
C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Front
December 29, 2008 12:51 pm
UniVerse
SQL Reference
Version 10.3
February, 2009

ii UniVerse SQL Ref

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Front
December 29, 2008 12:51 pm

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
IBM Corporation
555 Bailey Avenue
San Jose, CA 95141

Licensed Materials – Property of IBM

© Copyright International Business Machines Corporation 2008, 2009. All rights reserved.

AIX, DB2, DB2 Universal Database, Distributed Relational Database Architecture, NUMA-Q, OS/2, OS/390, and
OS/400, IBM Informix®, C-ISAM®, Foundation.2000 ™, IBM Informix® 4GL, IBM Informix® DataBlade® module,
Client SDK™, Cloudscape™, Cloudsync™, IBM Informix® Connect, IBM Informix® Driver for JDBC, Dynamic
Connect™, IBM Informix® Dynamic Scalable Architecture™ (DSA), IBM Informix® Dynamic Server™, IBM
Informix® Enterprise Gateway Manager (Enterprise Gateway Manager), IBM Informix® Extended Parallel Server™,
i.Financial Services™, J/Foundation™, MaxConnect™, Object Translator™, Red Brick® Decision Server™, IBM
Informix® SE, IBM Informix® SQL, InformiXML™, RedBack®, SystemBuilder™, U2™, UniData®, UniVerse®,
wIntegrate® are trademarks or registered trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company
Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of others.

This product includes cryptographic software written by Eric Young (eay@cryptosoft.com).

This product includes software written by Tim Hudson (tjh@cryptosoft.com).

Documentation Team: Claire Gustafson, Shelley Thompson, Anne Waite

US GOVERNMENT USERS RESTRICTED RIGHTS

Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
erence

Table of Contents

:\Prog
ecem

Table of
Contents

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Chapter 1 Preface
Organization of This Manual ii
Documentation Conventions. iii
UniVerse Documentation. v
Related Documentation vii
API Documentation viii

Chapter 2 Introduction
UniVerse SQL Syntax Conventions 1-3
Examples Used in This Book 1-4

The UniVerse Demonstration Database. 1-4
The Circus Database 1-4

Chapter 3 The SQL Catalog
What Is the SQL Catalog? 2-3
Structure of the SQL Catalog 2-4
UV_ASSOC. 2-5
UV_COLUMNS 2-7
UV_SCHEMA . 2-10
UV_TABLES . 2-11
UV_USERS . 2-13
UV_VIEWS. 2-14
Using the SQL Catalog 2-15

Finding SQL Catalog Inconsistencies 2-15
Fixing SQL Catalog Inconsistencies. 2-16

Chapter 4 Data Types
UniVerse SQL Data Categories 3-3
SQL Data Types 3-5

BIT . 3-6
CHAR . 3-7
ram Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\SqlrefTOC.doc (bookTOC.template)
ber 29 2008 12:57 pm

iv UniV

DATE . 3-7
DEC . 3-7
DOUBLE PRECISION 3-8
FLOAT . 3-8
INT . 3-9
NCHAR . 3-10
NUMERIC 3-10
NVARCHAR 3-11
REAL . 3-12
SMALLINT 3-12
TIME . 3-13
VARBIT . 3-13
VARCHAR 3-13

Data Types and Data Categories 3-15
Data Types and Conversion Codes 3-16

Chapter 5 UniVerse SQL in Client Programs
Programming with ODBC 4-3

Multivalued Columns and Associations 4-3
Using SQL Statements in Programs 4-4

SQL Syntax in Programs 4-5
SELECT Statements in Programmatic SQL 4-6
Using Parameter Markers in DML Statements 4-8

Chapter 6 Triggers
Applying Business Rules 5-2
Using Triggers. 5-3

When Does a Trigger Fire? 5-3
What Events Fire a Trigger? 5-3

Creating Triggers 5-5
Modifying Triggers 5-5

Listing Information About Triggers 5-6
Trigger Programs 5-8

Transactions 5-9
Opening Files 5-10
Handling Errors. 5-11
Handling Record and File Locks 5-12
Order of Operations 5-12
Nested Triggers and Trigger Recursion 5-13

Some Examples 5-16
erse SQL Reference

Extending Referential Integrity 5-16
Preventing Deletions 5-17
Validating Data 5-18
Changing a Record Before Writing It 5-18
Auditing Changes 5-19

Chapter 7 UniVerse SQL Statements
Statement Page Layout 6-6
ALTER TABLE. 6-7

ADD Clause: Column 6-8
ADD Clause: Column Synonym 6-9
ADD Clause: Association 6-10
ADD Clause: Table Constraint 6-11
DROP Clause: Association 6-11
DROP Clause: Integrity Constraint 6-12
ALTER Clause: SET DEFAULT 6-13
ALTER Clause: DROP DEFAULT 6-13
TRIGGER Clause 6-14

CALL . 6-15
CREATE INDEX 6-17
CREATE SCHEMA 6-20
CREATE TABLE 6-24

Column Definition 6-29
ASSOC Clause 6-41
Table Constraints 6-43

CREATE TRIGGER 6-49
CREATE VIEW. 6-52
DELETE . 6-61
DROP INDEX . 6-67
DROP SCHEMA 6-68
DROP TABLE . 6-70
DROP TRIGGER 6-72
DROP VIEW . 6-73
GRANT . 6-75

Database Privileges 6-76
Table Privileges 6-78

INSERT . 6-81
Specifying Columns 6-83
Specifying Values 6-85
VALUES Clause 6-85
Table of Contents v

vi UniV

Query Specification 6-86
REVOKE . 6-88

Database Privileges 6-89
Table Privileges. 6-91

SELECT . 6-94
SELECT Clause 6-95
WHERE Clause. 6-114
WHEN Clause 6-124
GROUP BY Clause 6-129
HAVING Clause 6-130
ORDER BY Clause 6-131
FOR UPDATE Clause. 6-133
Report Qualifiers 6-135
Processing Qualifiers 6-142
UNION Operator 6-145

UPDATE . 6-148
Set Expressions 6-151
WHERE Clause. 6-153
WHEN Clause 6-154
Referential Integrity Actions. 6-154

Column . 6-157
EVAL Expressions 6-159

Condition . 6-160
Comparing Values 6-161
Specifying a Range: BETWEEN 6-162
Phonetic Matching: SAID 6-163
Pattern Matching: LIKE 6-163
Testing for the Null Value: IS NULL 6-164

Data Type . 6-165
Expression . 6-166

Concatenation Operator 6-167
CAST Function 6-167
Function Expressions 6-167

Identifier . 6-171
Delimited Identifiers 6-171

Literal . 6-175
Character Strings 6-175
Bit Strings 6-175
Hex Strings 6-175
Numbers . 6-176
erse SQL Reference

Dates . 6-176
Times . 6-176

Relational Operator 6-177
Set Function . 6-178
Subquery . 6-180
Table . 6-183

Appendix A UniVerse SQL Grammar
BNF Conventions A-2
Common Syntax Elements A-3

Tokens, Characters, and Symbols. A-3
Keywords . A-4
Delimiters . A-4
Literals . A-5
Identifiers and Names A-7

Value Expressions A-9
Primaries . A-9
Column Specifications A-10
Set Functions A-11
Character Value Expressions A-11
Numeric Value Expressions A-13

Data Types . A-15
Tables . A-16
Query Expressions A-18

Simple Query Specification A-18
Interactive Query Specification A-21
Interactive Report Statement A-23
Table Expression A-25
FROM Clause. A-25
WHERE Clause A-27
WHEN Clause A-28
GROUP BY Clause A-30
HAVING Clause A-30
Subqueries . A-31

Predicates. A-34
<comparison-to-value predicate>. A-34
<between predicate>. A-34
<in-value-list predicate> A-35
<soundex predicate>. A-35
<null predicate> A-35
Table of Contents vii

viii Uni

<like predicate>. A-35
Data Manipulation A-37

DELETE Statement A-37
INSERT Statement A-37
UPDATE Statement A-38

Schema Definition Statements A-40
Schema Definition A-40
Table Definition A-41
View Definition. A-51
Index Definition A-52
Trigger Definition A-53
Privilege Definition A-53

Schema Manipulation Statements A-55
DROP SCHEMA Statement A-55
ALTER TABLE Statement A-55
DROP TABLE Statement. A-56
DROP VIEW Statement A-57
DROP INDEX Statement. A-57
DROP TRIGGER Statement. A-57
REVOKE Statement A-58

User Definition Statements A-59
Grant Database Privilege Statement A-59
Revoke Database Privilege Statement A-60

Calling Procedures A-61
Description and Rules A-61

Appendix B Reserved Words
Verse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Preface
This book is a reference guide to UniVerse SQL. It is for application developers and
system administrators who are familiar with UniVerse and with ANSI-standard SQL.
It contains reference pages for all UniVerse SQL statements, data types, and SQL
catalog tables. It is a companion volume to UniVerse SQL User Guide and UniVerse
SQL Administration for DBAs.
 i

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Preface
12/29/08
Organization of This Manual
This manual contains the following chapters:

Chapter 1, “Introduction,” introduces UniVerse SQL.

Chapter 2, “The SQL Catalog,” describes the tables in the SQL catalog.

Chapter 3, “Data Types,” describes UniVerse SQL data categories and data types.

Chapter 4, “UniVerse SQL in Client Programs,” describes how to use UniVerse SQL
in programs.

Chapter 5, “Triggers,” describes how to use triggers.

Chapter 6, “UniVerse SQL Statements,” describes all UniVerse SQL statements.

Appendix A, “UniVerse SQL Grammar,” describes the UniVerse SQL grammar in
Backus Naur Form.

Appendix B, “Reserved Words,” lists the reserved words in UniVerse SQL.

The Glossary defines common UniVerse SQL terms.
ii UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, and
options. In text, bold indicates keys to press, function names,
menu selections, and MS-DOS commands.

UPPERCASE In syntax, uppercase indicates UniVerse commands, keywords,
and options; UniVerse BASIC statements and functions; and
SQL statements and keywords. In text, uppercase also indicates
UniVerse identifiers such as file names, account names, schema
names, and Windows file names and paths.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and paths.

Courier Courier indicates examples of source code and system output.

Courier Bold In examples, courier bold indicates characters that the user
types or keys the user presses (for example, <Return>).

[] Brackets enclose optional items. Do not type the brackets
unless indicated.

{ } Braces enclose nonoptional items from which you must select
at least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

ä A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose File ä
Exit” means you should choose File from the menu bar, then
choose Exit from the File pull-down menu.

 I Item mark. For example, the item mark (I) in the following
string delimits elements 1 and 2, and elements 3 and 4:
1I2F3I4V5

Documentation Conventions
 iii

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Preface
12/29/08
The following conventions are also used:

Syntax definitions and examples are indented for ease in reading.
All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.
Syntax lines that do not fit on one line in this manual are continued on subse-
quent lines. The continuation lines are indented. When entering syntax, type
the entire syntax entry, including the continuation lines, on the same input
line.

 F Field mark. For example, the field mark (F) in the following
string delimits elements FLD1 and VAL1:
FLD1FVAL1VSUBV1SSUBV2

 V Value mark. For example, the value mark (V) in the following
string delimits elements VAL1 and SUBV1:
FLD1FVAL1VSUBV1SSUBV2

 S Subvalue mark. For example, the subvalue mark (S) in the
following string delimits elements SUBV1 and SUBV2:
FLD1FVAL1VSUBV1SSUBV2

 T Text mark. For example, the text mark (T) in the following
string delimits elements 4 and 5: 1F2S3V4T5

Convention Usage

Documentation Conventions (Continued)
iv UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse Documentation
UniVerse documentation includes the following:

UniVerse Installation Guide: Contains instructions for installing UniVerse 10.3.

UniVerse New Features Version 10.3: Describes enhancements and changes made
in the UniVerse 10.3 release for all UniVerse products.

UniVerse BASIC: Contains comprehensive information about the UniVerse BASIC
language. It is for experienced programmers.

UniVerse BASIC Commands Reference: Provides syntax, descriptions, and
examples of all UniVerse BASIC commands and functions.

UniVerse BASIC Extensions: Describes the following extensions to UniVerse
BASIC: UniVerse BASIC Socket API, Using CallHTTP, and Using WebSphere MQ
with UniVerse.

UniVerse BASIC SQL Client Interface Guide: Describes how to use the BASIC
SQL Client Interface (BCI), an interface to UniVerse and non-UniVerse databases
from UniVerse BASIC. The BASIC SQL Client Interface uses ODBC-like function
calls to execute SQL statements on local or remote database servers such as
UniVerse, DB2, SYBASE, or INFORMIX. This book is for experienced SQL
programmers.

Administering UniVerse: Describes tasks performed by UniVerse administrators,
such as starting up and shutting down the system, system configuration and mainte-
nance, system security, maintaining and transferring UniVerse accounts, maintaining
peripherals, backing up and restoring files, and managing file and record locks, and
network services. This book includes descriptions of how to use the UniAdmin
program on a Windows client and how to use shell commands on UNIX systems to
administer UniVerse.

Using UniAdmin: Describes the UniAdmin tool, which enables you to configure
UniVerse, configure and manage servers and databases, and monitor UniVerse
performance and locks.

UniVerse Transaction Logging and Recovery: Describes the UniVerse transaction
logging subsystem, including both transaction and warmstart logging and recovery.
This book is for system administrators.
 v

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Preface
12/29/08
UniVerse Security Features: Describes security features in UniVerse, including
configuring SSL through UniAdmin, using SSL with the CallHttp and Socket
interfaces, using SSL with UniObjects for Java, and automatic data encryption.

UniVerse System Description: Provides detailed and advanced information about
UniVerse features and capabilities for experienced users. This book describes how to
use UniVerse commands, work in a UniVerse environment, create a UniVerse
database, and maintain UniVerse files.

UniVerse User Reference: Contains reference pages for all UniVerse commands,
keywords, and user records, allowing experienced users to refer to syntax details
quickly.

Guide to RetrieVe: Describes RetrieVe, the UniVerse query language that lets users
select, sort, process, and display data in UniVerse files. This book is for users who
are familiar with UniVerse.

Guide to ProVerb: Describes ProVerb, a UniVerse processor used by application
developers to execute prestored procedures called procs. This book describes tasks
such as relational data testing, arithmetic processing, and transfers to subroutines. It
also includes reference pages for all ProVerb commands.

Guide to the UniVerse Editor: Describes in detail how to use the Editor, allowing
users to modify UniVerse files or programs. This book also includes reference pages
for all UniVerse Editor commands.

UniVerse NLS Guide: Describes how to use and manage UniVerse’s National
Language Support (NLS). This book is for users, programmers, and administrators.

UniVerse SQL Administration for DBAs: Describes administrative tasks typically
performed by DBAs, such as maintaining database integrity and security, and
creating and modifying databases. This book is for database administrators (DBAs)
who are familiar with UniVerse.

UniVerse SQL User Guide: Describes how to use SQL functionality in UniVerse
applications. This book is for application developers who are familiar with UniVerse.

UniVerse SQL Reference: Contains reference pages for all SQL statements and
keywords, allowing experienced SQL users to refer to syntax details quickly. It
includes the complete UniVerse SQL grammar in Backus Naur Form (BNF).
vi UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Related Documentation
The following documentation is also available:

UniVerse GCI Guide: Describes how to use the General Calling Interface (GCI) to
call subroutines written in C, C++, or FORTRAN from BASIC programs. This book
is for experienced programmers who are familiar with UniVerse.

UniVerse ODBC Guide: Describes how to install and configure a UniVerse ODBC
server on a UniVerse host system. It also describes how to use UniVerse ODBC
Config and how to install, configure, and use UniVerse ODBC drivers on client
systems. This book is for experienced UniVerse developers who are familiar with
SQL and ODBC.

UV/Net II Guide: Describes UV/Net II, the UniVerse transparent database
networking facility that lets users access UniVerse files on remote systems. This book
is for experienced UniVerse administrators.

UniVerse Guide for Pick Users: Describes UniVerse for new UniVerse users familiar
with Pick-based systems.

Moving to UniVerse from PI/open: Describes how to prepare the PI/open
environment before converting PI/open applications to run under UniVerse. This
book includes step-by-step procedures for converting INFO/BASIC programs,
accounts, and files. This book is for experienced PI/open users and does not assume
detailed knowledge of UniVerse.
 vii

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Preface
12/29/08
API Documentation
The following books document application programming interfaces (APIs) used for
developing client applications that connect to UniVerse and UniData servers.

Administrative Supplement for APIs: Introduces IBM’s seven common APIs, and
provides important information that developers using any of the common APIs will
need. It includes information about the UniRPC, the UCI Config Editor, the
ud_database file, and device licensing.

UCI Developer’s Guide: Describes how to use UCI (Uni Call Interface), an interface
to UniVerse and UniData databases from C-based client programs. UCI uses ODBC-
like function calls to execute SQL statements on local or remote UniVerse and
UniData servers. This book is for experienced SQL programmers.

IBM JDBC Driver for UniData and UniVerse: Describes UniJDBC, an interface to
UniData and UniVerse databases from JDBC applications. This book is for experi-
enced programmers and application developers who are familiar with UniData and
UniVerse, Java, JDBC, and who want to write JDBC applications that access these
databases.

InterCall Developer’s Guide: Describes how to use the InterCall API to access data
on UniVerse and UniData systems from external programs. This book is for experi-
enced programmers who are familiar with UniVerse or UniData.

UniObjects Developer’s Guide: Describes UniObjects, an interface to UniVerse and
UniData systems from Visual Basic. This book is for experienced programmers and
application developers who are familiar with UniVerse or UniData, and with Visual
Basic, and who want to write Visual Basic programs that access these databases.

UniObjects for Java Developer’s Guide: Describes UniObjects for Java, an interface
to UniVerse and UniData systems from Java. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with Java, and who want to write Java programs that access these databases.

