

application programming interface, see
API

application programs 4-2 to 4-27
definition Gl-1
initializing 4-4
sample 4-3
writing 4-3

application variables, binding to
columns 4-17

arguments 8-6
search patterns in 8-7

associations 4-25
definition Gl-1

dynamically normalized 4-25
keys 4-25

autocommit mode 4-10
definition Gl-1

AUTOINC configuration parameter 3-
5

B
BASIC procedures 6-4 to 6-16

compiling and cataloging 6-4
restrictions 6-15
SUBROUTINE statement 6-4

BASIC programs
as procedures 6-2
calling as procedures 5-3

BASIC subroutines 5-3
as procedures 6-2

binding
application buffers to parameter

markers 8-27
application variable to columns 4-17
columns 8-17
definition Gl-1
multivalued columns to array 8-25
parameter values 4-14

bound columns, unbinding 4-18

C
C data types

and coercion from SQL data types 7-
10

and internal/external formats 7-6
representation of multivalued

columns 7-8
eMaker8\UniVerse 10.3\uci\UCIIX.doc

@

g
February 4, 2009 9:55 am

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
and SQL data types 7-9
supported 7-3
unsupported 7-5

call arguments 8-6
call interfaces

advantages 1-4
SQL 1-3

call level interface (CLI), see API
CALL statement 5-3, 5-5, 6-2

nested 6-15
calling procedures 5-2 to 5-7
cancelling

current query 8-79
processing of current SQL

statement 8-32
cascading changes to normalized NF2

tables 4-27
CASE configuration parameter 3-5
cataloging BASIC procedures 6-4
CHARACTER data type 7-9
CHAR_MAX_LENGTH column

attribute 8-42
client interface, see UCI
client system, configuring 3-5
closing

connections 8-56
open cursors 8-79
@HSTMT variable 6-16

coercion
data types 7-10
parameters 7-11

columns
binding 8-17
fetching results from 8-69
getting descriptions 8-41, 8-52
getting detailed attributes of 8-34
getting number of columns in result

set 8-100
unbound, retrieving data from 4-17,

8-82
values 8-69

COLUMN_NAME column
attribute 8-42

commands
as procedures 6-2
calling as procedures 5-3

COMMIT statement, requesting for all
SQL statements 8-125

COMO command 6-3

compiling BASIC procedures 6-4
configuration

client system 3-5
client system for NLS server 3-

12 to 3-13
server system 3-3
server system running NLS 3-4

configuration file, see UCI
configuration file

configuration parameters 3-5
not relevant to UCI 3-8
relevant to UCI 3-5

configuring UCI 3-2 to 3-13
connecting to a database 4-5, 8-45
connection handles 4-5

allocating memory for 8-11
closing connection associated

with 8-56
freeing resources associated with 8-

73
releasing 8-73

connections
closing 8-56
controlling 8-111
definition Gl-1
retrieving errors associated with 8-59

controlling how connections operate 8-
111

count, affected row 5-5, 5-6, 6-5, 6-6,
6-7

CREATE INDEX statements 4-15
CREATE SCHEMA statements 4-15
CREATE TABLE statements 4-15
CREATE VIEW statements 4-15
cursors 4-16

closing open 8-79
definition Gl-2

C_ARRAY data type 7-5
structure 7-8

D
data definition language statements, see

DDL statements
data definition statements in

procedures 6-6
data manipulation language statements,

see DML statements

data model 4-5
see also 1NF mode, NF2 mode
setting 8-112

data source
entry 4-5
name (DSN) 8-45

data sources
connecting to a data source 8-45
definition Gl-2

DATA statements 6-3, 6-15
data truncation errors, retrieving

truncated data 8-82
data types 7-2 to 7-14

and C data types 7-9
and SQL data types 7-9

databases, connecting to 4-5
DATA_TYPE column attribute 8-42
DATE data type 7-9
date values returned as C structures 7-6
DATEFETCH configuration

parameter 3-8
DATEFORM configuration

parameter 3-8
DATEPREC configuration

parameter 3-8
DBLPREC configuration parameter 3-

8
DBMSTYPE configuration

parameter 3-5
DDL statements

definition Gl-2
and dynamic normalization 4-27
and nested transactions 4-21
processing 4-15

debugging procedures 6-16
DECIMAL data type 7-9
default isolation levels 4-5, 4-22

setting 8-113
DELETE statements 4-15

and dynamic normalization 4-27
getting number of rows affected

by 8-109
and nested transactions 4-21
in procedures 6-6

DESCB4EXEC configuration
parameter 3-5

developing UCI applications 4-2 to 4-
27

requirements 1-8
2 UCI Developer’s Guide

g
February 4, 2009 9:55 am

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
diagnostics area, see SQL diagnostics
area

disconnecting connections 8-56
display size 7-12, 7-13, 7-14
DML statements

definition Gl-2
and dynamic normalization 4-26
processing 4-15

documentation conventions 1-ix
DOUBLE PRECISION data type 7-9
drivers

getting general information about 8-
89

getting information about functions
supported 8-85

DROP INDEX statements 4-15
DROP SCHEMA statements 4-15
DROP TABLE statements 4-15
DROP VIEW statements 4-15
DSN (data source name) 4-6, 8-45

definition Gl-2
DSPSIZE configuration parameter 3-5
dynamic normalization 4-26

and DDL statements 4-27
definition Gl-2
and DELETE statements 4-27
and DML statements 4-26
and 1NF mode 4-24
and primary keys 4-25
and referential integrity 4-27

E
embedded SQL

definition Gl-2
versus an SQL call interface 1-3

empty strings 7-7
as null values 7-7
and SQLBindMvCol 8-23

environment, retrieving errors
associated with 8-59

environment handles
allocating memory for 4-4, 8-13
definition Gl-2
freeing 8-75
releasing memory associated with 8-

75
environment variables, PATH 2-10

EODCODE configuration
parameter 3-8

error
information, getting 8-58
return codes 4-18, 8-8, A-1 to ??

UniRPC A-12
error codes A-2 to ??

UniVerse 5-7
errors 6-7

checking for 4-17
messages 5-7
SQL 6-12
SQLSTATE 4-18

executing procedures 5-2 to 5-7
executing SQL statements 4-11

directly 4-11
preparable 8-62
prepared 4-13, 8-66

F
fetching

column results 8-18
rows of data 4-17, 8-69
specifying where to return results 8-

17
files

configuration, see UCI configuration
file

installation 2-3
Make.UCI 2-3
UCI configuration 2-4, 4-5
ucimsg.text 2-3, 2-4
ucisample.c 2-3, 2-4
UCI.a 2-3
uci.config 3-2 to 3-13, Gl-4
UCI.h 2-3, 2-4, 4-4
unirpcservices 2-8, 3-3
@TMP 6-9

first-normal-form mode, see 1NF mode
first-normal-form tables 4-24
FLOAT data type 7-9
FLOATPREC configuration

parameter 3-8
function calls 8-4

arguments used in 8-6
functions

disconnecting 8-5

exchanging data 8-4
initializing 8-4
memory management 8-5
processing errors 8-5
reference 8-4 to 8-130

G
GRANT statements 4-15

H
halting processing associated with

statement handle 8-79
handles 8-5

connection 4-5
definition Gl-1

definition Gl-2
environment 4-4

definition Gl-2
statement 4-9

definition Gl-4
HDBC argument 8-6
HENV argument 8-6
HOST configuration parameter 3-5
HSTMT argument 8-6
Hungarian naming conventions 1-xi,