UniObjects for .NET Developer’s Guide: Describes UniObjects, an interface to
UniVerse and UniData systems from .NET. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with .NET, and who want to write .NET programs that access these databases.
viii UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Using UniOLEDB: Describes how to use UniOLEDB, an interface to UniVerse and
UniData systems for OLE DB consumers. This book is for experienced programmers
and application developers who are familiar with UniVerse or UniData, and with
OLE DB, and who want to write OLE DB programs that access these databases.
 ix

:\Prog
ecem
1Administering UniData on Windows NT or Windows 2000
0

1
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Introduction
UniVerse SQL Syntax Conventions 1-3
Examples Used in This Book 1-4
 The UniVerse Demonstration Database 1-4
 The Circus Database 1-4
les\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch1TOC.fm
2008 12:57 pm Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse SQL is both a database language and a set of capabilities. Using SQL you
can query and update data in UniVerse files as well as in SQL tables. Starting with
Release 8.3.3 of UniVerse, you can use UniVerse SQL in client programs as well as
interactively.

UniVerse SQL conforms to the ANSI/ISO 1989 standard established for SQL,
enhanced to take advantage of the postrelational database structure of UniVerse. In
contrast to first-normal-form (1NF) databases, which can have only one value for
each row and column position (or cell), UniVerse is a nonfirst-normal-form (NF2)
database, which can hold more than one value in a cell. UniVerse also supports nested
tables called associations, which are made up of a group of related multivalued
columns in a table.

Programmatic SQL in UniVerse conforms to ANSI-1989 SQL with Integrity
Enhancements (Level 1), and it includes many features from ANSI-1992 SQL and
most features from the ODBC core level of SQL grammar.
 1-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch1
12/29/08
UniVerse SQL Syntax Conventions
In this book the presentation of SQL syntax differs in some respects from the
presentation of syntax in other UniVerse documentation. Because SQL statements
can be complex and detailed, we first present an overview of syntax elements with
brief descriptions of what each element does. For example, the overview of SELECT
statement syntax first describes each type of clause you can use, without presenting
complete details of each clause.

Subsequent sections describe each syntax element in complete detail. Because many
of the same syntax elements, such as table and column specifications, conditional
expressions, and so forth, are common to several SQL statements, they are treated
separately, each in its own section, making them easier to understand and use. For
example, since the SELECT, INSERT, UPDATE, and DELETE statements can all
specify tables, you will find a separate section, “Table,” that describes the table
expression syntax to use in these four statements.
1-3 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Examples Used in This Book
The examples used in this book are based on two databases:

UniVerse demonstration database
Circus database

The UniVerse Demonstration Database
The UniVerse demonstration database comprises three tables, CUSTOMERS,
ORDERS, and INVENTORY, which are derived from the UniVerse demonstration
database. For information about the demonstration database, see the
INITIALIZE.DEMO command in UniVerse User Reference.

If you want to use these tables on your system, do the following:

1. Use the INITIALIZE.DEMO command to install copies of the UniVerse
files in your account.

2. If you are defined in the SQL catalog as an SQL user with RESOURCE
privilege, use the CREATE SCHEMA statement to make the account an
SQL schema, then proceed to step 3.
If you do not have RESOURCE Privilege, or if you are not an SQL user,
have your database administrator (DBA) register you as an SQL user and
make the account into a schema with you as the schema’s owner.

3. Use the CONVERT.SQL command to turn the UniVerse files into tables:
CONVERT.SQL CUSTOMERS CREATE GEN
CONVERT.SQL ORDERS CREATE GEN
CONVERT.SQL INVENTORY CREATE GEN

The Circus Database
The Circus database is a more complex database based on the activities of a travelling
circus. This database comprises 10 tables and is fully described in UniVerse SQL
User Guide. To install the Circus database on your system, complete the following
steps:

1. Create a UniVerse account or choose an existing UniVerse account to
contain the Circus database.
 1-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch1
12/29/08
2. If you are defined in the SQL catalog as an SQL user with RESOURCE
privilege, use the CREATE SCHEMA statement to make the account an
SQL schema, then proceed to step 3.
If you do not have RESOURCE Privilege, or if you are not an SQL user,
have your database administrator (DBA) use the SETUP.DEMO.SCHEMA
command to register you as an SQL user and make the account into a
schema called DEMO_username with you as the schema’s owner.

3. Log on to the new schema and use the MAKE.DEMO.TABLES command
to create the tables and load data into them. The table names all have the
suffix .T . You are the owner of the tables.

If you want to drop these tables later, use the REMOVE.DEMO.TABLES command.
1-5 UniVerse SQL Reference

:\Prog
ecem
1Administering UniData on Windows NT or Windows 2000
0

2
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
The SQL Catalog
What Is the SQL Catalog? 2-3
Structure of the SQL Catalog 2-4
UV_ASSOC . 2-5
UV_COLUMNS 2-7
UV_SCHEMA 2-10
UV_TABLES . 2-11
UV_USERS . 2-13
UV_VIEWS . 2-14
Using the SQL Catalog 2-15
 Finding SQL Catalog Inconsistencies 2-15
 Fixing SQL Catalog Inconsistencies 2-16
les\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch2TOC.fm
2008 12:57 pm Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch2
12/29/08
This chapter describes the following:

The structures of all SQL catalog tables
How to find and fix SQL catalog inconsistencies
2-2 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
What Is the SQL Catalog?
The SQL catalog is a schema containing six tables that define the database. These
tables describe the following:

Each schema: its name, owner, and full path
Each table: its name, owner, number of columns, size, and so on
Each view: its name and the SELECT statement that creates it
Each column: its name, table, data type, size, whether null values are
allowed, and so on
Each association of multivalued columns: its name, table, order, and so on
Each user: the schemas and tables they own, and the database and table
privileges they have

The UniVerse installation process creates the CATALOG schema and the six tables
that make up the SQL catalog in the UV account directory. The path is
uvhome/sql/catalog (where uvhome is the path of the UV account directory on your
system). The UniVerse administrator determines the owner of the directory and tables
that make up the SQL catalog. On UNIX systems, the SQL catalog owner can be
either uvsql, root, or uvadm. On Windows platforms, any member of the
Administrators group is an owner of the SQL catalog. The default owner ID on
Windows platforms is NT AUTHORITY\SYSTEM.
 2-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch2
12/29/08
Structure of the SQL Catalog
The following sections describe the SQL catalog tables:

UV_ASSOC
UV_COLUMNS
UV_SCHEMA
UV_TABLES
UV_USERS
UV_VIEWS
2-4 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UV_ASSOC
The UV_ASSOC table describes all associations of multivalued columns in all tables
in the database. It has the following columns:

Column Name Data Type Description

ASSOC_SCHEMA CHAR(18) Name of the schema where the association’s
table is located.

ASSOC_NAME CHAR(18) Name of the association.

ORDERING CHAR(10) One of the following:
LAST: Association rows are added after
existing association rows.
FIRST: Association rows are added before
existing association rows.
IN_COL_BY: Association rows are inserted
according to the sequence indicated in the
ORDER_TYPE column.
PRESERVING: Association rows are added
according to the position specified by
@ASSOC_ROW. The positions of the associ-
ation rows are stable.
UNORDERED: Same as LAST.

ORDER_COLUMN CHAR(18) If ORDERING is IN_COL_BY, this column
contains the name of the column whose data
determines the order in which to insert associ-
ation rows.

UV_ASSOC Columns
 2-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch2
12/29/08
ASSOC_SCHEMA and ASSOC_NAME form the primary key.

ORDER_TYPE CHAR(2) If ORDERING is IN_COL_BY, the order type
is one of the following:
AL: Association rows are inserted in
ascending order, left-justified.
AR: Association rows are inserted in
ascending order, right-justified.
DL: Association rows are inserted in
descending order, left-justified.
DR: Association rows are inserted in
descending order, right-justified.

EMPTY_ROW CHAR(3) Reserved for future use.

SICA CHAR(254) Reserved for future use.

Column Name Data Type Description

UV_ASSOC Columns (Continued)
2-6 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UV_COLUMNS
The UV_COLUMNS table describes all columns of all tables in the database. It has
the following columns:

Column Name Data Type Description

TABLE_SCHEMA CHAR(18) Name of the schema where the column’s
table is located.

TABLE_NAME CHAR(18) Name of the table containing the column.

COLUMN_NAME CHAR(18) Name of the column.

IN_ASSOCIATION CHAR(18) Name of the association of multivalued
columns to which the column belongs.

AMC INT AMC is a multivalued column that
always contains two values. The first
value is the column number, representing
the position of the column in the table as
defined in the CREATE TABLE
statement. Columns making up the
primary key are together considered
column 0.
The second value is either:
A number representing the position of the
column in the primary key, starting with
1.
0 for all non-primary-key columns.

ACOL_NO INT ACOL_NO is a multivalued column. If
the column is not part of an association or
a primary key, ACOL_NO is empty. If
the column is part of an association or a
primary key, ACOL_NO has two values:

The first value is either:
0 for primary key and association key
columns.

ACOL_NO
(continued)

A number representing the position of the
column in the association, starting with 1.

UV_COLUMNS Columns
 2-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch2
12/29/08
TABLE_SCHEMA, TABLE_NAME, and COLUMN_NAME form the primary key.

The second value is one of the following:
For primary key columns, a number
representing the position of the column in
the primary key, starting with 1.
For association key columns, a number
representing the position of the column in
the association, starting with the number
following the last primary key column.
0 for columns that are not part of the
association key.

MULTI_VALUE CHAR(1) S: Column is single-valued.
M: Column is multivalued.

DATA_TYPE CHAR(8) Type of data in the column (see Chapter
3, “Data Types,” for information about
data types).

CHAR_MAX_LENGTH INT Maximum column length of a column
whose data type is CHAR or VARCHAR.

NUMERIC_PRECISION INT Precision of a column whose data type is
FLOAT.

NUMERIC_PREC_RADIX INT Precision of a column whose data type is
DECIMAL or NUMERIC.

NUMERIC_SCALE INT Scale of a column whose data type is
DECIMAL or NUMERIC.

NULLABLE CHAR(3) YES: Column can contain NULLs.
NO: Column can’t contain NULLs.

COL_DEFAULT CHAR(254) Default column value.

REMARKS CHAR(254) Reserved for future use.

Column Name Data Type Description

UV_COLUMNS Columns (Continued)
2-8 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UV_SCHEMA
The UV_SCHEMA table describes all the schemas in the database. It has the
following columns:

SCHEMA_NAME is the primary key.

Column Name Data Type Description

SCHEMA_NAME CHAR(18) Name of the schema.

OWNER CHAR(18) User ID number of the schema’s owner.

PATH CHAR(254) Full path of the account directory where the
schema resides.

UV_SCHEMA Columns
 2-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch2
12/29/08
UV_TABLES
The UV_TABLES table describes all the tables in the database. It has the following
columns:

TABLE_SCHEMA and TABLE_NAME form the primary key.

Column Name Data Type Description

TABLE_SCHEMA CHAR(18) Name of the schema where the table is
located.

TABLE_NAME CHAR(18) Name of the table.

OWNER INT User ID number of the owner of the table.

TABLE_TYPE CHAR(18) One of the following:
BASE TABLE: The table is nonderived.
VIEW: The table is a view derived from one
or more base tables or views.
ASSOCIATION: The table is an association
derived from corresponding multivalued
columns in a base table.
SYSTEM TABLE: The table is part of the
SQL catalog.

BASE_TABLE CHAR(18) Name of the base table of an association.

COLUMNS CHAR(18) Names of the columns in the table.
COLUMNS is a multivalued column.

VIEWS CHAR(18) Names of views derived from this table.
VIEWS is a multivalued column.

PATH CHAR(254) Full path of the table.

DICT_PATH CHAR(254) Full path of the table dictionary.

ASSOCIATIONS CHAR(18) Names of the associations of multivalued
columns in the table. ASSOCIATIONS is a
multivalued column.

REMARKS CHAR(254) Reserved for future use.

UV_TABLES Columns
2-10 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UV_USERS
The UV_USERS table describes all UniVerse SQL users, the schemas and tables they
own, and all their database and table privileges. It has the following columns:

NAME is the primary key. The table has two associations of multivalued columns:
SCHEMAS and TABLES are associated, and PERM_SCHEMAS and
PERM_TABLES are associated.

Column Name Data Type Description

NAME CHAR(18) User name as defined by the operating
system.

DBAUTH CHAR(3) YES: User has DBA database privilege.
NO: User does not have DBA database
privilege.

RESOURCEAUTH CHAR(3) YES: User has RESOURCE database
privilege.
NO: User does not have RESOURCE
database privilege.

AUTHOR CHAR(18) User name of DBA who registered the user
in the SQL catalog.

SCHEMAS CHAR(18) For each table in the TABLES column, the
name of the schema containing the table.
SCHEMAS is a multivalued column.

TABLES CHAR(18) Names of tables the user owns. TABLES is a
multivalued column.

PERM_SCHEMAS CHAR(18) For each table in the PERM_TABLES
column, the name of the schema containing
the table. PERM_SCHEMAS is a multi-
valued column.

PERM_TABLES CHAR(18) Names of tables for which the user has privi-
leges. PERM_TABLES is a multivalued
column.

UV_USERS Columns
 2-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch2
12/29/08
UV_VIEWS
The UV_VIEWS table describes all the views in the database. It has the following
columns:

VIEW_SCHEMA and VIEW_NAME form the primary key.

Column Name Data Type Description

VIEW_SCHEMA CHAR(18) Name of the schema where the view is located.

VIEW_NAME CHAR(18) Name of the view.

VIEW_TEXT CHAR(254) Query specification (SELECT statement) that
creates the view.

TABLES CHAR(254) Names of the view’s underlying tables and
views. TABLES is a multivalued column.

COLUMN_MAP CHAR(254) If the view is updatable, maps the view’s
columns to columns in the underlying base
tables and views.

IS_UPDATABLE CHAR(3) One of the following:
NO: The view is read-only.
yes: The view is updatable and does not contain
all base table primary keys.
YES: The view is updatable and contains all
base table primary keys.

CHECK_OPTION CHAR(8) One of the following:
NO: CHECK OPTION is not set.
LOCAL: Only the WHERE clause of the view
is checked.
CASCADED: The WHERE clause of the view
and all underlying views are checked.

UV_VIEWS Columns
2-12 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Using the SQL Catalog
You can retrieve data from the SQL catalog tables just as you can from any other table
you have access to. For example:

>SELECT TABLE_NAME, TABLE_TYPE FROM UV_TABLES
SQL+WHERE TABLE_SCHEMA = 'MYSCHEMA'
SQL+ORDER BY TABLE_NAME;

All users can read all tables in the catalog. No user, not even a database administrator
(DBA), can directly add, change, or delete anything in the catalog.

Finding SQL Catalog Inconsistencies
UniVerse SQL users can use the VERIFY.SQL command in UniVerse to examine the
SQL catalog for inconsistencies.

VERIFY.SQL is a diagnostic tool that you should use if you suspect information in
the SQL catalog is inconsistent with the schemas, tables, views, directories, and files
on your system. Such inconsistencies should not occur during normal use, but they
can happen when you delete, rename, or move files at the operating system level.

VERIFY.SQL compares data in the security and integrity constraints areas (SICAs)
of tables and views, to data in the SQL catalog and displays any inconsistencies.

UniVerse SQL users can verify only tables and views they have operating system
permissions and SQL privileges to access. DBAs can verify all tables and views on
the system, provided they have proper file and directory permissions.

For example, here are two ways to verify the ORDERS table in the current schema.
The first command specifies the table by name, the second specifies it by path.

>VERIFY.SQL TABLE ORDERS
>VERIFY.SQL TABLE /usr/accounts/ORDERS

The next example shows two ways to verify the Sales schema:

>VERIFY.SQL SCHEMA Sales
>VERIFY.SQL SCHEMA /usr/sales
 2-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch2
12/29/08
The next example verifies the owners, paths, and schema names of all schemas on the
system. This command can take a long time to execute, because it looks at all direc-
tories on the system.

>VERIFY.SQL SCHEMAS

The next example verifies the internal consistency of the SQL catalog:

>VERIFY.SQL CATALOG

The next example verifies all SQL objects on the system, including the internal
consistency of the SQL catalog. This command can also take a long time to execute.

>VERIFY.SQL ALL

Fixing SQL Catalog Inconsistencies
DBAs can use the VERIFY.SQL command to fix inconsistencies between UniVerse
SQL objects and the SQL catalog. VERIFY.SQL also fixes internal inconsistencies
within the SQL catalog.

The FIX keyword changes the data in the SQL catalog to make it agree with data in
the schemas’ VOC files and in the SICAs of their tables and views. If data is found
in the SQL catalog for a schema, table, or view that does not exist, VERIFY.SQL
deletes the data in the SQL catalog. If SQL catalog data is internally inconsistent,
VERIFY.SQL changes the data to make it agree with the data found in the SQL
objects it is currently verifying. If there is no corresponding data in the SQL catalog,
VERIFY.SQL fixes the inconsistencies as follows:

Command Description

VERIFY.SQL SCHEMA pathname
FIX
VERIFY.SQL SCHEMA FIX

Creates the SQL catalog data using information in
the schema’s VOC file and in the SICAs of the
schema’s tables.

VERIFY.SQL TABLE pathname FIX Creates the SQL catalog data using information in
the SICA of the table.

VERIFY.SQL VIEW pathname FIX Creates the SQL catalog data using information in
the SICA of the view.

VERIFY.SQL Commands
2-14 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
VERIFY.SQL SCHEMA schema FIX Changes no SQL catalog data and produces an
error message. VERIFY.SQL cannot locate a
schema by name if the name is not in the SQL
catalog.

VERIFY.SQL TABLE table FIX Changes no SQL catalog data and produces an
error message. VERIFY.SQL cannot locate a table
by name if the name is not in the SQL catalog.

VERIFY.SQL ALL FIX Creates the SQL catalog data using information in
all the schemas’ VOC files and in the SICAs of
their tables. If a table is not in a valid schema, no
SQL catalog data is changed and an error message
appears.

Command Description

VERIFY.SQL Commands (Continued)
 2-15

:\Prog
ecem
2Administering UniData on Windows NT or Windows 2000
0

3
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Data Types
UniVerse SQL Data Categories 3-3
SQL Data Types 3-5
 BIT . 3-6
 CHAR. 3-7
 DATE . 3-7
 DEC . 3-7
 DOUBLE PRECISION 3-8
 FLOAT . 3-8
 INT . 3-9
 NCHAR . 3-10
 NUMERIC 3-10
 NVARCHAR 3-11
 REAL . 3-12
 SMALLINT 3-12
 TIME . 3-13
 VARBIT . 3-13
 VARCHAR 3-13
Data Types and Data Categories 3-15
 Data Types and Conversion Codes 3-16
les\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch3TOC.fm
2008 12:57 pm Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes the six UniVerse SQL data categories and the eleven SQL data
types. Every column in a table has a data type that defines the kind of values the
column contains. Data types fall into six general data categories.
 3-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch3
12/29/08
UniVerse SQL Data Categories
UniVerse SQL recognizes seven data categories. All data, and literals in an SQL
query, fall into one of these categories. The data category to which a value belongs
determines how an SQL query processes the data. Some categories of data can be
added, subtracted, compared, and so on, and some cannot. For example, you cannot
add integers to character strings. The following table describes the seven data
categories.

UniVerse SQL allows the following operations and comparisons among data
categories, which the following sections cover:

Category Description

Integer Positive or negative whole numbers such as 0, 5, +03, and
6758948398458.

Scaled number Positive or negative numbers with fixed-length fractional parts,
such as 2.00, 1999.95, and −0.75. These are also known as exact
numbers.

Approximate number Arbitrary real numbers that can include fractional parts of
unknown length. These numbers may need to be rounded off to
fit the computer’s limits for storing significant digits. Examples
are Avogadro’s number (6.023E23) and pi (3.14159…).

Date Dates are stored internally as the number of days since
December 31, 1967. Dates are output in conventional date
formats such as 2/28/92 or 31 Jan 1990. A conversion code
converts the internal date to a conventional format.

Time Times are stored internally as a number of seconds, which can
represent either a time of day (number of seconds after midnight)
or a time interval. They are output in conventional time formats
such as 12:30 PM or 02:23:46. A conversion code converts the
internal time to a conventional format.

Character string Any mixture of numbers, letters, and special characters.

Bit string Any arbitrary sequence of bits.

Data Categories
3-3 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can use any arithmetic operator (+, −, *, or /) on any pair of numbers
(integer, scaled, or approximate). The result is an approximate number
unless you add, subtract, or multiply two integers, in which case the result
is also an integer.
You can subtract a date from a date. The result is an integer representing
days. You cannot add a date to a date.
You can add and subtract times. The result is a time.
You can add an integer to a date, and you can subtract an integer from a date.
The result is also a date, n days later or earlier than the given date.
You can add an integer to a time, and you can subtract an integer from a
time. The result is also a time, n hours later or earlier than the given time.
You can compare any integer, scaled number, and approximate number to
any other integer, scaled number, or approximate number. You can compare
dates to dates. You can compare times to times. And you can compare
character strings to character strings.
You cannot compare an integer to a time or a time to an integer.
You can compare a bit string only to another bit string.
You can use the MAX, MIN, and COUNT set functions with all data
categories. You can use the SUM and AVG set functions with all data
categories except character strings.
 3-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch3
12/29/08
SQL Data Types
UniVerse SQL recognizes fifteen data types, as shown in the following table. The
following sections describe each data type in detail.

Data Type Description

BIT Bit strings

CHAR
CHARACTER

Character strings

DATE Dates

DEC
DECIMAL

Decimal fixed-point numbers

DOUBLE PRECISION High-precision floating-point numbers

FLOAT Floating-point numbers

INT
INTEGER

Whole numbers

NCHAR
NATIONAL CHAR
NATIONAL CHARACTER

National character strings

NUMERIC Decimal fixed-point numbers

NVARCHAR
NCHAR VARYING
NATIONAL CHAR VARYING
NATIONAL CHARACTER
VARYING

Variable-length national character strings

REAL Floating-point numbers

SMALLINT Small whole numbers

Data Types
3-5 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
BIT
The BIT data type stores bit strings of up to 2032 bits. When you specify a column’s
data type in a CREATE TABLE or ALTER TABLE statement, the syntax is as
follows:

BIT [(n)]
n is an integer from 1 through 2032 that specifies the length of the column. If you do
not specify n, the default length is 1 bit.

If you specify a conversion code when you define the column, it must be BB or BX;
any other conversion code results in an error. By default, UniVerse SQL does not
generate a conversion code. With a BB conversion, BIT data is displayed in binary
format. With a BX conversion, BIT data is displayed in hexadecimal format. With no
conversion code, BIT data is not displayed; instead, the phrase <bit string> is
displayed.

If you do not specify a format code when you define the column, UniVerse SQL
generates a FMT code of 1L if n is not specified; otherwise UniVerse SQL generates
a FMT code of 10L.

TIME Times

VARBIT
BIT VARYING

Variable-length bit strings

VARCHAR
CHAR VARYING
CHARACTER VARYING

Variable-length character strings

Data Type Description

Data Types (Continued)
 3-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch3
12/29/08
CHAR
The CHAR data type stores character strings, which can be any combination of
numbers, letters, and special characters. It is also called the CHARACTER data type.
When you specify a column’s data type in a CREATE TABLE or ALTER TABLE
statement, the syntax is as follows:

CHAR [(n)]
CHARACTER [(n)]

n is an integer from 1 through 254 that specifies the length of the column. If you do
not specify n, the default length is 1.

You use the CHAR data type to store names, addresses, phone numbers, zip codes,
descriptions, and so on.

If you do not specify a format code when you define the column, UniVerse SQL
generates a FMT code of nL, which specifies a column length of n and left
justification.

DATE
The DATE data type stores dates. If you do not specify a conversion code when you
define the column, UniVerse SQL generates a CONV code of D. If you specify a
conversion code, it must begin with D; any other conversion code results in an error.
If you do not specify a format code, UniVerse SQL generates a FMT code consistent
with the conversion code.

DEC
The DEC data type stores decimal fixed-point numbers. It is also called the
DECIMAL data type. When you specify a column’s data type in a CREATE TABLE
or ALTER TABLE statement, the syntax is as follows:

DEC [(p [, s])]
DECIMAL [(p [, s])]

p (precision) is the number of significant digits, which is the total number of digits to
the left and the right of the decimal point. If you do not specify p, the default precision
is 9.
3-7 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
s (scale) is the number of digits to the right of the decimal point. Scale can be from 0
through 9. If you do not specify s, the default scale is 0.

You use the DEC data type for numbers with fractional parts that must be calculated
exactly, such as money or percentages.

If you do not specify a conversion code when you define the column, UniVerse SQL
generates a CONV code of MDss, where s is the scale. If you do not specify a format
code, UniVerse SQL generates a FMT code of (p+1)R, where p is the precision and
R specifies right justification.

Note: When the scaling factor of an MD, ML, or MR conversion is not 0, the internal
form of the data is numerically different from the external form. Therefore, if you
specify one of these conversions for a column whose type is DEC, you should define
the scaling factor of the conversion to be the same as scale (s), otherwise results will
be unpredictable.

In UniVerse SQL the DEC and NUMERIC data types are the same.

DOUBLE PRECISION
The DOUBLE PRECISION data type stores high-precision floating-point numbers.
When you specify a column’s data type in a CREATE TABLE or ALTER TABLE
statement, the syntax is as follows:

DOUBLE PRECISION

You use the DOUBLE PRECISION data type for scientific numbers that can be
calculated only approximately.

If you do not specify a conversion code when you define the column, UniVerse SQL
generates a CONV code of QX. If you do not specify a format code, UniVerse SQL
generates a FMT code of 30R, which specifies a column length of 30 and right
justification.

FLOAT
The FLOAT data type stores floating-point numbers. When you specify a column’s
data type in a CREATE TABLE or ALTER TABLE statement, the syntax is as
follows:

FLOAT [(p)]
 3-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch3
12/29/08
p (precision) is the number of significant digits. If you do not specify p, the default
precision is 15.

You use the FLOAT data type for scientific numbers that can be calculated only
approximately.

If you do not specify a conversion code when you define the column, UniVerse SQL
generates a CONV code of QX. If you do not specify a format code, UniVerse SQL
generates a FMT code of (p+1)R, where p is the precision and R specifies right
justification.

INT
The INT data type stores whole numbers. It is also called the INTEGER data type.
When you specify a column’s data type in a CREATE TABLE or ALTER TABLE
statement, the syntax is as follows:

INT
INTEGER

You use the INT data type for counts, quantities, and so on. You can also use this data
type for dates or times, provided you also specify an appropriate D conversion code
(for dates) or MT conversion code (for times).

If you do not specify a conversion code when you define the column, UniVerse SQL
generates a CONV code of MD0. If you do not specify a format code, UniVerse SQL
generates a FMT code of 10R, which specifies a column length of 10 and right
justification.

In UniVerse SQL the INT and SMALLINT data types are the same.

NCHAR
The NCHAR data type stores national character strings, which can be any combi-
nation of numbers, letters, and special characters. It is also called the NATIONAL
CHARACTER data type. When you specify a column’s data type in a CREATE
TABLE or ALTER TABLE statement, the syntax is as follows:

NCHAR [(n)]
NATIONAL CHAR [(n)]
NATIONAL CHARACTER [(n)]
3-9 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
n is an integer from 1 through 254 that specifies the length of the column. If you do
not specify n, the default length is 1.

You use the NCHAR data type to store names, addresses, phone numbers, zip codes,
descriptions, and so on.

If you do not specify a format code when you define the column, UniVerse SQL
generates a FMT code of nL, which specifies a column length of n and left
justification.

To use NCHAR columns, NLS must be enabled.

NUMERIC
The NUMERIC data type stores decimal fixed-point numbers. When you specify a
column’s data type in a CREATE TABLE or ALTER TABLE statement, the syntax
is as follows:

NUMERIC [(p [, s])]
p (precision) is the number of significant digits, which is the total number of digits to
the left and the right of the decimal point. If you do not specify p, the default precision
is 9.

s (scale) is the number of digits to the right of the decimal point. Scale can be from 0
through 9. If you do not specify s, the default scale is 0.

You use the NUMERIC data type for numbers with fractional parts that must be
calculated exactly, such as money or percentages.

If you do not specify a conversion code when you define the column, UniVerse SQL
generates a CONV code of MDss, where s is the scale. If you do not specify a format
code, UniVerse SQL generates a FMT code of (p+1)R, where p is the precision and
R specifies right justification.

Note: When the scaling factor of an MD, ML, or MR conversion is not 0, the internal
form of the data is numerically different from the external form. Therefore, if you
specify one of these conversions for a column whose type is NUMERIC, you should
define the scaling factor of the conversion to be the same as scale (s), otherwise
results will be unpredictable.

In UniVerse SQL the NUMERIC and DEC data types are the same.
 3-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch3
12/29/08
NVARCHAR
The NVARCHAR data type stores variable-length character strings, which can be
any combination of numbers, letters, and special characters. It is also called the
NCHAR VARYING or NATIONAL CHARACTER VARYING data type. When you
specify a column’s data type in a CREATE TABLE or ALTER TABLE statement, the
syntax is as follows:

NVARCHAR [(n)]
NCHAR VARYING [(n)]
NATIONAL CHAR VARYING [(n)]
NATIONAL CHARACTER VARYING [(n)]

n is an integer from 1 through 65535 that specifies the length of the column. If you
do not specify n, the default length is 254.

You use the NVARCHAR data type to store names, addresses, phone numbers, zip
codes, descriptions, and so on.

If you do not specify a format code when you define the column, UniVerse SQL
generates a FMT code of 10T, which specifies a column length of 10 and text
justification.

To use NVARCHAR columns, NLS must be enabled.

REAL
The REAL data type stores floating-point numbers. When you specify a column’s
data type in a CREATE TABLE or ALTER TABLE statement, the syntax is as
follows:

REAL

You use the REAL data type for scientific numbers that can be calculated only
approximately.

If you do not specify a conversion code when you define the column, UniVerse SQL
generates a CONV code of QX. If you do not specify a format code, UniVerse SQL
generates a FMT code of 10R, which specifies a column length of 10 and right
justification.
3-11 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SMALLINT
The SMALLINT data type stores small whole numbers. When you specify a
column’s data type in a CREATE TABLE or ALTER TABLE statement, the syntax
is as follows:

SMALLINT

You use the SMALLINT data type for counts, quantities, and so on. You can also use
this data type for dates or times, provided you also specify an appropriate D
conversion code (for dates) or MT conversion code (for times).

If you do not specify a conversion code when you define the column, UniVerse SQL
generates a CONV code of MD0. If you do not specify a format code, UniVerse SQL
generates a FMT code of 10R, which specifies a column length of 10 and right
justification.

In UniVerse SQL the SMALLINT and INT data types are the same.

TIME
The TIME data type stores times. If you do not specify a conversion code when you
define the column, UniVerse SQL generates a CONV code of MTS. If you specify a
conversion code, it must begin with MT; any other conversion code results in an
error. If you do not specify a format code, UniVerse SQL generates a FMT code
consistent with the conversion code.

VARBIT
The VARBIT data type stores bit strings of up to 524,280 bits. When you specify a
column’s data type in a CREATE TABLE or ALTER TABLE statement, the syntax
is as follows:

VARBIT [(n)]
BIT VARYING [(n)]

n is an integer from 1 through 524,280 that specifies the length of the column. If you
do not specify n, the default length is 2032 bits.
 3-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch3
12/29/08
If you specify a conversion code when you define the column, it must be BB or BX;
any other conversion code results in an error. By default, UniVerse SQL does not
generate a conversion code. With a BB conversion, VARBIT data is displayed in
binary format. With a BX conversion, VARBIT data is displayed in hexadecimal
format. With no conversion code, VARBIT data is not displayed; instead, the phrase
<bit string> is displayed.

If you do not specify a format code when you define the column, UniVerse SQL
generates a FMT code of 10L.

VARCHAR
The VARCHAR data type stores variable-length character strings, which can be any
combination of numbers, letters, and special characters. It is also called the CHAR
VARYING or CHARACTER VARYING data type. When you specify a column’s
data type in a CREATE TABLE or ALTER TABLE statement, the syntax is as
follows:

VARCHAR [(n)]
CHAR VARYING [(n)]
CHARACTER VARYING [(n)]

n is an integer from 1 through 65535 that specifies the length of the column. If you
do not specify n, the default length is 254.

You use the VARCHAR data type to store names, addresses, phone numbers, zip
codes, descriptions, and so on.

If you do not specify a format code when you define the column, UniVerse SQL
generates a FMT code of 10T, which specifies a column length of 10 and text
justification.
3-13 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Data Types and Data Categories
When you define a column in a table, you specify its data type. The data type
determines what category of data the column stores. The following table summarizes
UniVerse SQL data categories, data types, and the conversion and format codes that
UniVerse SQL generates when it creates a table’s dictionary entries.

Scale indicates the number of digits to the right of the decimal point. When you
define a DECIMAL or NUMERIC column, a scale of s (an integer from 1 through p)
generates an MDss conversion. UniVerse uses precision (p) when generating the
format field of the dictionary.

Data Category Data Type

Generated
Conversion
Code

Generated
Format Code

Integer INT
SMALLINT
DECIMAL (p,0)
NUMERIC (p,0)

MD0
MD0
MD00
MD00

10R
10R
(p+1)R
(p+1)R

Scaled number DECIMAL (p,s)
NUMERIC (p,s)

MDss
MDss

(p+1)R
(p+1)R

Approximate number REAL
FLOAT (p)
DOUBLE
PRECISION

QX
QX
QX

10R
(p+1)R
30R

Date DATE D 11R

Time TIME MTS 8R

Character string CHAR (n)
VARCHAR (n)
NCHAR (n)
NVARCHAR (n)

nL
10T
nL
10T

Bit string BIT (n)
VARBIT (n)

BB or BX
BX

1L or 10L
10L

Data Types and Data Categories
 3-14

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch3
12/29/08
In the UniVerse environment, CHAR, VARCHAR, NCHAR, and NVARCHAR
(character strings) are the same. DOUBLE PRECISION, FLOAT (floating-point
numbers), and REAL are the same. INT and SMALLINT (integers) are the same.
NUMERIC and DECIMAL (fixed-scale numbers) are the same. BIT and VARBIT
(bit strings) are the same.

If you specify a conversion code for a DATE or TIME column in the CREATE
TABLE statement, the generated format code will be consistent with the code you
specify. For example, D2- gives 8R, and MTHS gives 10R. If you also specify a
format code in the CREATE TABLE statement, it overrides the generated format
code.

Dates and times can also be stored in columns defined as INT or SMALLINT. If you
define date and time columns this way, you must specify a valid D conversion code
for date columns and a valid MT conversion code for time columns.

Data Types and Conversion Codes
When you define a column with the CREATE TABLE or ALTER TABLE statement,
you can specify a conversion code along with the data type. If you do not specify a
conversion code, UniVerse SQL generates one, except for character strings. For
example, if you specify the data type INT for a column, UniVerse SQL supplies the
conversion code MD0.

The conversion code you specify must be compatible with the data type or results will
be unpredictable. Specifically, you should do the following:

Use MD, ML, and MR conversions having a nonzero scaling factor only for
DECIMAL and NUMERIC columns. Be sure the scale specified in the
conversion agrees with the scale implied by the data type.
Use D conversions only for DATE, INT, or SMALLINT columns.
Use MT conversions only for TIME, INT, or SMALLINT columns.
Use BB and BX conversions only for BIT and VARBIT columns.
3-15 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table definition has four columns defined to contain CHAR, REAL,
DATE, and TIME data types. The DATE and TIME columns also include date and
time conversion codes.