8-8

I
implicit referential integrity 4-27
initializing application program 4-4
input in procedures 6-3, 6-15
INPUT statements 6-15
input variables 8-6
INSERT statements 4-15

getting number of rows affected
by 8-109

and nested transactions 4-21
and 1NF mode 4-24
in procedures 6-6

installing UCI 2-3
files 2-3

INTEGER data type 7-9
internal/external formats and C data

types 7-6
Index 3

@

g
February 4, 2009 9:55 am

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
INTPREC configuration parameter 3-
8

isolation levels 4-22
default 4-22
definition Gl-2
setting 8-126

K
keys, association 4-25

L
LAN Manager 1-6, 1-8, 2-10, 4-5
language support 1-5
locales 3-6, 3-12, 4-5, 8-115

M
maintaining the UCI configuration

file 2-10
Make.UCI file 2-3
manual-commit mode 4-10

definition Gl-3
and nested transactions 4-20
starting a manual-commit mode

transaction 8-125
map names 3-12
map tables 4-5, 8-115
MAPERROR configuration

parameter 3-6
maps 3-7
MARKERNAME configuration

parameter 3-6
MAXCHAR configuration

parameter 3-8
MAXFETCHBUFF configuration

parameter 3-6
changing 3-10

MAXFETCHCOLS configuration
parameter 3-6

changing 3-10
MAXVARCHAR configuration

parameter 3-8
memory

allocating for connection handles 4-
5, 8-11

allocating for environment
handles 4-4, 8-13

allocating for statement handles 4-9
menus 6-3
multicolumn result set 5-5, 5-6, 6-5, 6-

6, 6-7, 6-9
multivalued columns

binding to array 8-25
handling 4-23
normalizing into C arrays 8-22
representation of

and C data types 7-8
MULTI_VALUE column attribute 8-

42

N
National Language Support, see NLS
nested CALL statements in

procedures 6-15
nested transactions 4-20

and DDL statements 4-21
and DELETE statements 4-21
and INSERT statements 4-21
and SELECT statements 4-21
and UPDATE statements 4-21

nesting levels 4-20
NETWORK configuration

parameter 3-6
NF2 mode 4-23

definition Gl-3
NLS (National Language Support)

configuring client 3-12 to 3-13
configuring server 3-4
locales 3-6, 3-12, 4-5, 8-115
map names 3-12
map tables 3-7, 4-5, 8-115

NLSDEFSRVLC parameter 4-6
NLSDEFSRVMAP parameter 4-6
NLSLCALL configuration

parameter 3-6
NLSLCCOLLATE configuration

parameter 3-6, 3-12
NLSLCCTYPE configuration

parameter 3-6, 3-12
NLSLCLOCALE configuration

parameter 3-7, 3-12
NLSLCMODE parameter 4-6

NLSLCMONETARY configuration
parameter 3-6, 3-12

NLSLCNUMERIC configuration
parameter 3-6, 3-12

NLSLCTIME configuration
parameter 3-7, 3-12

NLSMAP configuration parameter 3-
7, 3-12

NLSMODE parameter 4-6
nonfirst-normal-form mode, see NF2

mode
nonfirst-normal-form tables 4-23
null values 7-7
NULLABLE

column attribute 8-42
configuration parameter 3-7

null-terminated string, definition Gl-3
NUMERIC data type 7-9
NUMERIC_PRECISION column

attribute 8-42
NUMERIC_PREC_RADIX column

attribute 8-42
NUMERIC_SCALE column

attribute 8-42

O
ODBC

2.0 standard 1-7
definition Gl-3
error conditions A-1 to ??

output parameters 5-6, 6-4
output variables 8-6
overview of UCI 1-2 to 1-8

P
paragraphs

as procedures 6-2
calling as procedures 5-3

parameter markers 4-14, 5-3, 6-4
binding application buffer to 8-27
definition Gl-3
releasing variables 8-79
values 5-2, 8-28, 8-62, 8-66, 8-117

binding 4-14, 4-15
parameters

coercion 7-11
4 UCI Developer’s Guide

g
February 4, 2009 9:55 am

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
output 5-6, 6-4
unbinding 4-18