CREATE TABLE TEMPS
(CITY CHAR(20),
TEMPERATURE REAL,
"DATE" DATE CONV 'D2-',
"TIME" TIME CONV 'MTHS',
...);

The column names DATE and TIME must be enclosed in double quotation marks
because they are UniVerse SQL reserved words. For information about reserved
words, see Delimited Identifiers in Chapter 6, “UniVerse SQL Statements,” and
Appendix B, “Reserved Words.”

The following table definition defines a monetary field, PRICE. The data type speci-
fication and the conversion code both specify the same scaling factor, 2.

CREATE TABLE INVENTORY
(PRODNO INT NOT NULL PRIMARY KEY,
.
.
.
PRICE DEC(6,2) CONV 'MD2$'
.
.
.

 3-16

:\Prog
ecem
3Administering UniData on Windows NT or Windows 2000
0

4
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
UniVerse SQL in Client
Programs
Programming with ODBC 4-3
 Multivalued Columns and Associations 4-3
Using SQL Statements in Programs 4-4
 SQL Syntax in Programs 4-5
 SELECT Statements in Programmatic SQL 4-6
 Using Parameter Markers in DML Statements 4-8
les\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch4TOC.fm
2008 12:57 pm Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch4
12/29/08
Other chapters of this book treat UniVerse SQL as an interactive language—that is,
a language you use to enter SQL statements at the system prompt, the results from
which are displayed on your screen. This chapter describes how to use UniVerse SQL
in client programs that access a UniVerse server. The version of UniVerse SQL you
use in client programs is called programmatic SQL.

Programmatic SQL and interactive SQL are mostly the same. This chapter describes
the differences between interactive SQL and programmatic SQL. Programmatic SQL
returns output to program variables instead of to a terminal screen.

UniVerse provides two application program interfaces (APIs) you can use to write
client programs:

UniVerse Call Interface (UCI)
BASIC SQL Client Interface

These APIs are based on the Microsoft Open Database Connectivity (ODBC)
interface.

UCI is a C-language API, and the BASIC SQL Client Interface is a UniVerse BASIC
API. Both let application programmers write client programs that use SQL function
calls to access data in UniVerse databases. For information about UCI, see UCI
Developer’s Guide. For information about the BASIC SQL Client Interface, see
UniVerse BASIC SQL Client Interface Guide. For a general background on
programming with ODBC, see Microsoft ODBC 2.0 Programmer’s Reference and
SDK Guide.

Programmatic SQL includes only UniVerse SQL statements; it does not include any
of the following:

UniVerse commands, such as LIST, SORT, and CREATE.INDEX
UniVerse commands that relate directly to UniVerse SQL, such as
CONNECT, CONVERT.SQL, LIST.SICA, and VERIFY.SQL
UniVerse BASIC transaction statements, such as BEGIN TRANSACTION,
COMMIT, and ROLLBACK
4-2 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Programming with ODBC
Programs that use ODBC do the following:

Set up an execution environment
Connect to a database server (data source)
Allocate variables to contain column contents or parameter values
Execute SQL statements
Execute stored procedures
Fetch result rows
Define data conversions
Receive status and error information
Control transactions

These functions are fully described in the UCI Developer’s Guide and the UniVerse
BASIC SQL Client Interface Guide.

Each client program using programmatic SQL has its own user environment on the
UniVerse server, defined by a user name (login name) and a UniVerse account
directory. The user name and account directory are established when the client
program connects to the server. This environment affects programmatic SQL state-
ments in the same way that an interactive user’s environment affects interactive SQL
statements. For example, the client’s user name is used to verify SQL table privileges,
and the account directory determines which VOC file to use as the source of file
names.

Multivalued Columns and Associations
Because SQL Client Interface functions are part of UniVerse BASIC, the SQL state-
ments they use treat multivalued data on UniVerse data sources in the same way
UniVerse BASIC programs or UniVerse SQL statements do. SQL statements in UCI
client programs, on the other hand, can use a special first-normal-form mode when
they access tables and UniVerse files that contain multivalued columns. For detailed
information about how UCI handles multivalued data in UniVerse tables and files,
see the UCI Developer’s Guide.
 4-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch4
12/29/08
Using SQL Statements in Programs
SQL statements come in two categories: those that define data, and those that
manipulate data. Programs can also use the CALL statement to invoke procedures
stored on the server. You can use the following UniVerse SQL statements in UCI and
BASIC SQL Client Interface programs:

You can use DML statements to query and manipulate data in both of the following:

SQL tables
UniVerse files that are not SQL tables

Data Definition
Language (DDL)

Data
Manipulation
Language (DML) Procedure Calls

ALTER TABLE DELETE CALL

CREATE INDEX INSERT

CREATE SCHEMA SELECT

CREATE TABLE UPDATE

CREATE TRIGGER

CREATE VIEW

DROP INDEX

DROP SCHEMA

DROP TABLE

DROP TRIGGER

DROP VIEW

GRANT

REVOKE

UniVerse SQL Statements for UCI and BCI
4-4 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can use DML statements in transactions. Since DML statements are
transactional (that is, each DML statement is automatically committed as a separate
transaction), they become nested transactions when used in a transaction (for
information about nested transactions, see UniVerse BASIC).

Note: You cannot use DDL statements in transactions.

SQL Syntax in Programs
You can use programmatic SQL statements in client programs or in programs that are
stored on a UniVerse server. The latter are procedures, stored on the server, that can
be called by client programs. Procedures can provide a significant performance
improvement in a client/server environment. Applications often have many steps,
where the result from one step becomes the input for the next. If you run such an
application from a client, it can take a lot of network traffic to perform each step and
get results from the server. If you run the same program as a procedure, all the inter-
mediate work occurs on the server; the client simply calls the procedure and receives
a result. For information about creating and executing procedures, see the UniVerse
BASIC SQL Client Interface Guide or the UCI Developer’s Guide.

A programmatic SQL statement must be only one statement, and it must be complete.
It cannot be a partial SQL statement or a group of several SQL statements. You can
include or omit the final ; (semicolon) in programmatic SQL. You cannot include
comments in programmatic SQL statements.

Reserved words in programmatic SQL statements are not case-sensitive. You can
code all SQL statement names (such as CREATE TABLE and INSERT), SQL
keywords (such as INTEGER and GROUP BY), and UniVerse-specific keywords
(such as ROWUNIQUE and UNNEST) in uppercase or lowercase letters. However,
SQL identifiers are case-sensitive. You must code identifiers such as table and
column names to match the format of the identifier as originally defined.

SELECT Statements in Programmatic SQL
In programmatic SQL the client program retrieves output from an SQL SELECT or
CALL statement one row at a time by issuing SQLFetch calls. Each row is returned
as a set of column values, and each column value is stored in its own program
variable. Since data returned to a client program is not meant to be formatted for
screen or printer output, certain display formatting codes are not allowed in program-
matic SQL.
 4-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch4
12/29/08
Programmatic SQL supports all standard SQL keywords such as WHERE, HAVING,
LIKE, and so forth. The following table lists all UniVerse-specific SQL keywords
and indicates which ones you can use in programmatic SQL.

Syntax Element Allowed Not Allowed

SELECT Clause TO SLIST

Table reference Explicit primary keys
UNNEST clause
DICT
DATA
SLISTa

USING DICT
NO.INDEX

INQUIRING
SLIST 0

Field modifiers AVG
BREAK ON
BREAK SUPPRESS
CALC
PCT
TOTAL

UniVerse Keywords in Programmatic SQL
4-6 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
CONV and FMT have no effect on data fetched to your variables.

When used in client programs, EXPLAIN only returns an explanation. It does not
execute the DML statement.

Field qualifiers AS
DISPLAYLIKE
DISPLAYNAME
CONV
FMT

ASSOC
ASSOCIATED
MULTIVALUED
SINGLEVALUED

Report qualifiers COLUMN SPACES
COUNT.SUP
DOUBLE SPACE
FOOTING
GRAND TOTAL
HEADING
LPTR
MARGIN
NOPAGE
SUPPRESS
COLUMN
HEADING
SUPPRESS DETAIL
VERTICALLY

Processing qualifiers EXPLAIN
NO.OPTIMIZE
NOWAIT
SAMPLE
SAMPLED

REPORTING

a. Except SLIST 0.

Syntax Element Allowed Not Allowed

UniVerse Keywords in Programmatic SQL (Continued)
 4-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch4
12/29/08
Field Qualifiers in Programmatic SQL

When you use field qualifiers in programmatic SQL, the settings they specify for a
column are available to the SQLColAttributes function, as follows:

Column attribute names with periods are used with the BASIC SQL Client Interface,
names with underscores are used with UCI.

The DISPLAYLIKE field qualifier causes SQLColAttributes to refer to another
column for the values stored in the column attributes listed in the previous table.

Using Parameter Markers in DML Statements
You can use parameter markers in SQL statements to mark where to insert values to
send to the data source. Programmatic SQL uses a ? (question mark) as a parameter
marker.

Typically, you use parameter markers when an SQL statement must be issued
repeatedly with different values. For example, you can use a single-row INSERT
statement repeatedly to load rows with different values into a table. But you can also
use parameter markers in nonrepeated DML statements.

Note: You cannot use parameter markers in DDL statements.

Field Qualifier Value Stores in This Column Attribute

CONV SQL.COLUMN.CONVERSION
SQL_COLUMN_CONVERSION

DISPLAYNAME SQL.COLUMN.LABEL
SQL_COLUMN_LABEL

FMT (column width) SQL.COLUMN.DISPLAY.SIZE
SQL_COLUMN_DISPLAY_SIZE

FMT SQL.COLUMN.FORMAT
SQL_COLUMN_FORMAT

SQLColAttributes Function
4-8 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can use parameter markers almost anywhere you can use literal values in any
DML statement (SELECT, INSERT, UPDATE, and DELETE) and in CALL
statements. However, you cannot use parameter markers to mark the place of the
following literals:

A character string literal after the DISPLAYNAME, FMT, CONV, and
EVAL keywords
A numeric literal after the SAMPLE and SAMPLED keywords
A column specification in a SELECT clause
A column or select expression in a set function
An explicit record ID in a table expression
A column number in an ORDER BY clause
Both expressions in a comparison predicate
Expressions on both sides of an arithmetic operator (+, –, *, /)
Both the first expression in a BETWEEN comparison and either of the
expressions following the BETWEEN keyword
Both the first expression in an IN comparison and the first value following
the IN keyword
The operand of a unary plus or minus

Note: You can supply only literal values as parameters. You cannot supply column
names, expressions, set functions, or keywords such as USER, DEFAULT, or NULL.

For more information about using parameter markers, see the UniVerse BASIC SQL
Client Interface Guide and the UCI Developer’s Guide.
 4-9

:\Prog
ecem
4Administering UniData on Windows NT or Windows 2000
0

5
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Triggers
Applying Business Rules 5-2
Using Triggers 5-3
 When Does a Trigger Fire? 5-3
 What Events Fire a Trigger? 5-3
Creating Triggers. 5-5
 Modifying Triggers 5-5
Listing Information About Triggers 5-6
Trigger Programs. 5-8
 Transactions 5-9
 Opening Files 5-10
 Handling Errors 5-11
 Handling Record and File Locks 5-12
 Order of Operations 5-12
 Nested Triggers and Trigger Recursion 5-13
Some Examples 5-16
 Extending Referential Integrity 5-16
 Preventing Deletions 5-17
 Validating Data 5-18
 Changing a Record Before Writing It 5-18
 Auditing Changes 5-18
les\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5TOC.fm
2008 12:57 pm Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes triggers, which in UniVerse SQL are UniVerse BASIC
programs associated with a table. They are executed (“fired”) when some action
changes the table’s data.
 5-1

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
Applying Business Rules
Developers use triggers to enforce certain business rules when users or programs
make changes to a database. Traditional database systems require that applications
enforce their own business rules. When many applications reference the same tables,
they need duplicate code to enforce business rules for those tables, making it difficult
to maintain consistency. Databases that use triggers, on the other hand, can enforce
business rules directly. When the database enforces business rules, it enforces them
consistently, and you need to maintain only one single code source.

Some business rules that application programs might enforce are:

A customer number on an order must correspond to an existing customer.
The program cannot delete customers if they have any orders.
When a customer’s number changes, the program updates all of that
customer’s orders.

In UniVerse SQL it is more efficient to use referential integrity instead of triggers to
enforce such rules. On the other hand, triggers can enforce more precise rules such as
the following:

A customer number on an order must correspond to an active customer.
The program cannot delete customers if they have any open orders.
Certain changes are not allowed, depending on date, time, user, or specific
data.
The program inserts date, time, or user stamps.
The program maintains audit copies of changes in another table.
5-2 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Using Triggers
SQL statements, BASIC programs, ProVerb procs, and UniVerse paragraphs can all
change a table’s data and thus fire a trigger program. Events that change the database
include:

INSERT statement
UPDATE statement
DELETE statement
BASIC WRITE statements
BASIC DELETE statement
ProVerb F-WRITE command

Making changes to the database using the UniVerse Editor and ReVise also fire
triggers. Other UniVerse and operating system commands and operations, such as
CLEAR.FILE, rm, or a roll-forward, do not.

When Does a Trigger Fire?
A trigger can fire either before or after a change is made to the database. When you
create a trigger, you specify whether it should fire before the event that changes the
database or after it. A trigger program fires (is executed) for each row that is inserted,
updated, or deleted.

Note: UniVerse SQL supports only triggers that fire once for each row. It does not
support triggers that fire once for each statement.

What Events Fire a Trigger?
All events that change the database are treated as one of the following:

INSERT statement
UPDATE statement
DELETE statement
 5-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
A BASIC WRITE statement is treated as an INSERT statement if the record ID does
not exist. It is treated as an UPDATE statement if the record ID already exists. To
change a primary key using BASIC, you must first DELETE the old record (firing
any DELETE triggers), then WRITE a new record (firing any INSERT triggers).

If you use SQL to change a primary key, any BEFORE UPDATE triggers fire during
the automatic DELETE, and any AFTER UPDATE triggers fire during the automatic
WRITE.

If a change made to an updatable view affects the base table, the change fires the base
table’s triggers.

A change made to a dynamically normalized association fires any UPDATE trigger
on the underlying table. If you change the primary key while the association is
dynamically normalized, the UPDATE trigger is executed twice, first for the old key,
then for the new key.

A delete operation on a table referenced by another table causes the action specified
by the ON DELETE clause of the referencing table to occur. If that action is a delete
operation, any DELETE triggers fire on the referencing table; if the action is an
update operation (such as SET NULL or SET DEFAULT), any UPDATE triggers
fire.
5-4 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Creating Triggers
You create triggers for a table using the CREATE TRIGGER statement. You delete
them using the DROP TRIGGER statement. You can also disable and reenable a
table’s triggers using the ALTER TABLE statement. Triggers are enabled by default
when you first create them.

You can define triggers only for tables, not for associations, views, or UniVerse files
that are not tables. You can include trigger definitions as part of the initial database
definition, or you can add them to tables later.

You must be the table’s owner, or have ALTER Privilege on the table, or be a DBA
to create a trigger.

Modifying Triggers
If you want to modify a trigger program, do the following:

Use the DROP TRIGGER statement to drop all triggers that use the
program.
Change, compile, and catalog the trigger program.
Use the CREATE TRIGGER statement to recreate the trigger.
 5-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
Listing Information About Triggers
Use the LIST.SICA command to list information about a table’s triggers. LIST.SICA
lists the following:

Names of triggers
Names of the BASIC trigger programs they invoke
Whether the triggers are enabled or disabled

The following example assumes trigger programs TRIG1 and TRIG2 have been
globally cataloged before executing the CREATE TRIGGER statements:

>CREATE TABLE TBL4003 (C1 INT NOT NULL PRIMARY KEY, C2 INT);
Creating Table "TBL4003"
Adding Column "C1"
Adding Column "C2"
>CREATE TRIGGER TRIG1
SQL+BEFORE DELETE ON TBL4003 FOR EACH ROW CALLING '*TRIG1';
Adding trigger "TRIG1"
>CREATE TRIGGER TRIG2
SQL+AFTER DELETE ON TBL4003 FOR EACH ROW CALLING '*TRIG1';
Adding trigger "TRIG2"
>CREATE TRIGGER TRIG3
SQL+AFTER INSERT ON TBL4003 FOR EACH ROW CALLING '*TRIG1';
Adding trigger "TRIG3"
>CREATE TRIGGER TRIG4
SQL+BEFORE INSERT OR UPDATE ON TBL4003
SQL+FOR EACH ROW CALLING '*TRIG2';
Adding trigger "TRIG4"
>LIST.SICA TBL4003

LIST.SICA TBL4003 11:37:24am 21 May 1997 Page 1
==
Sica Region for Table "TBL4003"

 Schema: TESTTRG
 Revision: 3
 Checksum is: 8429
 Should Be: 8429
 Size: 388
 Creator: 0
 Total Col Count: 2
 Key Columns: 1
 Data Columns: 1
 Check Count: 0
 Permission Count:0
 History Count: 0

 Data for Column "C1"

5-6 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
 Position: 0
 Key Position: 1
 Multivalued: No
 Not Null: constraint UVCON_0 Yes
 Not Empty: No
 Unique: No
 Row Unique: No
 Primary Key: Yes
 Default Type: None
 Data Type: INTEGER
 Conversion: MD0
 Format: 10R
 No Default Value Defined
 No association defined

 Data for Column "C2"

 Position: 1
 Key Position: 0
 Multivalued: No
 Not Null: No
 Not Empty: No
 Unique: No
 Row Unique: No
 Primary Key: No
 Default Type: None
 Data Type: INTEGER
 Conversion: MD0
 Format: 10R
 No Default Value Defined
 No association defined

 Trigger "TRIG4" is enabled, creator is "VMARK\csm".
 calls "*TRIG2" for
 Row Before Insert Update
 Trigger "TRIG3" is enabled, creator is "VMARK\csm".
 calls "*TRIG1" for
 Row After Insert
 Trigger "TRIG2" is enabled, creator is "VMARK\csm".
 calls "*TRIG1" for
 Row After Delete
 Trigger "TRIG1" is enabled, creator is "VMARK\csm".
 calls "*TRIG1" for
 Row Before Delete
 5-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
Trigger Programs
Trigger programs are compiled and cataloged BASIC subroutines. You must catalog
such programs either normally or globally. For information about cataloging BASIC
programs, see UniVerse BASIC.

Each BASIC subroutine must define 14 arguments in the following order:

The position of the argument determines what information it contains. For the syntax
of the SUBROUTINE statement, see UniVerse BASIC.

Argument Contains...

trigger.name Name of the trigger

schema Name of the schema containing the trigger’s table

table Name of the trigger’s table

event INSERT, UPDATE, or DELETE

time BEFORE or AFTER

new.recordID If event is INSERT or UPDATE, new record ID, otherwise empty

new.record If event is INSERT or UPDATE, new record, otherwise empty

old.recordID If event is UPDATE or DELETE, old record ID, otherwise empty

old.record If event is UPDATE or DELETE, old record, otherwise empty

association Name of a dynamically normalized association

association.event INSERT, UPDATE, or DELETE on a dynamically normalized
association

count Number of triggers that are currently firing

chain.cascade Number of active triggers since the last cascade operation

cascade UPDATE or DELETE if a cascaded update or delete fires the trigger,
otherwise empty

Trigger Subroutine Arguments
5-8 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
BASIC programs can use the new.recordID, new.record, old.recordID, and
old.record variables to access the current record. For INSERT and UPDATE events,
changes made to new.record in BEFORE triggers are put into the record written to
disk. Other changes to new.record are ignored. new.recordID, old.recordID, and
old.record are read-only variables.

BASIC programs can access columns in the current record in the usual way, for
example, by referring to the field number. For example, if the SALARY column were
the eighth field in the EMPLOYEES table, the following line of code would test
whether SALARY had changed:

IF OLD.RECORD<8> # NEW.RECORD<8>...

Input of any kind is not allowed in trigger programs. Print output is allowed.
However, if the trigger fires as the result of an SQLExecDirect or SQLExecute
function call, no print output is returned.

Transactions
Whenever a change is made to a table with a trigger, a transaction starts that includes:

The change that fires the trigger
All changes made by the trigger program

Use the BEGIN TRANSACTION, COMMIT, and ROLLBACK statements to make
nested transactions in a trigger program. The trigger program must commit or roll
back any transaction it starts, and it should not commit or roll back any transaction
not started by the trigger program. Because a trigger program is always in its own
transaction, it cannot contain any DDL statements (ALTER TABLE, CREATE
INDEX, CREATE SCHEMA, CREATE TABLE, CREATE TRIGGER, CREATE
VIEW, DROP INDEX, DROP SCHEMA, DROP TABLE, DROP TRIGGER, DROP
VIEW, GRANT, and REVOKE). For the same reason it cannot use the SQLConnect
function to connect to any data source.

Certain behavior of existing programs can change if you make them into trigger
programs:

Locks are held until the outermost transaction finishes, even if the program
explicitly unlocks them.
ISOMODE of 1 does not allow records to be written outside a transaction
without first locking them.
 5-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
A BASIC WRITE on a file not activated for transaction logging fails even
if transaction logging is disabled or suspended.

Opening Files
Trigger programs should open all tables and files to a common variable. This avoids
having to open and close each table or file whenever the program references it. For
example, when you open files to a common variable, a statement that updates many
records, each of which fires a trigger that writes an audit record, opens the audit file
only once.

Warning: Do not add, drop, enable, or disable any triggers for a table while the table
is in use.

Using the @HSTMT, @OLD, and @NEW Variables
As of Release 9, each UniVerse process opens a local connection to itself. This is true
for both user and server processes. BASIC programs running on a UniVerse server
can use the @variable @HSTMT to refer to this local connection.

Programmatic SQL uses the @HSTMT variable to access the current record.
@HSTMT works similarly to the way it works in called procedures, except that in
triggers, the result in @HSTMT is not returned to the client program—it can be used
only by the trigger program.

Successive invocations of the same trigger, even when fired by different events, all
use the same @HSTMT. The program should clear the results in @HSTMT using the
SQLFreeStmt function before using @HSTMT again.

Warning: If a trigger uses a statement environment to do something that either
directly or indirectly fires the trigger again, the outcome of the trigger program is
unpredictable since the statement environment is already in use.

For more information about @HSTMT and called procedures, see UniVerse BASIC
SQL Client Interface Guide.
5-10 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Programmatic SQL uses two read-only @variables to contain the old and new
contents of the current record:

@OLD and @NEW contain pseudo-tables comprising one row. You can use only the
SELECT statement against these pseudo-tables. Use @OLD and @NEW as
qualifiers in the SELECT clause as follows:

SELECT @OLD.columnname, @NEW.columnname …

Use them as table names in the FROM clause as follows:

SELECT * FROM @OLD …
SELECT * FROM @NEW …

Use them as qualifiers in WHERE clauses as follows:

SELECT * FROM tablename WHERE @OLD.columnname …
SELECT * FROM tablename WHERE @NEW.columnname …

The following example is from a program that maintains an audit file of salary
changes:

CMD="INSERT INTO SALARY_AUDIT
SELECT @OLD.EMPID, CURRENT_DATE, CURRENT_TIME, USER,
@OLD.SALARY, @NEW.SALARY
FROM @OLD, @NEW"

STATUS=SQLExecDirect(@HSTMT, CMD)

Handling Errors
When a trigger encounters an error, it can reject database changes. After the trigger
program finishes, UniVerse checks the SQL diagnostics area associated with
@HSTMT. If it finds an error, the change is rejected and the transaction is rolled
back.

The trigger program can use the SetDiagnostics function to load error message text
into the SQL diagnostics area associated with @HSTMT.

@variable Contains...

@OLD The original contents of the current record

@NEW The new contents of the current record

Programmatic SQL @variables
 5-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
Error messages are returned as follows, depending on how the attempted change was
made:

Errors triggered by SQL statements entered at the UniVerse prompt appear
on the terminal screen.
Errors make BASIC programs take the ELSE clause. Programs can get the
error text using the GetDiagnostics function.
Client programs can use the SQLError function to get the error text.

If a program uses @HSTMT for SQL operations and an operation fails, the failure
causes the trigger to reject database changes. To prevent the rejection, the program
must call ClearDiagnostics or GetDiagnostics for all pending diagnostics messages.

If a program uses an HSTMT other than @HSTMT for SQL operations, the program
must call SQLError (to get the error message), then call SetDiagnostics in order to
make a failure reject database changes.

Handling Record and File Locks
If a trigger program contains INSERT, UPDATE, or DELETE statements that use the
NOWAIT keyword, and if a record or file lock blocks the execution of such a
statement, the trigger program returns an SQLSTATE of 40001. The program is
responsible for taking appropriate action in such cases. Probably the most appropriate
action is for the trigger program to exit at that point, passing the 40001 error to the
calling program in the SQL diagnostics area.

If an INSERT, UPDATE, or DELETE statement with NOWAIT fires a trigger, the
NOWAIT condition applies to all SQL operations in the trigger program. That is, in
the trigger program if any SELECT, INSERT, UPDATE, or DELETE statement, with
or without NOWAIT, is blocked by a record or file lock, the statement fails and
returns SQLSTATE 40001 to the trigger program. If the trigger program does BASIC
read or write operations, it should always use the LOCKED clause to prevent being
blocked by lock conflicts.

Order of Operations
A record is written to a table as follows:

1. If the table references another table or has triggers, a transaction begins.
5-12 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
2. A BEFORE trigger fires if there is one. If there is an error, the trigger rolls
back the transaction and aborts the write.

3. Table constraints and noncascading referential integrity are checked.
4. The record is written to the transaction cache.
5. If there are cascading referential integrity constraints, the referencing tables

are updated.
6. An AFTER trigger fires if there is one. If there is an error, the trigger rolls

back the transaction and aborts the write.
7. If a transaction began in step 1, it is committed.

Nested Triggers and Trigger Recursion
A database change can trigger or cascade another change, which can trigger or
cascade yet other changes, and so on. If a database change fires a trigger that does a
second change, and the second change fires another trigger, the second trigger is
called a nested trigger. Trigger recursion occurs when the second change is to the
same table as the first, thereby firing the same trigger program and thus indirectly
calling itself.

Triggers contain two variables containing information about such changes:

count contains the number of triggers that are currently firing.
chain.cascade contains the number of active triggers in a chain of triggers.

Here is an example of how these two variables function:

1. A user initiates a change to the database.
2. The change fires a trigger that makes a second change.
3. The second change cascades a third change (via a referential constraint).
4. The third change triggers a fourth change.
5. The fourth change triggers a fifth change.
 5-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
The following table shows the values returned to the cascade, count, and
chain.cascade variables defined in each trigger program:

These variables let the trigger program determine the cause of the database change
that fired the trigger, as the following table shows:

In addition these variable can be used to recognize more complex situations, as the
following table shows:

Event cascade count
chain.cascad
e

User changes a record, which fires the first
trigger.

empty 1 0

The trigger makes a second change that
cascades a third change that triggers a fourth
change.

UPDATE
or
DELETE

2 1

The fourth change triggers a fifth change. empty 3 2

Values Returned to Variables

Cause of the Database Change cascade count chain.cascade

User change empty 1 0

Changes made by the chain of triggers empty >1 0

Changes made by cascade or chain of cascades UPDATE
or
DELETE

>=1 1

Cause of Database Changes

Cause of the Database Change cascade count chain.cascade

Changes made by cascade or chain of cascades
from a triggered change or chain of triggered
and cascaded changes

UPDATE
or
DELETE

>1 >0

Changes made by trigger or chain of triggers
after cascade or chain of cascades from user
change

empty >=1 >1
5-14 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Note: A trigger program can inadvertently get into a loop pattern in which it
repeatedly causes itself to fire, or in which a nested trigger on another table makes a
change to the first table, firing the trigger again. Use the count argument when you
want to limit the number of nested triggers currently firing.
 5-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
Some Examples
The examples in the following sections illustrate how you can use triggers to apply
some of the business rules mentioned at the beginning of this chapter.

Extending Referential Integrity
To enforce the rule that a customer number on an order must correspond to a
customer in the CUSTOMER table, you would normally use a referential constraint
on the customer number column of the ORDER table:

...CUSTNO INT REFERENCES CUSTOMER...

If you want to extend this rule to require that the customer number on an order must
correspond to an active customer, either a BEFORE or an AFTER trigger can enforce
the rule. A BEFORE trigger is better if the table has other constraints that need to be
checked first, particularly if the trigger contains many added checks that are likely to
cause the change to be rejected.

The trigger should fire only when an order is added or modified, not when it is
deleted. Create the trigger as follows:

>CREATE TRIGGER CUSTOMERCHECK
SQL+BEFORE INSERT OR UPDATE
SQL+ON CUSTOMER
SQL+FOR EACH ROW CALLING "CUSTOMERCHECK";

Assume that field 8 of the ORDER table contains customer numbers and field 12
contains customers’ status. The STATUS column contains A for active customers.
Since the initial INSERT checks to see that the customer exists, there is no need to
check the customer if it wasn’t changed in the ORDER record. So the first step is to
exit the program if field 8 is unchanged.
5-16 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Next, the program must ensure that no one deletes, renames, or changes the status of
the customer after checking that he or she exists and is active, but before committing
the order. One way to do this is to lock the CUSTOMER record until the ORDER
record is committed. Since RECORDLOCK locks nonexistent records and requires
an additional test that the customer exists, it is simpler to lock and read the
CUSTOMER record. To set a read lock, the program must open the file. For
efficiency in processing frequent, single-record changes, keep the file variable in the
common area. The code might look like this:

COMMON CUSTFILE
IF TRIG.REC<8> = TRIG.REC.OLD<8> THEN RETURN
IF FILEINFO(CUSTFILE,0) ELSE OPEN 'CUSTOMER' TO CUSTFILE

ELSE SetDiagnostics("Unable to open CUSTOMER table; STATUS is "
:STATUS())

RETURN
READL CUSTREC FROM CUSTFILE TRIG.REC<8>

ON ERROR SetDiagnostics("READL error; STATUS is ":STATUS())
LOCKED SetDiagnostics("Customer '":@RECORD<8>:"' is locked by

another
user '":STATUS():"'. Try again later.")

THEN NULL * Do nothing: required customer exists and is locked
ELSE SetDiagnostics("Customer '":TRIG.REC.OLD<8>:"' does not

exist.")
IF CUSTREC<12> # 'A'

THEN SetDiagnostics("Customer '":TRIG.REC.OLD<8>: "' is not
active.")

Preventing Deletions
To enforce the rule that you cannot delete a customer if he or she has any orders, you
would normally use a referential constraint on the customer number column of the
ORDER table:

...CUSTNO INT REFERENCES CUSTOMER...

If you want to extend this rule to require that you cannot delete a customer with any
open orders, you can use a trigger to enforce the rule as an AFTER DELETE trigger.
Creating it as an AFTER trigger ensures that another user cannot add an open order
after the trigger program checks that there are none. When a user tries to add such an
order, the trigger program needs to check that the customer exists and should fail after
the customer is deleted.

The trigger program can look for open orders with code such as the following:

SELECT COUNT(*) FROM ORDERS, @OLD
WHERE ORDERS.CUSTNUM = @OLD.NUM AND ORDERS.STATUS = 'OPEN'
 5-17

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch5
12/29/08
Validating Data
To validate data and prevent the making of specific changes based on date, time, user,
or the data itself, a trigger might include code like the following:

IF... SetDiagnostics("You can’t do that!")

Changing a Record Before Writing It
A trigger can change data in a record before writing it to disk. You might do this to
provide calculated defaults or to insert date, time, or user stamps. For example, a
table might include columns containing the date and time of the last modification.
You can use a BEFORE UPDATE trigger to maintain these columns and replace any
data a user tries to put in them. If a record contains a date stamp in field 4 and a time
stamp in field 5, the trigger might contain code such as the following:

TRIG.REC<4> = DATE()
TRIG.REC<5> = TIME()
* check if midnight occurred between the above two calls
IF TRIG.REC<4> # DATE() AND TIME() > TRIG.REC<5>
THEN TRIG.REC<4> = DATE()

The BASIC functions DATE and TIME refer to system date and time and do not
change. UniVerse SQL uses a different concept of date and time. While an SQL
statement or a trigger is being executed, the SQL keywords CURRENT_DATE and
CURRENT_TIME return the same date and time for each reference. BASIC can
access these values using the @SQL.DATE and @SQL.TIME variables.

Auditing Changes
A trigger can create copies of changes made to a table and store them in an audit file,
replicating the data. To write an audit record containing selected data plus time stamp
information, a program might use code such as the following:

CMD="INSERT INTO SALARYAUDITFILE SELECT (@OLD.ID,
CURRENT_DATE, CURRENT_TIME, USER, @OLD.SALARY, @NEW.SALARY)
FROM @OLD, @NEW"

SQLExecDirect(@HSTMT, CMD)
5-18 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
For efficiency across transactions, a BASIC program needs to keep the audit file open
using the common area. A trigger program could then materialize an audit record and
record ID, then write the record, using code such as the following:

AUDREC<1>=TRIG.REC.OLD<8>
AUDREC<2>=TRIG.REC<8>
AUDID<1>=TRIG.ID
AUDID<2>=DATE()
AUDID<3>=TIME()
AUDID<4>=@ACCOUNT
WRITE AUDREC TO SALAUDFILE AUDID

ON ERROR SetDiagnostics('Audit error; STATUS is ':STATUS())

To reference the SQL CURRENT_DATE and CURRENT_TIME, replace DATE()
and TIME() with @SQL.DATE and @SQL.TIME, respectively.
 5-19

:\Prog
ecem
5Administering UniData on Windows NT or Windows 2000
0

6
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
UniVerse SQL Statements
Statement Page Layout 6-6
ALTER TABLE 6-7
 ADD Clause: Column 6-8
 ADD Clause: Column Synonym 6-9
 ADD Clause: Association 6-10
 ADD Clause: Table Constraint 6-11
 DROP Clause: Association 6-11
 DROP Clause: Integrity Constraint. 6-12
 ALTER Clause: SET DEFAULT 6-13
 ALTER Clause: DROP DEFAULT 6-13
 TRIGGER Clause 6-14
CALL . 6-15
CREATE INDEX 6-17
CREATE SCHEMA. 6-20
CREATE TABLE 6-24
 Column Definition 6-29
 ASSOC Clause 6-41
 Table Constraints 6-43
CREATE TRIGGER 6-49
CREATE VIEW 6-52
DELETE . 6-61
DROP INDEX 6-67
DROP SCHEMA 6-68
DROP TABLE 6-70
DROP TRIGGER 6-72
DROP VIEW . 6-73
GRANT . 6-75
les\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6TOC.fm
2008 12:57 pm

6-2 Uni

g q
December 29, 2008 12:57 pm

Beta
 Database Privileges. 6-76
 Table Privileges 6-78
INSERT. 6-81
 Specifying Columns 6-83
 Specifying Values 6-85
 VALUES Clause 6-85
 Query Specification 6-86
REVOKE . 6-88
 Database Privileges. 6-89
 Table Privileges 6-91
SELECT . 6-94
 SELECT Clause. 6-95
 WHERE Clause 6-114
 WHEN Clause 6-124
 GROUP BY Clause 6-129
 HAVING Clause 6-130
 ORDER BY Clause 6-131
 FOR UPDATE Clause 6-133
 Report Qualifiers 6-135
 Processing Qualifiers 6-142
 UNION Operator 6-145
UPDATE . 6-148
 Set Expressions 6-151
 WHERE Clause 6-153
 WHEN Clause 6-154
 Referential Integrity Actions 6-154
Column . 6-157
 EVAL Expressions 6-159
Condition . 6-160
 Comparing Values 6-161
 Specifying a Range: BETWEEN 6-162
 Phonetic Matching: SAID. 6-163
 Pattern Matching: LIKE 6-163
 Testing for the Null Value: IS NULL 6-164
Data Type . 6-165
Expression . 6-166
Verse SQL Reference

6-3 Uni

g q
December 29, 2008 12:57 pm

Beta
 Concatenation Operator 6-167
 CAST Function 6-167
 Function Expressions 6-167
Identifier . 6-171
 Delimited Identifiers 6-171
Literal . 6-175
 Character Strings 6-175
 Bit Strings 6-175
 Hex Strings 6-175
 Numbers . 6-176
 Dates . 6-176
 Times . 6-176
Relational Operator 6-177
Set Function . 6-178
Subquery . 6-180
Table. 6-183
Verse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes every UniVerse SQL statement. The first part of the chapter
comprises reference pages that describe the following statements. The statements are
arranged alphabetically.