PATH environment variable 2-10
precision 7-12, 7-13, 7-14

definition Gl-3
PRECISION configuration

parameter 3-8
prefixes in function syntax 8-8
preparable SQL statements,

executing 8-62
prepared SQL statements

definition Gl-3
executing 8-66

preparing SQL statements for
execution 4-13, 8-105

print result set 5-5, 5-7, 6-3, 6-5, 6-16
PRINT statements 6-16
procedures 5-2 to 5-7, 8-62, 8-105

BASIC 6-4 to 6-16
and data definition statements 6-6
debugging 6-16
DELETE statements 6-6
INPUT statements 6-6
nested CALL statements in 6-15
processing results 5-5
restrictions in BASIC 6-15
and UniVerse commands 6-3, 6-15
and UniVerse menus 6-3
UPDATE statements 6-6
and user input 6-3, 6-15
writing 6-2 to 6-16

processing SQL statements 4-11
procs

as procedures 6-2
calling as procedures 5-3

programmatic SQL language
case-sensitivity 8-10
definition Gl-3

programs
as procedures 6-2
calling as procedures 5-3

ProVerb procs
as procedures 6-2
calling as procedures 5-3

PTR argument 8-6

R
read committed isolation level 4-22
read uncommitted isolation level 4-22
REAL data type 7-9
REALPREC configuration

parameter 3-8
reference page layout for functions 8-3
referential integrity

and dynamic normalization 4-27
implicit 4-27
and 1NF mode 4-27

releasing statement handles 4-18
REMARKS column attribute 8-42, 8-

121
remote procedure call, see UniRPC
repeatable read isolation level 4-22
restrictions in BASIC procedures 6-15
result sets 5-5

analyzing 4-16
definition Gl-4
getting next row of data from 8-69
getting number of columns in 8-100
multicolumn 5-5, 5-6, 6-5, 6-6, 6-7,

6-9
print 5-5, 5-7, 6-3, 6-5, 6-16

results
processing procedure 5-5

RETCODE argument 8-6
return codes, see error return codes
return values 8-8

see also error return codes
REVOKE statements 4-15
ROLLBACK statement, requesting for

all SQL statements 8-125
row count

affected 5-5, 5-6, 6-5, 6-6, 6-7
rows

fetching 4-17
fetching next row from result set 8-

69
getting number of rows affected by

DELETE, INSERT, and
UPDATE 8-109

RPC, see UniRPC
running UCI applications,

requirements 1-8

S
sample application B-1 to B-11
scale 7-12, 7-13, 7-14

definition Gl-4
SCALE configuration parameter 3-8
SDWORD argument 8-6
SEARCH configuration parameter 3-7
search pattern arguments in function

calls 8-7
SELECT statements

and nested transactions 4-21
and 1NF mode 4-24

serializable isolation level 4-22
server system

configuring 3-3
setup 2-8
status, getting 8-58

SERVICE configuration parameter 3-
7

SetDiagnostics function 6-12, 6-13, 6-
14, 6-16

SMINTPREC configuration
parameter 3-8

SPOOL command 6-3
SQL

embedded, definition Gl-2
SQL call interface

advantages 1-4
definition 1-3
UCI as an 1-3
versus embedded SQL 1-3

SQL data types
and C application data types 7-9
and coercion to C data types 7-10
supported 7-9

display size 7-12, 7-13, 7-14
precision 7-12, 7-13, 7-14
scale 7-12, 7-13, 7-14

and UniVerse SQL data types 7-9
SQL diagnostics area 6-13
SQL errors 6-12
SQL result sets, see result sets
SQL statements

cancelling processing of current 8-32
case-sensitivity 8-10
executing 4-11

preparable 8-62
prepared 8-66
Index 5

@

g
February 4, 2009 9:55 am

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
preparing for 8-105
processing 4-11