ALTER TABLE
CALL
CREATE INDEX
CREATE SCHEMA
CREATE TABLE
CREATE TRIGGER
CREATE VIEW
DELETE
DROP INDEX
DROP SCHEMA
DROP TABLE
DROP TRIGGER
DROP VIEW
GRANT
INSERT
REVOKE
SELECT
UPDATE

The second part of the chapter describes the following elements of the syntax that are
common to several statements. Reference pages of statements in the first part of
“UniVerse SQL Statements” have cross-references to the syntax elements in the
second part of the chapter.

Column
Condition
Data type
Expression
Identifier
Literal
 6-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Relational operator
Set function
Subquery
Table

SQL reserved words (statement names and all keywords) are case-insensitive. You
can type them in uppercase, lowercase, or mixed case letters. In this book they are
always shown in uppercase letters.
6-5 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Statement Page Layout
The following sample shows a typical statement reference page:

STATEMENT

STATEMENT
A brief description.

Syntax

STATEMENT qualifiers;

Qualifiers

x Produces a particular result.

y Produces another result.

Description

How to use the statement and what the statement does.

Example

>STATEMENT qualifiers;

UniVerse SQL Statements 6-3

Name of statement

When to use statement

Syntax

Options used with statement

Information about using
 statement

Example showing how to
use statement
 6-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
ALTER TABLE
Use the ALTER TABLE statement to modify the definition of an existing base table.
ALTER TABLE can add columns, table constraints, or associations; remove table
constraints, associations, or default values; change a column’s default value; and
enable or disable triggers. To use the ALTER TABLE statement, you must own the
table or have ALTER Privilege on it.

Syntax
ALTER TABLE tablename { ADD clause | DROP clause | ALTER clause |
TRIGGER clause } ;

Parameters
The following table describes each parameter of the syntax.

Description
You must use either the ADD, DROP, ALTER, or TRIGGER clause to modify a table.
To use the ADD clause to add a table constraint, you must have write permissions on
the VOC file in the current directory.

Altering a table on which a view depends does not invalidate the view.

Parameter Description

tablename An identifier specifying the name of a table to modify in the schema
you are logged in to.

ADD clause Adds a column, column synonym, association, or table constraint to
the table.

DROP clause Removes an association or a table constraint from the table.

ALTER clause Adds, changes, or removes the default value of a column.

TRIGGER clause Enables or disables the specified triggers.

ALTER TABLE Parameters
6-7 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Note: Since the ALTER TABLE statement modifies the structure of a table, use
ALTER TABLE only when others are not using the table. This avoids lock conflicts.

ADD Clause: Column
To add a column to a table, use the following syntax:

ADD [COLUMN] columnname datatype [DEFAULT clause]
[column_constraints] [output_format

 You can add columns to an empty table or to a table that already has rows. Adding a
column to a table does not affect any existing query specification in a view that is
derived from the altered table.

When you add a column to a table that already contains rows, each row is rewritten.
The new column’s default value is added to each row.

This example adds the COLOR column to the INVENTORY table, specifying the
VARCHAR data type:

>ALTER TABLE INVENTORY ADD COLOR VARCHAR;

Parameter Description

columnname An identifier specifying the name of the column.

datatype Specifies the kind of data in the column. You must define the
data type for each column in a table. For detailed information
about data types, see Chapter 3, “Data Types.”

DEFAULT clause Specifies the value to insert into a column when no value is
specified.

column_constraints One or more column constraints separated by spaces. Column
constraints protect the integrity and consistency of the database.
You cannot specify a PRIMARY KEY constraint using ALTER
TABLE. You can use UNIQUE only if the table is empty (that
is, has no rows).

output_format One or more of the following, separated by spaces:
DISPLAYNAME 'column_heading'
CONV 'conversion_code'
FMT 'format_code'

ADD Column Parameters
 ALTER TABLE: ADD Clause 6-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The next example adds the ORD_DATE column to the ORDERS table, specifying a
conversion code and a column heading:

>ALTER TABLE ORDERS ADD ORD_DATE DATE CONV 'D-' DIS-
PLAYNAME 'Date';

ADD Clause: Column Synonym
To add a column synonym to a table, use the following syntax:

ADD [COLUMN] synonym SYNONYM FOR columnname [output_format]
The following table describes each parameter of the syntax.

The column synonym is created as another entry in the dictionary of the table, but it
is not added to the SICA.

The following example adds the ADDRESS synonym for the existing BILLTO
column to the CUSTOMERS table:

>ALTER TABLE CUSTOMERS ADD ADDRESS SYNONYM FOR
BILLTO;

Parameter Description

synonym The name of a column synonym.

columnname An identifier specifying the name of an existing column in this table.

output_format For output_format syntax, see “Output Format.”

ADD Clause Column Synonym Parameters
6-9 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
ADD Clause: Association
To create a new association of multivalued columns in a table, use the following
syntax:

ADD ASSOC [IATION] name [position] (columnname [KEY]
[, columnname [KEY]] …)

The following table describes each parameter of the syntax.

Note: If any columns you include in the association have check constraints, you must
drop the check constraint and recreate it.

This example adds the BOUGHT association for the ITEM and QTY columns to the
ORDERS table:

>ALTER TABLE ORDERS ADD ASSOC BOUGHT (ITEM KEY,
QTY);

Parameter Description

name An identifier specifying the name of the association. name cannot be
the same as another column name or association name in this table.

position For the description of position, see “Positioning of Association Rows.”

columnname An identifier specifying the name of a multivalued column to include
in the association. All columns specified in an ASSOC clause must be
defined in a column definition and cannot belong to another associ-
ation. columnname cannot be an alias.

KEY Defines the preceding columnname as an association key column. Key
columns must have a column constraint of NOT NULL.

If you specify only one column as the key, it must have the column
constraint ROWUNIQUE. If you specify two or more columns as the
association key, they are treated as jointly rowunique at run time.

You cannot specify any association keys if position is INSERT
PRESERVING.

ADD Clause: Association Parameters
 ALTER TABLE: ADD Clause 6-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
ADD Clause: Table Constraint
To add a CHECK, UNIQUE, or FOREIGN KEY table constraint to a table, use the
following syntax:

ADD [CONSTRAINT name] table_constraint

The following table describes each parameter of the syntax.

Note: Newly added table constraints must not violate existing data in the table. If a
violation occurs, UniVerse SQL returns a message and does not execute the
statement. You can delete the rows that caused the violation and retry the ALTER
TABLE statement.

This example adds a CHECK table constraint called CHK_DATE to the ORDERS
table. The constraint specifies that only orders dated after January 1, 1994 are
allowed in the table.

>ALTER TABLE ORDERS ADD CONSTRAINT CHK_DATE CHECK ("DATE" >
'1/1/94');

DROP Clause: Association
To remove an association from a table, use the following syntax:

DROP ASSOC [IATION] name

name is the name of the association to remove.

This example drops the association BOUGHT from the ORDERS table:

>ALTER TABLE ORDERS DROP ASSOCIATION BOUGHT;

Parameter Description

name An identifier specifying the name of the table constraint. If you do
not specify name, the system generates one in the format UVCON_n.

table_constraint One of the following:

UNIQUE
CHECK
FOREIGN KEY

ADD Clause: Table Constraint Parameters
6-11 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
DROP Clause: Integrity Constraint
To remove an integrity constraint from a table, use the following syntax:1

DROP CONSTRAINT name [RESTRICT | CASCADE

The following table describes each parameter of the syntax.

This example drops the table constraint named UNIQ_DATE from the ORDERS
table:

>ALTER TABLE ORDERS DROP CONSTRAINT UNIQ_DATE;

1. Tables created on a UniVerse Release 7 system may include unnamed constraints. To drop
an unnamed constraint, use LIST.SICA to list any unnamed constraints, then use ALTER
TABLE to drop the constraint. Use the following syntax: ALTER TABLE tablename
DROP CONSTRAINT "UNNAMED*n", where n is the position number of the
constraint as shown by LIST.SICA.

Parameter Description

name The name of the constraint to be dropped. You can drop UNIQUE,
CHECK, and FOREIGN KEY table constraints. You can also drop
CHECK and REFERENCES column constraints. You cannot drop a
PRIMARY KEY constraint.

RESTRICT Prevents removal of the UNIQUE constraint if the columns are refer-
enced by foreign key columns. RESTRICT is the default keyword.

CASCADE Removes the UNIQUE constraint from referenced columns, and also
removes the referential constraints from the referencing foreign key
columns.
For example, you want to remove a foreign key constraint from the
CUSTNO column in the ORDERS table. This column references the
CUSTNO column in the CUSTOMERS table. If you use the
CASCADE option, it removes the UNIQUE constraint from the
CUSTNO column of the CUSTOMERS table, and it also removes the
referential constraint from the CUSTNO column of the ORDERS
table.

DROP Clause Integrity Constraint Parameters
 ALTER TABLE: DROP Clause 6-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
ALTER Clause: SET DEFAULT
To change the default value of a column, use the following syntax:

ALTER [COLUMN] columnname SET DEFAULT { value | NULL | USER }
The following table describes each parameter of the syntax.

This example changes the default value for the CUSTOMER column in the ORDERS
table to AJAX. If a default value was previously defined, this redefines it for new
default data, but it does not change existing data in the column.

>ALTER TABLE ORDERS ALTER COLUMN CUSTOMER SET DEFAULT 'AJAX';

ALTER Clause: DROP DEFAULT
To remove the default value of a column, use the following syntax:

ALTER [COLUMN] columnname DROP DEFAULT

Parameter Description

columnname An identifier specifying the name of the column whose default value
is to be changed.

value Either a character string enclosed in single quotation marks, a bit string
literal, or a number. If value is the empty string, the column’s data type
must be CHAR, VARCHAR, NCHAR, or NVARCHAR, and it cannot
have the column constraint NOT EMPTY.

NULL If the default column value is NULL, the column cannot have the
column constraint NOT NULL. You cannot specify NULL as the
default value of a column that is part of a primary key.

USER Specifies the effective user name of the current user. The column’s
data type must be CHAR or VARCHAR.

ALTER Clause: SET DEFAULT Parameters
6-13 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

Removing the default value of a column effectively sets the default value to null. It
does not affect any data in existing rows.

This example removes the current default value definition from the CUSTOMER
column in the ORDERS table:

>ALTER TABLE ORDERS ALTER COLUMN CUSTOMER DROP DEFAULT;

TRIGGER Clause
To enable or disable one trigger or all triggers associated with a table, use the
following syntax:

{ ENABLE | DISABLE } TRIGGER { triggername | ALL }
The following table describes each parameter of the syntax.

Do not enable or disable a trigger while a program using the table is running. Results
may be unpredictable.

This example disables the AUDIT_EMPLOYEES trigger of the EMPLOYEES
table:

>ALTER TABLE EMPLOYEES DISABLE TRIGGER AUDIT_EMPLOYEES;

Parameter Description

columnname An identifier specifying the name of the column whose default
value is to be dropped.

DROP DEFAULT Removes the default value of a column.

ALTER Clause: DROP DEFAULT Parameters

Parameter Description

triggername An identifier specifying the trigger you want to enable or disable.

ALL Enables or disables all of a table’s triggers.

TRIGGER Clause Parameters
 ALTER TABLE: TRIGGER Clause 6-14

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
CALL
Use the CALL statement in an ODBC client program to call a procedure stored on a
server system. You can use CALL only in programmatic SQL.

Syntax
CALL procedure [([parameter [, parameter] …])] [;]
CALL procedure [argument [argument] …] [;]

Parameters
The following table describes each parameter of the syntax.

Parameter Description

procedure The name of the procedure to call and execute. If procedure contains
characters other than alphabetic or numeric, enclose the name in double
quotation marks. To embed a double quotation mark in procedure, use
two consecutive double quotation marks.

parameter Either a literal value or a parameter marker. Programmatic SQL uses a
? (question mark) as a parameter marker.

Use parameters only if the procedure is a BASIC subroutine. The
number and order of parameters must correspond to the number and
order of the subroutine arguments.

argument Any keyword, literal, or other token you can use in a UniVerse
command line. Use arguments only if the procedure is a UniVerse
paragraph, stored sentence, UniVerse command, ProVerb proc, or
BASIC program that accepts command line arguments.

CALL Parameters
6-15 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
The CALL statement has two syntaxes. The first follows the ODBC pattern, in which
a comma-separated list of arguments is enclosed in parentheses. The second follows
the UniVerse syntax pattern, in which a space-separated list of arguments not
enclosed in parentheses follows the procedure name.

You can call any of the following as a procedure:

BASIC subroutine
BASIC program
UniVerse paragraph
ProVerb proc
Stored sentence
UniVerse command

BASIC subroutines must be globally, normally, or locally cataloged. If a BASIC
program is not cataloged, CALL searches the BP file in the account your program is
connected to.

You can call a UniVerse command as a procedure if the VOC entry defining it
contains a G in field 4.

For complete information about writing and using called procedures, see the
UniVerse BASIC SQL Client Interface Guide or the UCI Developer’s Guide.
 CALL 6-16

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
CREATE INDEX
Use the CREATE INDEX statement to create a secondary index on a table. You must
be the owner of the table, have ALTER Privilege on it, or have DBA Privilege, to
create an index on a table.

Syntax
CREATE [UNIQUE] INDEX indexname ON tablename
(columnname [ASC | DESC] [, columnname [ASC | DESC]] …) ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

UNIQUE Requires that data in the secondary index be unique. When you
create a unique secondary index, a UNIQUE Table Constraintis also
created on the table.

indexname An identifier specifying the name of the index. indexname cannot
include the Space character. An index name concatenated to its
corresponding table name with a period must be unique within a
schema. indexname must not duplicate an entry in the table’s
dictionary.

tablename An identifier specifying the name of a table in the schema you are
logged in to whose columns you want to index. tablename cannot
include any of the following characters:
" (double quotation mark)\ (backslash)
, (comma)Space

CREATE INDEX Parameters
6-17 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
Using secondary indexes can improve the performance of certain queries where the
table lookup is not based on the primary key.

You can create indexes only on base tables, but not on views, associations, or
UniVerse files. You can create indexes on up to 16 columns in a table. The total length
of the indexed data including delimiters cannot exceed 255 characters (the maximum
record ID length).

CREATE INDEX creates an I-descriptor in the table dictionary whose record ID is
indexname. Field 1 contains a description of the index in the following format:

ISQL column1 [ASC | DESC] column2 [ASC | DESC] …

Example
This example creates secondary indexes on two columns of the VENDORS.T table:

>CREATE INDEX VENDORS_INDEX ON VENDORS.T (COMPANY, CONTACT);
Adding Index "VENDORS_INDEX".

columnname An identifier specifying the name of the column you want to index.
columnname cannot be a column synonym.
In a unique index, columns must be defined as NOT NULL, cannot
be part of the primary key or a unique constraint, and cannot be part
of another unique index.
All columns in a multicolumn index must be singlevalued.

ASC Sorts values in the index in ascending order. ASC is the default sort
order.

DESC Sorts values in the index in descending order.

Parameter Description

CREATE INDEX Parameters (Continued)
 CREATE INDEX 6-18

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The I-descriptor in the dictionary looks like this:

 VENDORS_INDEX
0001 ISQL COMPANY ASC CONTACT ASC
0002 IF ISNULL(COMPANY) THEN @NULL.STR ELSE COMPANY;IF
 ISNULL(CONTACT) THEN @NULL.STR ELSE CONTACT;@1:@TM:@2
0003
0004
0005 10R
0006
0007
6-19 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
CREATE SCHEMA
Use the CREATE SCHEMA statement to create a new UniVerse SQL schema. You
can create the schema as a new UniVerse account directory, or you can convert an
existing UniVerse account to a schema. Users must have RESOURCE Privilege to
create their own schemas, andDBA Privilege to create schemas for other users.

Syntax
CREATE SCHEMA [schema] [AUTHORIZATION owner]
[HOME pathname]
[CREATE TABLE statements]
[CREATE VIEW statements]
[CREATE INDEX statements]
[CREATE TRIGGER statements]
[GRANT statements] ;
 CREATE SCHEMA 6-20

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Parameters
The following table describes each parameter of the syntax.

Parameter Description

schema An identifier specifying the name of the schema. schema must
not be the name of an existing schema.
If you do not specify schema, you must include the AUTHORI-
ZATION clause.

AUTHORIZATION
owner

Specifies the owner of the schema. You must have DBA
Privilege to specify another user as owner. If you do not have
DBA privilege, you must specify yourself as owner. If you omit
the AUTHORIZATION clause, the schema owner is set to your
effective user name. If you do not specify schema, owner is the
name of the schema.
owner must be a UniVerse SQL user defined in the SQL catalog
and must have write permissions on the account directory where
the schema resides.