SQLAllocConnect function 4-4, 4-6,
8-11

SQLAllocEnv function 4-4, 8-13
SQLAllocStmt function 4-4, 4-9
SQLBindCol function 4-17, 5-5, 6-15,

8-17
SQLBindMvCol function 4-17, 4-24,

8-22
SQLBindMvParameter function 4-14,

4-15, 4-24, 8-25
SQLBindParameter function 4-14, 5-

6, 8-27
SQLCancel function 8-32
SQLClearDiagnostics function 6-13
SQLColAttributes function 4-16, 5-5,

6-15, 8-34
SQLColumns function 8-41
SQLConnect function 4-4, 4-5, 8-45
SQLDataSources function 8-49
SQLDescribeCol function 4-16, 6-15,

8-52
SQLDisconnect function 4-19, 8-56
SQLError function 5-7, 8-8, 8-58
SQLExecDirect function 4-13, 4-15,

5-3, 5-7, 6-12, 8-62
SQLExecute function 4-13, 4-15, 5-3,

5-5, 5-7, 6-12, 8-66
SQLFetch function 4-17, 5-5, 6-15, 8-

69
SQLFreeConnect function 8-73
SQLFreeEnv function 8-75
SQLFreeMem function 8-23, 8-77
SQLFreeStmt function 4-9, 4-15, 4-18,

8-78
SQLGetData function 4-17
SQLGetFunctions function 8-85
SQLGetInfo function 8-89
SQLNumResultCols function 4-16, 5-

5, 5-6, 6-15, 8-100
SQLParamOptions function 8-102
SQLPrepare function 4-13, 5-5, 8-105
SQLRowCount function 4-16, 5-5, 5-

6, 8-109
SQLSetConnectOption function 4-5,

4-22, 4-23, 7-7, 8-111
SQLSetParam function 4-15, 8-117

SQLSTATE return codes 4-18, 5-7, 8-
60

SQLSTATE values A-2
SQLTables function 8-120
SQLTransact function 4-10, 4-20, 4-

22, 8-125
SQLTYPE configuration parameter 3-

8
SQLUseCfgFile function 8-129
SQL_1NF_MODE_OFF option 8-112

and SQLTables function 8-122
SQL_1NF_MODE_ON option 8-112

and SQLTables function 8-122
SQL_CHAR data type 7-9
SQL_CLOSE option 8-79
SQL_COLUMN_AUTO_INCREMEN