HOME pathname Specifies the account directory where the schema is to reside.
pathname is the full path of an existing directory. The owner of
the schema must have write permissions on this directory.
If you omit the HOME clause, the current UniVerse account
directory is converted to a schema.

CREATE TABLE
statements

For information about the CREATE TABLE statement, see
CREATE TABLE.

CREATE VIEW
statements

In a CREATE SCHEMA statement, any CREATE VIEW
statement must follow the statements that create the view’s
underlying tables and views.

CREATE INDEX state-
ments

In a CREATE SCHEMA statement, any CREATE INDEX
statement must follow the statement that creates the table being
indexed.

CREATE TRIGGER
statements

In a CREATE SCHEMA statement, any CREATE TRIGGER
statement must follow the statement that creates the table the
trigger is associated with.

GRANT statements In a CREATE SCHEMA statement, any GRANT statement must
follow the statement that creates the table or view it refers to.

CREATE SCHEMA Parameters
6-21 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Do not use a ; (semicolon) to terminate CREATE TABLE, CREATE VIEW,
CREATE INDEX, CREATE TRIGGER, and GRANT statements in the CREATE
SCHEMA statement. Use only one semicolon to terminate the entire CREATE
SCHEMA statement.

Description
A schema is created as a UniVerse account. If the schema directory does not contain
a UniVerse account, CREATE SCHEMA creates all the necessary UniVerse files.
When you create a schema, its name is added to the UV_SCHEMA table in the SQL
catalog.

Any files that are in the schema directory when you create the schema are unaffected
by the CREATE SCHEMA statement.

Examples
This example creates a schema called Susan in the directory /usr/susan:

>CREATE SCHEMA Susan HOME /usr/susan;

The next example creates the schema PERSONNEL, specifies its owner, sally, and
creates the EMPLOYEES table in it:

>CREATE SCHEMA PERSONNEL HOME /usr/personnel
SQL+AUTHORIZATION sally
SQL+CREATE TABLE EMPLOYEES
SQL+(EMPNO INT PRIMARY KEY,

.

.

.

 CREATE SCHEMA 6-22

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
CREATE TABLE
Use the CREATE TABLE statement to create a new table in the schema you are
logged in to. CREATE TABLE creates the data file and the file dictionary in the
current schema.

Syntax
CREATE TABLE tablename [DATA pathname] [DICT pathname]
([file_format ,] column_definitions [, associations] [, table_constraints]) ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

tablename An identifier specifying the name of a table in the schema you
are logged in to. tablename must not exist in the schema or be
the ID of a record in the VOC file.

pathname The absolute path of the table’s data file or its dictionary. The
directory to contain the data file or dictionary must already
exist, and the file name of the data file or dictionary must not
exist. If you do not specify paths for the table’s data file or its
dictionary, the default paths are:
Data file: current_directory/tablename
Dictionary: current_directory/D_tablename

file_format One or more clauses that define the file format. If you do not
specify a file format, the table is created as a dynamic file.

column_definitions One or more column definitions separated by commas.

associations One or more association definitions separated by commas.

table_constraints One or more table constraint definitions separated by commas.

CREATE TABLE Parameters
6-23 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
When you create a table, you define one or more columns for it. You also define each
column’s data type. You can put constraints on columns that protect the integrity and
consistency of the data. And you can associate multivalued columns so each value in
one column is associated with its corresponding values in the associated columns.

If you want to add columns to an existing table, or if you want to add or remove table
constraints or association definitions to or from an existing table, use the ALTER
TABLE statement.

File Format

The UniVerse SQL CREATE TABLE statement lets you specify the UniVerse file
format of a table. As with the UniVerse CREATE.FILE command, you can specify
the file type of the data file. If you create the table as a static hashed file, you can
specify its modulo and separation; if you create it as a dynamic file, you can specify
dynamic file parameters. For more details about file formats, see UniVerse System
Description.

The syntax of the file format options is as follows:

[{ TYPE type# | DYNAMIC } ,] [MODULO mod# ,] [SEPARATION sep# ,]
[dynamic_parameters ,]
 CREATE TABLE: File Format 6-24

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The following table describes each parameter of the syntax.

Parameter Description

TYPE type# Specifies the UniVerse file type. type# is a number from 2
through 18, and 30. Types 2 through 18 are static hashed files.
Type 30 files are dynamic files.
If you specify a type from 2 through 18, you can specify modulo
and separation as well. If you specify type 30, you can set the
file parameters using the dynamic parameter keywords.
An SQL table cannot be a type 1, type 19, or type 25 file, nor
can it be a distributed file or a file with multiple data files.

DYNAMIC Specifies a UniVerse dynamic file (type 30). If you specify a
dynamic file type, you can set the file parameters using the
dynamic parameter keywords.

MODULO mod# Specifies the number of groups in the file. mod# is an integer
from 1 through 8,388,608. Modulo is ignored if the file is
dynamic.

SEPARATION sep# Specifies the group buffer size in 512-byte blocks. sep# is an
integer from 1 through 8,388,608. If you specify a file type from
2 through 18 and you do not specify separation, a default
separation of 4 (2048 bytes) is used. Separation is ignored if the
file is dynamic.

dynamic_parameters One or more of the following, separated by commas:
GENERAL | SEQ NUM
GROUP SIZE { 1 | 2 }
MINIMUM MODULUS n
SPLIT LOAD n
MERGE LOAD n
LARGE RECORD n
RECORD SIZE n
MINIMIZE SPACE
For complete details, see “Dynamic File Parameters” on
page 27.

File Format Parameters
6-25 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Dynamic File Parameters

Dynamic file parameters define a hashing algorithm, the group size, the minimum
number of groups in the file, modulo parameters, row size, and the amount of space
the file needs.

Parameter Description

GENERAL Specifies that the general hashing algorithm should be used for
the dynamic file. GENERAL is the default.

SEQ NUM Specifies that a hashing algorithm suitable for sequential
numbers should be used for the dynamic file. You should use this
hashing algorithm only for rows with primary keys that are
mainly numeric, sequential, and consecutive.

GROUP SIZE { 1 | 2 } Specifies the size of each group in the file. The argument 1
specifies a group size of 2048 bytes, which is equivalent to a
separation of 4. The argument 2 specifies a group size of 4096
bytes, which is equivalent to a separation of 8. 1 is the default.

MINIMUM
MODULUS n

Specifies the minimum modulo of the file. This keyword takes
an integer argument greater than 1. This value is also the initial
value of the modulo of the dynamic file. 1 is the default.

SPLIT LOAD n Specifies the level at which the file’s modulo is increased by 1.
SPLIT LOAD takes a numeric argument indicating a percentage
of the space allocated for the file. When the data in the file
exceeds the space allocated for the file, the data in one of the
groups divides equally between itself and a new group, to
increase the modulo by 1. The default SPLIT LOAD is 80%.

MERGE LOAD n Specifies the level at which the file’s modulo is decreased by 1.
MERGE LOAD takes a numeric argument indicating a
percentage of the space allocated for the file. When the data in
the file uses less than the space allocated for the file, the data in
the last group of the file merges with another group, to decrease
the modulo by 1. The default MERGE LOAD is 50%.

Dynamic File Parameters
 CREATE TABLE: File Format 6-26

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
This example creates the ORDERS table as a type 18 static hashed file, with a modulo
of 59 and a separation of 4:

>CREATE TABLE ORDERS
SQL+(TYPE 18, MODULO 59, SEPARATION 4,
SQL+ORDERNO INT PRIMARY KEY,
SQL+"DATE" DATE NOT NULL CONV 'D2/',

.

.

.

LARGE RECORD n Specifies the size of a row to be considered too large to be
included in the primary group buffer. LARGE RECORD takes
an integer as an argument indicating a percentage of the group
size. When the size of a row exceeds the percentage specified,
the data for the row is put in an overflow buffer, but the primary
key (or the @ID value if the table has no primary key) is put in
the primary buffer. This method of large row storage increases
access speed. The default LARGE RECORD size is 80%.

RECORD SIZE n Causes the values for group size and large row size to be calcu-
lated based on the value of the estimated average row size
specified. RECORD SIZE takes an argument of your estimate of
the average row size for the dynamic file, specified in bytes.
RECORD SIZE does not limit the size of rows. If you specify a
value for group size or large row size, the value you specify
overrides the value calculated by RECORD SIZE.

MINIMIZE SPACE Calculates the values for the split load, merge load, and the large
row size to optimize the amount of space required by the file at
the expense of access time. If you specify a value for split load,
merge load, or large row size, the value you specify overrides the
value that is calculated by MINIMIZE SPACE. If MINIMIZE
SPACE and RECORD SIZE are both specified, the value for
large row size calculated by MINIMIZE SPACE overrides the
value calculated by RECORD SIZE.

Parameter Description

Dynamic File Parameters (Continued)
6-27 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The next example creates the same table as a dynamic file. Dynamic file parameters
specify a hashing algorithm suitable for sequential numbers, a group size of 2 (4096
bytes), a minimum modulo of 59, and space optimization.

>CREATE TABLE ORDERS
SQL+(DYNAMIC, SEQ NUM, GROUP SIZE 2,
SQL+MINIMUM MODULUS 59, MINIMIZE SPACE,
SQL+ORDERNO INT PRIMARY KEY,
SQL+"DATE" DATE NOT NULL CONV 'D2/',

.

.

.

Column Definition
The CREATE TABLE statement requires at least one column definition.

A column definition names the column and defines its data type. It can also specify
default column values and integrity constraints. A column definition can also define
a synonym for an existing column.

The syntax of a column definition is as follows:

columnname datatype [DEFAULT clause] [column_constraints] [output_format]
The following table describes each parameter of the syntax.

Parameter Description

columnname An identifier specifying the name of the column. columnname
must be unique within the table.

datatype Specifies the kind of data in the column. You must define the
data type for each column in a table. For detailed information
about data types, see Chapter 3, “Data Types.”

Column Definition Parameters
 CREATE TABLE: Column Definition 6-28

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
This example defines four columns in the CUSTOMERS file. The first column is the
primary key. The next three columns include output format specifications.

>CREATE TABLE CUSTOMERS
SQL+(CUSTNO INT PRIMARY KEY,
SQL+FNAME VARCHAR FMT '15T',
SQL+LNAME VARCHAR FMT '15T',
SQL+COMPANY VARCHAR FMT '20T',

.

.

.
Creating Table "CUSTOMERS"
Adding Column CUSTNO
Adding Column FNAME
Adding Column LNAME
Adding Column COMPANY

.

.

.

DEFAULT Clause

The DEFAULT clause specifies the value to put into a column if no value is specified
for this column in an INSERT or UPDATE statement. If you do not specify a
DEFAULT clause, the default column value is NULL. The syntax is as follows:

DEFAULT { value | NEXT AVAILABLE | NULL | USER | CURRENT_DATE
| CURRENT_TIME }

DEFAULT Clause Specifies the value to insert into a column when no value is
specified.

column_constraints One or more column constraints separated by spaces. Column
constraints protect the integrity and consistency of the database.

output_format One or more of the following, separated by spaces:
DISPLAYNAME 'column_heading'
CONV 'conversion_code'
FMT 'format_code'

Parameter Description

Column Definition Parameters (Continued)
6-29 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

This example specifies the empty string as the default column value of the FNAME
and LNAME columns:

>CREATE TABLE CUSTOMERS
SQL+(CUSTNO INT PRIMARY KEY,
SQL+FNAME VARCHAR FMT '15T' DEFAULT '',
SQL+LNAME VARCHAR FMT '15T' DEFAULT '',

.

.

.

Output Format

Use output format specifications to specify the following for a column:

A column heading (DISPLAYNAME)
A conversion code (CONV)

Parameter Description

value A character string enclosed in quotation marks, a bit string
literal, or a number. If value is the empty string, the column’s
data type must be CHAR, VARCHAR, NCHAR, or
NVARCHAR, and it cannot have the column constraint NOT
EMPTY.

NEXT AVAILABLE Specifies that a primary key column automatically generates a
numeric sequence of integers starting with 1. The column’s data
type must be INT, NUMERIC, or DECIMAL. Use this option
only in a column definition for a primary key.

NULL If the default column value is NULL, the column cannot have the
column constraint NOT NULL. You cannot specify NULL as
the default value of a column that is part of a primary key.

USER Specifies the effective user name of the current user. The
column’s data type must be CHAR or VARCHAR.

CURRENT_DATE Specifies the current system date. The column’s data type must
be DATE.

CURRENT_TIME Specifies the current system time. The column’s data type must
be TIME.

DEFAULT Clause Parameters
 CREATE TABLE: Column Definition 6-30

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Width and justification of the display column, and other format masking
(FMT)

DISPLAYNAME

Use DISPLAYNAME (or one of its synonyms: DISPLAY.NAME or COL.HDG) to
specify a column heading. The syntax is as follows:

DISPLAYNAME 'column_heading'

If you do not specify a column heading, columnname is the column heading. To
specify a line break in the column heading, use the letter L enclosed in single
quotation marks and enclose column_heading in double quotation marks.

CONV

Use CONV (or its synonym CONVERSION) to specify an output conversion for a
column. The syntax is as follows:

CONV 'conversion_code'

If you do not specify a conversion code for a column, UniVerse SQL generates one
if it is appropriate. For example, if you specify the data type DEC(9,2) for a column,
UniVerse SQL supplies the conversion code MD22.

Note: If you specify a conversion code, it must be compatible with the column’s data
type, otherwise results will be unpredictable. See Chapter 3, “Data Types.”

For more information about conversion codes, see UniVerse BASIC.

FMT

Use FMT (or its synonym FORMAT) to specify the width and justification of the
display column. The syntax is as follows:

FMT 'format_code'

You can specify a variety of format masks with FMT. For full details about the syntax
of the format code, see the FMT function in UniVerse BASIC.
6-31 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This example defines a column heading, the display-column width, and the justifi-
cation for the CUSTNO and BILLTO columns:

>CREATE TABLE CUSTOMERS
SQL+(CUSTNO INT PRIMARY KEY DISPLAYNAME 'Customer'
SQL+FMT '4R',
SQL+BILLTO VARCHAR DISPLAYNAME 'Name & Address' FMT '30T',

.

.

.

The next example uses the conversion code MD2$ to define a monetary output
format for the COST column:

>CREATE TABLE INVENTORY
SQL+(PRODNO INT PRIMARY KEY,
SQL+DESCRIP VARCHAR FMT '32T',
SQL+QOH INT FMT '4R',
SQL+COST DEC(6,2) CONV 'MD2$',

.

.

.

Column Constraints

Constraints protect the integrity and consistency of data. Column constraints are part
of a column definition and affect only one column. To define a constraint for more
than one column, use table constraints.

The syntax for defining a column constraint is as follows:

[CONSTRAINT name] column_constraint
 CREATE TABLE: Column Definition 6-32

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The following table describes each parameter of the syntax.

NOT EMPTY

Use NOT EMPTY to specify that the column cannot contain empty string values.

NOT NULL

Use NOT NULL to specify that the column cannot contain null values. If you also
specify UNIQUE or ROWUNIQUE, the NOT NULL keyword must immediately
precede it.

PRIMARY KEY

Use PRIMARY KEY to define the column as the primary key of the table. NOT
NULL is optional before PRIMARY KEY, but the column must be single-valued and
cannot contain null values. A CREATE TABLE statement can have only one
PRIMARY KEY column constraint. Use the PRIMARY KEY table constraint to
define more than one column as the primary key.

Parameter Description

name An identifier specifying the name of the column constraint. You
can name the following column constraints: NOT EMPTY,
NOT NULL, CHECK, and REFERENCES. If you do not
specify name, the system generates one in the format
UVCON_n.

column_constraint One of the following:
NOT EMPTY
NOT NULL [UNIQUE | ROWUNIQUE]
[NOT NULL] PRIMARY KEY
CHECK
REFERENCES
MULTIVALUED | SINGLEVALUED
See the following sections for descriptions of each column
constraint.

CONSTRAINT Parameters
6-33 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This example defines the ORDERNO column as the primary key of the ORDERS
table:

>CREATE TABLE ORDERS
SQL+(ORDERNO INT PRIMARY KEY,

.

.

.

UNIQUE

Use UNIQUE to specify that the column cannot contain duplicate values. If the
column is singlevalued, it can have no duplicate values in more than one row. If the
column is multivalued, it can have no duplicate values in the same row or in any other
row. The column must have the NOT NULL constraint.

This example defines the DESCRIP column in the INVENTORY table as UNIQUE.
This ensures that all items in inventory will have unique descriptions.

>CREATE TABLE INVENTORY
SQL+(PRODNO SMALLINT PRIMARY KEY,
SQL+DESCRIP VARCHAR NOT NULL UNIQUE FMT '32T',

.

.

.

ROWUNIQUE

Use ROWUNIQUE to specify that no row in a multivalued column can contain
duplicate values. You can put the ROWUNIQUE constraint only on a column defined
as MULTIVALUED. Each value must be unique in the column row, but the same
values can appear in other rows in the column. The column must have the NOT
NULL constraint.

If you define a single column as the key to an association, CREATE TABLE automat-
ically puts the ROWUNIQUE constraint on it. If you define two or more columns as
the key, they are treated as jointly rowunique at run time.
 CREATE TABLE: Column Definition 6-34

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
This example defines the multivalued column PRODNO in the ORDERS table as
ROWUNIQUE. Each row in ORDERS represents one order. Each order can include
the same product number only once—that is, within each row, product numbers must
be unique. But different orders can include the same product number—that is, the
same product number can appear in different rows.

>CREATE TABLE ORDERS
SQL+(ORDERNO SMALLINT PRIMARY KEY,
SQL+PRODNO SMALLINT MULTIVALUED NOT NULL ROWUNIQUE,

.

.

.

CHECK

Use CHECK to specify criteria a value must meet to be included in the column. The
syntax is as follows:

CHECK (condition)

In a column constraint, condition can be checked only against the column itself. Use
a table constraint to check against values in other columns in the table.