T column attribute 8-36
SQL_COLUMN_CASE_SENSITIVE

column attribute 8-36
SQL_COLUMN_CONVERSION

column attribute 8-36
SQL_COLUMN_COUNT column

attribute 8-36
SQL_COLUMN_DISPLAY_SIZE

column attribute 8-36
SQL_COLUMN_FORMAT column

attribute 8-36
SQL_COLUMN_LABEL column

attribute 8-36
SQL_COLUMN_LENGTH column

attribute 8-37
SQL_COLUMN_MULTI_VALUED

column attribute 8-37
SQL_COLUMN_NAME column

attribute 8-37
SQL_COLUMN_NULLABLE column

attribute 8-37
SQL_COLUMN_PRECISION column

attribute 8-37
SQL_COLUMN_PRINT_RESULT

column attribute 8-37
SQL_COLUMN_SCALE column

attribute 8-38
SQL_COLUMN_SEARCHABLE

column attribute 8-38
SQL_COLUMN_TABLE_NAME

column attribute 8-38
SQL_COLUMN_TYPE column

attribute 8-38

SQL_COLUMN_TYPE_NAME
column attribute 8-38

SQL_COLUMN_UNSIGNED column
attribute 8-38

SQL_COLUMN_UPDATABLE
column attribute 8-38

SQL_C_CHAR data type 7-3
SQL_C_DATE data type 7-5, 7-9
SQL_C_DOUBLE data type 7-4, 7-9
SQL_C_FLOAT data type 7-4, 7-9
SQL_C_LONG data type 7-4
SQL_C_SHORT data type 7-3
SQL_C_SLONG data type 7-4, 7-9
SQL_C_SSHORT data type 7-4
SQL_C_STINYINT data type 7-3
SQL_C_STRING data type 7-4, 7-9
SQL_C_TIME data type 7-4, 7-9
SQL_C_TINYINT data type 7-3
SQL_C_ULONG data type 7-4
SQL_C_USHORT data type 7-4
SQL_C_UTINYINT data type 7-3
SQL_DATA_MODEL option 8-112
SQL_DATE data type 7-9
SQL_DECIMAL data type 7-9
SQL_DOUBLE data type 7-9
SQL_DROP option 8-79
SQL_EMPTY_NULL option 7-7, 8-

112
SQL_ERROR return value 8-8
SQL_FLOAT data type 7-9
SQL_INTEGER data type 7-9
SQL_INVALID_HANDLE return

value 8-8
SQL_LIC_DEV_SUBKEY option 8-

114
SQL_NO_DATA_FOUND return

value 8-8
SQL_NUMERIC data type 7-9
SQL_OS_PWD option 8-114
SQL_OS_UID option 8-114
SQL_PARAM_INPUT option 8-25, 8-

27
SQL_PARAM_INPUT_OUTPUT

option 8-27
SQL_PARAM_OUTPUT option 8-27
SQL_REAL data type 7-9
SQL_RESET_PARAMS option 8-79
SQL_SMALLINT data type 7-9
SQL_SUCCESS return value 8-8
6 UCI Developer’s Guide

g
February 4, 2009 9:55 am

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
SQL_SUCCESS_WITH_INFO return
value 8-8

SQL_TIME data type 7-9
SQL_TXN_ISOLATION option 8-

113
SQL_UNBIND option 8-79
SQL_UVNLS_LC_ALL option 8-114
SQL_UVNLS_LC_COLLATE

option 8-114
SQL_UVNLS_LC_CTYPE option 8-

114
SQL_UVNLS_LC_MONETARY

option 8-114
SQL_UVNLS_LC_NUMERIC

option 8-114
SQL_UVNLS_LC_TIME option 8-

114
SQL_UVNLS_LOCALE option 8-114
SQL_UVNLS_MAP option 8-114
SQL_VARCHAR data type 7-9
SSPPORTNUMBER configuration

parameter 3-8
statement handles

definition Gl-4
halting all processing associated

with 8-79
releasing 8-78
releasing resources associated

with 8-78
statements

retrieving associated errors 8-59
terminating 4-18

status variables 8-8
stored sentences

as procedures 6-2
calling as procedures 5-3

string math 7-6
SUBROUTINE statement 6-4
subroutines 5-3

as procedures 6-2
subtransactions

see also nested transactions
isolation levels 4-22

SWORD argument 8-6
syntax

prefixes in 8-8
tags in 8-8

system administration
administering the UniRPC 2-10

maintaining the UCI configuration
file 2-10

T
tables

first normal form 4-24
getting description of tables found by

search pattern 8-120
nonfirst-normal-form 4-23

TABLE_NAME table attribute 8-42,
8-121

TABLE_OWNER table attribute 8-42,
8-121

TABLE_SCHEMA table attribute 8-
42, 8-121

TABLE_TYPE table attribute 8-121
tags in function syntax 8-8
TCP/IP network 1-6
terminating statements 4-18
TIME data type 7-9
time values returned as C structures 7-

6
transaction isolation levels 4-22

default 4-22
transaction modes 4-10

autocommit 4-10
manual-commit 4-10

transactions 4-20 to 4-22
nested 4-20
nesting levels 4-20

TXBEHAVIOR configuration
parameter 3-7

TXCOMMIT configuration
parameter 3-7

TXROLL configuration parameter 3-7
TXSTART configuration parameter 3-

7
TYPENAME configuration

parameter 3-7
TYPE_NAME column attribute 8-42

U
UCHAR argument 8-6
UCI

compliance with ODBC 2.0
standard 1-7

configuration parameters not relevant
to 3-8

configuration parameters relevant
to 3-5

configuring 3-2 to 3-13
configuring client for NLS server 3-

12 to 3-13
configuring NLS server 3-4
data types 7-3 to 7-14
developing applications 4-2 to 4-27
function call reference 8-4 to 8-130
language support 1-5
overview 1-2 to 1-8
requirements for developing

applications 1-8
requirements for running

applications 1-8
as an SQL call interface 1-3
SQL data types supported 7-9
UNIX installation 2-3

files 2-3
UCI configuration file 2-4, 4-5

editing 3-8
maintaining on client 2-10

ucimsg.text file 2-3, 2-4
ucisample.c file 2-3, 2-4, 4-3

source code B-1 to B-11
UCI.a file 2-3
uci.config file 3-2 to 3-13

changing parameters in 3-10
definition Gl-4

UCI.h file 2-3, 2-4, 4-4
UCI_DATUM data type 7-5
UDWORD argument 8-6
unbinding

bound columns 4-18
parameters 4-18

unbound columns, retrieving data
from 8-82

UniData data types, see data types
UniData internal/external formats, see

internal/external formats
UniData release, getting information

about 8-89
UniDK (Uni Development Kit) 2-4

definition Gl-4
UniRPC

administering 2-10
daemon 2-10, 3-3
Index 7

@

g
February 4, 2009 9:55 am

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
definition Gl-4
error codes A-12
library 1-6
service 2-8, 3-3
services file, see unirpcservices file

unirpc service 2-8, 3-3
unirpcd process

see also UniRPC: daemon
definition Gl-4

unirpcservices file 2-8, 2-11, 3-3
see also UniRPC: services file
definition Gl-5

UniVerse commands
as procedures 6-2
calling as procedures 5-3
in procedures 6-3, 6-15

UniVerse data types, see data types
UniVerse error codes 5-7
UniVerse internal/external formats, see

internal/external formats
UniVerse menus 6-3
UniVerse procedures, writing 6-2 to 6-

16
UniVerse release, getting information

about 8-89
UniVerse server 3-3
UNSIGNED configuration

parameter 3-7
UPDATE

configuration parameter 3-7
statements 4-15

getting number of rows affected
by 8-109

and nested transactions 4-21
UPDATE statements

in procedures 6-6
user input in procedures 6-3, 6-15
USETGITX configuration

parameter 3-8
uvserver process 3-3

see also UniVerse server
definition Gl-4, Gl-5

uvsrvhelpd process 2-10
UWORD argument 8-6

V
values

column 8-69
empty string 7-7
null 7-7
parameter marker 5-2, 8-28, 8-62, 8-

66, 8-117
return 8-8
SQLSTATE 8-60

VARCHARACTER data type 7-9
variables 8-5

binding to columns 4-17
in function calls 8-5
input 8-6
name prefixes 8-8
name tags 8-8
names 8-5
output 8-6
releasing variables bound to

columns 8-79
status 8-8
@HSTMT 6-6, 6-7, 6-13, 6-15, 6-16

W
Windows NT 3.51 4-5, 8-46, 8-115
writing UniVerse procedures 6-2 to 6-

16

X
X-descriptors, @EMPTY.NULL 7-7

Symbols
% search pattern 8-7
? parameter marker 4-14

see also parameter markers
@ASSOC_ROW keyword 4-25
@EMPTY.NULL X-descriptor 7-7, 8-

112
@HSTMT variable 6-6, 6-7, 6-13, 6-

15
closing 6-16

@TMP file 6-9
\ search pattern 8-7
_ search pattern 8-7
8 UCI Developer’s Guide

	Online Guide

	Table of Contents

	Preface
	Organization of This Manual
	Documentation Conventions
	Hungarian Naming Conventions

	Help
	UniVerse Documentation
	Related Documentation
	API Documentation

	Introduction
	What Is an SQL Call Interface?
	SQL Call Interface Versus Embedded SQL
	Advantages of Call Interfaces

	Language Support
	Operating Platforms
	Compliance with the ODBC 2.0 Standard
	Requirements for UCI Applications

	Getting Started
	Installing UCI
	On UNIX Systems
	On Windows Systems
	Version Compatibility

	Creating and Running the Sample Application
	Creating and Running Client Programs
	UCI Administration
	Maintaining the UCI Configuration File
	Administering the UniRPC

	Configuring UCI
	Configuring a Database Server for UCI
	UniRPC
	UniVerse NLS

	Configuring a Client System for UCI
	Configuration Parameters
	Editing the UCI Configuration File
	Changing UCI Configuration File Parameters
	Configuring UCI for an NLS-Enabled UniVerse Server

	Developing UCI Applications
	Writing a UCI Application Program
	Initializing Resources
	Allocating the Environment
	Allocating the Connection
	Connecting to the Server
	Allocating Statement Handles

	Processing SQL Statements
	Transaction Modes
	Function Calls
	Executing an SQL Statement
	Processing Output from SQL Statements
	Checking for Errors
	Freeing the SQL Statement Environment

	Terminating the Connection
	Transaction Processing
	Nested Transactions
	Transaction Isolation Levels

	Handling Multivalued Columns
	Setting the Data Model Mode
	Dynamic Normalization and Associations

	Calling and Executing UniVerse Procedures
	What Can You Call as a UniVerse Procedure?
	Processing UniVerse Procedure Results
	Print Result Set
	Multicolumn Result Set
	Affected-Row Count
	Output Parameter Values

	Processing Errors from UniVerse Procedures

	How to Write a UniVerse Procedure
	Using UniVerse Paragraphs, Commands, and Procs as Procedures
	Writing UniVerse BASIC Procedures
	Parameters Used by a UniVerse BASIC Procedure
	SQL Results Generated by a UniVerse BASIC Procedure
	Using @HSTMT in a UniVerse BASIC Procedure to Generate SQL Results
	Using the @TMP File in a UniVerse BASIC Procedure
	Errors Generated by a UniVerse BASIC Procedure
	Restrictions in UniVerse BASIC Procedures
	Fetching Rows and Closing @HSTMT Within a Procedure
	Hints for Debugging a Procedure

	Data Types
	Data Types and Data Type Coercion
	C Data Types Supported
	SQL Data Types Supported
	Data Type Coercion

	UCI Functions
	Function Call Summary
	Variables
	Search Patterns
	Return Values
	Error Codes
	Use of Hungarian Naming Conventions

	Functions
	SQLAllocConnect
	SQLAllocEnv
	SQLAllocStmt
	SQLBindCol
	SQLBindMvCol
	SQLBindMvParameter
	SQLBindParameter
	SQLCancel
	SQLColAttributes
	SQLColumns
	SQLConnect
	SQLDataSources
	SQLDescribeCol
	SQLDisconnect
	SQLError
	SQLExecDirect
	SQLExecute
	SQLFetch
	SQLFreeConnect
	SQLFreeEnv
	SQLFreeMem
	SQLFreeStmt
	SQLGetData
	SQLGetFunctions
	SQLGetInfo
	SQLGetStmtTimeOut
	SQLNumParams
	SQLNumResultCols
	SQLParamOptions
	SQLPrepare
	SQLRowCount
	SQLSetConnectOption
	SQLSetStmtTimeOut
	SQLSetParam
	SQLTables
	SQLTransact
	SQLUseCfgFile

	Error Codes
	SQLSTATE Error Codes
	UniVerse SQL Error Codes
	UniRPC Error Codes

	The UCI Sample Program
	Glossary
	Index