You cannot use the CURRENT_DATE and CURRENT_TIME keywords in a
CHECK condition.

If condition includes columns in an association, you must put the CHECK clause
after the ASSOC Clause that defines the association.

This example defines a CHECK constraint for the PRODNO column. Values in the
PRODNO column must fall between 100 and 999.

>CREATE TABLE INVENTORY
SQL+(PRODNO INT PRIMARY KEY
SQL+CHECK (PRODNO BETWEEN 100 AND 999),

.

.

.

CHECK constraints are enforced:

When you add or change data values using the INSERT and UPDATE
statements
When you add or change data values using the UniVerse Editor or ReVise
When a BASIC program writes to a table opened with the OPENCHECK
statement
6-35 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
When a BASIC program uses the ICHECK function to check if data values
violate SQL integrity constraints
For all BASIC programs, if the OPENCHK configurable parameter is set
(this is the default setting)

REFERENCES

Use REFERENCES to put a referential constraint on the column. To put a referential
constraint on a column, you must haveREFERENCES Privilege on the referenced
table or column. The syntax is as follows:

REFERENCES [schema .] tablename [(columnname)]
[ON DELETE action] [ON UPDATE action]
The following table describes each parameter of the syntax.

Parameter Description

schema . An identifier specifying the name of an existing schema,
followed by a . (period). If you do not specify a schema name,
tablename is assumed to be in the current schema.

tablename An identifier specifying the name of an existing table or the table
you are creating.

columnname An identifier specifying the name of an existing column in
tablename. The column can be single-valued or multivalued. It
must be either the primary key, @ID, or a column with a
UNIQUE constraint. If you do not specify a column name, the
primary key of tablename is the referenced column by default.

REFERENCES Parameters
 CREATE TABLE: Column Definition 6-36

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
A referential constraint defines a dependent relationship between one column (the
referencing column) and another column (the referenced column). The referencing
column becomes a foreign key. The referenced column is a primary key, @ID, or
other column containing unique values. Only values contained in the referenced
column, or null values, can be inserted into the foreign key column.

Every nonnull value written to the foreign key column must have a corresponding
value in the referenced column. Note that the referenced column cannot contain null
or duplicate values, but the referencing column can contain both.

The foreign key column can be singlevalued or multivalued. The referenced column
can also be singlevalued or multivalued.

action The referential action to take when executing a DELETE or
UPDATE statement on a referenced table, or on an association or
view based on a referenced table. action can be one of the
following:

CASCADE If a row in the referenced table is deleted,
the corresponding row in the referencing
table is also deleted. If the referenced value
is updated, the referencing value is updated
with the same value.
You cannot specify CASCADE in an ON
UPDATE clause if the referenced column is
multivalued.

SET NULL If a value in the referenced table is deleted
or updated, the value in the referencing
table is set to the null value.
You cannot specify SET NULL if the refer-
encing column is defined as NOT NULL.

SET DEFAULT If a value in the referenced table is deleted
or updated, the value in the referencing
table is set to the default value for that
column.

NO ACTION A DELETE or UPDATE on a referenced
table has no effect on referencing tables.

Parameter Description

REFERENCES Parameters (Continued)
6-37 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
If you specify both the ON DELETE and ON UPDATE clauses, it does not matter
which clause you specify first. For any pair of referenced and referencing tables, you
can define only one ON DELETE clause and only one ON UPDATE clause that
specify CASCADE, SET NULL, or SET DEFAULT.

When the referential actions CASCADE, SET NULL, and SET DEFAULT change
referencing tables, the changes are verified as valid according to the referencing
tables’ integrity constraints. If a referencing table is also a referenced table, such
changes may result in other referential actions occurring in other tables.

Note: You cannot define referential constraints (unless they are self-referential) in
CREATE TABLE statements that are part of a CREATE SCHEMA statement.

For example, you might create a table using the following statement:

>CREATE TABLE DEPARTMENT
SQL+(NUMBER INT PRIMARY KEY,
SQL+DEPARTMENT VARCHAR);

You can then create another table that references it:

>CREATE TABLE EMPLOYEES
SQL+(EMPNO INT PRIMARY KEY,
SQL+EMPNAME VARCHAR,
SQL+DEPTNO INT REFERENCES DEPARTMENT (NUMBER));

The DEPTNO column in the EMPLOYEES table is a foreign key referencing the
NUMBER column in the DEPARTMENT table. You can enter a value in the
DEPTNO column only if the value also exists in the NUMBER column.

Note: When you create a referential constraint that references a table in another
schema, a VOC file entry is created whose record ID has the form
schemaname.tablename. These are never deleted automatically; you must find them
and delete them manually. These VOC entries are easy to find because field 1
contains one of the following:

File pointer created by SQL for remote access
File pointer created by SQL for Referential Integrity

MULTIVALUED and SINGLEVALUED

Use MULTIVALUED to define the column as multivalued if the rows in the column
will contain multiple values. Use SINGLEVALUED to define the column as singl-
evalued. Columns are singlevalued by default. You cannot insert multiple values into
a single-valued column.
 CREATE TABLE: Column Definition 6-38

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
You cannot use the CONSTRAINT keyword to name the MULTIVALUED and
SINGLEVALUED column constraints.

Column Synonyms

A column definition can define a synonym for a column. You can use the synonym
to assign alternate format, conversion, or column heading specifications for the
column. The syntax is as follows:

synonym SYNONYM FOR columnname [output_format]
The following table describes each parameter of the syntax.

The column synonym is created as another entry in the dictionary of the table, but it
is not added to the SICA.

This example makes ADDRESS a column synonym for the BILLTO column in the
CUSTOMERS table:

>CREATE TABLE CUSTOMERS
SQL+(CUSTNO INT PRIMARY KEY,
SQL+BILLTO VARCHAR,
SQL+ADDRESS SYNONYM FOR BILLTO,

.

.

.

ASSOC Clause
The ASSOC clause defines an association of multivalued columns in a table. An
association is a group of related multivalued columns in a table. The first value in any
association column corresponds to the first value of every other column in the associ-
ation, the second value corresponds to the second value, and so on. An association
can be thought of as a nested table.

Parameter Description

synonym The name of a column synonym.

columnname An identifier specifying the name of a column defined in another
column definition in the CREATE TABLE statement.

output_format For output_format syntax, see “Output Format” on page 31.

Column Synonym Parameters
6-39 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can define more than one association. The syntax is as follows:

ASSOC [IATION] name [position] (columnname [KEY]
[, columnname [KEY]] …)

The following table describes each parameter of the syntax.

Positioning of Association Rows

position specifies where to position new association rows when they are inserted into
this dynamically normalized association. position is one of the following:

Parameter Description

name An identifier specifying the name of the association. name cannot be the
same as another column name or association name in this table.

position For the description of position, see “Positioning of Association Rows”
on page 42.

columnname An identifier specifying the name of a multivalued column to include in
the association. All columns specified in an ASSOC clause must be
defined in a column definition and cannot belong to another association.
columnname cannot be a synonym.

KEY Defines the preceding columnname as an association key column. Key
columns must have a column constraint of NOT NULL.
If you specify only one key column, it automatically has the column
constraint ROWUNIQUE. If you specify two or more key columns and
you do not specify any of them as ROWUNIQUE, the columns are
treated as jointly rowunique at run time.
You cannot specify any association keys if position is INSERT
PRESERVING.

ASSOC Clause Parameters

Row Description

INSERT LAST New association rows are put after the last association row. This
is the default if you do not specify position.

INSERT FIRST New association rows are put before the first association row.

Positioning of Association Rows
 CREATE TABLE: ASSOC Clause 6-40

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
This example defines the association BOUGHT. It associates the multivalued
columns PRODNO and QTY and defines PRODNO as the association key.

>CREATE TABLE ORDERS
SQL+(ORDERNO INT PRIMARY KEY,
SQL+PRODNO INT MULTIVALUED NOT NULL ROWUNIQUE,
SQL+QTY INT MULTIVALUED,
SQL+ASSOC BOUGHT (PRODNO KEY, QTY));

Table Constraints
You can define table constraints for one or more columns in a table. The syntax is as
follows:

[CONSTRAINT name] table_constraint

INSERT IN columnname BY seq

New association rows are positioned among existing associ-
ation rows according to the sequential position of the value in
columnname.
seq specifies the sequence and is one of the following:
AL\Ascending, left-justified
AR\Ascending, right-justified
DL\Descending, left-justified
DR\ Descending, right-justified

INSERT PRESERVING New association rows are put in the position specified by the
@ASSOC_ROW column specification in an INSERT
statement. If @ASSOC_ROW is not set, new association rows
are put after the last association row.
INSERT PRESERVING defines this association as STABLE.
For more information about STABLE associations, see the
INSERT, UPDATE, and DELETE statements.

Row Description

Positioning of Association Rows (Continued)
6-41 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

PRIMARY KEY Table Constraint

Use PRIMARY KEY to specify that the combination of values in a set of columns is
the primary key of the table. The syntax is as follows:

PRIMARY KEY [' separator '] (columnnames)

separator is a single character used in the record ID field of the table to separate the
values of a multicolumn primary key. The default separator is a text mark
(CHAR(251)). Except for the text mark, separator must be a member of the 7-bit
character set (except ASCII NUL (CHAR(0))). If you specify separator, you must
also specify at least two columnnames.

columnnames is one or more names of columns defined in the CREATE TABLE
statement, separated by commas.

A table can have only one primary key, and a CREATE TABLE statement can have
only one PRIMARY KEY specification. All columns specified as the primary key
must be single-valued and cannot contain null values. The combination of primary
key values must be unique.

Parameter Description

name An identifier specifying the name of the table constraint. You
can name the following table constraints: UNIQUE, CHECK,
and FOREIGN KEY. If you do not specify name, the system
generates one in the format UVCON_n.

table_constraint One of the following:
PRIMARY KEY [' separator '] (columnnames)
UNIQUE (columnnames)
CHECK (condition)
FOREIGN KEY (key_columns) REFERENCES
[schema .] tablename
[(columnnames)] [ON DELETE action]
[ON UPDATE action]
See the following sections for descriptions of each table
constraint.

Table Constraint Parameters
 CREATE TABLE: Table Constraints 6-42

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
This example defines the PRODNO and BRAND columns as the primary key of the
INVENTORY table:

>CREATE TABLE INVENTORY
SQL+(PRODNO INT,
SQL+BRAND CHAR(4),
SQL+PRIMARY KEY(PRODNO, BRAND),

.

.

.

UNIQUE Table Constraint

Use UNIQUE to specify that the combination of values in a set of columns must be
unique. The syntax is as follows:

UNIQUE (columnnames)

columnnames is one or more names of columns defined in the CREATE TABLE
statement, separated by commas.

If a UNIQUE constraint specifies only one column, the column can be either singl-
evalued or multivalued. If a UNIQUE constraint specifies more than one column, all
of the columns must be single-valued. All columns specified in a UNIQUE table
constraint must also have the NOT NULL constraint.

You need write permissions on the directory to define the UNIQUE constraint.

This example defines the LNAME, FNAME, and MINIT columns as jointly unique:

>CREATE.TABLE PERSONNEL
SQL+(SSN INT PRIMARY KEY,
SQL+LNAME VARCHAR NOT NULL,
SQL+FNAME VARCHAR NOT NULL,
SQL+MINIT CHAR(1) NOT NULL,
SQL+UNIQUE(LNAME, FNAME, MINIT),

.

.

.

CHECK Table Constraint

Use CHECK to specify criteria data must meet to be included in the column or set of
columns. The syntax is as follows:

CHECK (condition)
6-43 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
All columns included in condition must be in the same table.

If condition includes columns in an association, you must put the CHECK clause
after the ASSOC Clause that defines the association.

This example defines a table constraint named DATECK. The constraint specifies
that the order number must be greater than 10,000 and the order date must not be
before January 1, 1994.

>CREATE TABLE ORDERS
SQL+(ORDERNO INT PRIMARY KEY,
SQL+"DATE" DATE CONV 'D2-',
SQL+CONSTRAINT DATECK CHECK (ORDERNO > 10000
SQL+AND "DATE" >= '1-1-94'),

.

.

.

FOREIGN KEY Table Constraint

Use FOREIGN KEY to define a referential table constraint. To put a referential
constraint on columns, you must have REFERENCES Privilege on the referenced
table or columns.The syntax is as follows:

FOREIGN KEY (key_columns) REFERENCES [schema .] tablename
[(columnnames)] [ON DELETE action] [ON UPDATE action]

The following table describes each parameter of the syntax.

Parameter Description

key_columns Identifiers specifying the names of one or more columns defined
in the CREATE TABLE statement, separated by commas. If you
specify more than one column, they must all be singlevalued.

The number of column names in the FOREIGN KEY clause
must be the same as the number of column names in the REFER-
ENCES clause. The first column name in the FOREIGN KEY
clause corresponds to the first column name in the REFER-
ENCES clause, and so on. Data types of corresponding columns
must be compatible.

schema . An identifier specifying the name of an existing schema,
followed by a . (period). If you do not specify a schema name,
tablename is assumed to be in the current schema.

FOREIGN KEY Table Constraint Parameters
 CREATE TABLE: Table Constraints 6-44

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
tablename An identifier specifying the name of an existing table or the table
you are creating.

columnnames An identifier specifying one or more names of existing columns
in tablename, separated by commas. If you specify more than
one column, they must all be singlevalued. The columns must be
either the columns that make up the primary key or columns that
make up a UNIQUE constraint. If you do not specify any column
names, the primary key of tablename is the referenced column
by default.

The number of column names must be the same as the number
of column names in the FOREIGN KEY clause.

action The referential action to take when executing a DELETE or
UPDATE statement on a referenced table, or on an association
or view based on a referenced table. action can be one of the
following:

CASCADE If a row in the referenced table is deleted, the
corresponding row in the referencing table is
also deleted. If the referenced value is updated,
the referencing value is updated with the same
value.
You cannot specify CASCADE in an ON
UPDATE clause if the referenced column is
multivalued.

SET NULL If a value in the referenced table is deleted or
updated, the value in the referencing table is
set to the null value.
You cannot specify SET NULL if the
referencing column is defined as NOT NULL.

SET
DEFAULT

If a value in the referenced table is deleted or
updated, the value in the referencing table is
set to the default value for that column.

NO ACTION A DELETE or UPDATE on a referenced table
has no effect on referencing tables.

Parameter Description

FOREIGN KEY Table Constraint Parameters (Continued)
6-45 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This table constraint defines a dependent relationship between one column or set of
columns (the referencing column) and another column or set of columns (the refer-
enced column). The referencing column becomes a foreign key. The referenced
column is a primary key, @ID, or some other column containing unique values. Only
values contained in the referenced column, or null values, can be inserted into the
foreign key column.

Every nonnull value written to the foreign key column must have a corresponding
value in the referenced column. Note that the referenced columns cannot contain null
or duplicate values, but the referencing columns can contain both.

If you define only one column as a foreign key, whether it is singlevalued or multi-
valued, the referenced column can also be singlevalued or multivalued. If you define
several columns as a foreign key, they must be singlevalued and the corresponding
referenced columns must also be singlevalued. You cannot include a multivalued
column in a multicolumn foreign key.

If you specify both the ON DELETE and ON UPDATE clauses, it does not matter
which clause you specify first. For any pair of referenced and referencing tables, you
can define only one ON DELETE clause and only one ON UPDATE clause that
specify CASCADE, SET NULL, or SET DEFAULT.

When the referential actions CASCADE, SET NULL, and SET DEFAULT change
referencing tables, the changes are verified as valid according to the referencing
tables’ integrity constraints. If a referencing table is also a referenced table, such
changes may result in other referential actions occurring in other tables.

Note: You cannot define referential constraints (unless they are self-referential) in
CREATE TABLE statements that are part of a CREATE SCHEMA statement.

This example puts referential constraints on the PRODNO and BRAND columns of
the ORDERS table. These columns reference the PRODNO and BRAND columns of
the INVENTORY table. The referenced columns are not explicitly named in the
REFERENCES clause because they are the primary key of the INVENTORY table.
A foreign key references the primary key of the referenced table by default.

>CREATE TABLE ORDERS
SQL+(ORDERNO INT PRIMARY KEY,
SQL+"DATE" DATE CONV 'D2/',
SQL+PRODNO INT NOT NULL,
SQL+BRAND CHAR(4) NOT NULL,
SQL+FOREIGN KEY (PRODNO, BRAND) REFERENCES INVENTORY,

.

.

.

 CREATE TABLE: Table Constraints 6-46

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Note: When you create a referential constraint that references a table in another
schema, a VOC file entry is created whose record ID has the form
schemaname.tablename. These are never deleted automatically; you must find them
and delete them manually. These VOC entries are easy to find because field 1
contains one of the following:

File pointer created by SQL for remote access
File pointer created by SQL for Referential Integrity
6-47 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
CREATE TRIGGER
Use the CREATE TRIGGER statement to create a trigger for a table. You must be the
table’s owner or have ALTER Privilege on the table, or you must be a DBA to create
a trigger.

Syntax
CREATE TRIGGER triggername { BEFORE | AFTER } event [OR event] …
ON tablename FOR EACH ROW CALLING ' program ' ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

triggername An identifier specifying the name of the trigger.

BEFORE Specifies that the trigger program is fired before each row is written or
deleted.

AFTER Specifies that the trigger program is fired after each row is written or
deleted.

event Specifies the operation that fires the trigger program. event is one of the
following:
INSERT
UPDATE
DELETE

tablename An identifier specifying the name of the table whose trigger you are
creating.

program Specifies the name of the trigger program.

CREATE TRIGGER Parameters
 CREATE TRIGGER 6-48

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Description
A trigger specifies actions to perform before or after each row is changed by certain
triggering events (SQL statements or BASIC I/O operations).

You can create triggers only for tables. You cannot create triggers for associations,
views, or UniVerse files that are not tables. You can define up to six triggers for a
table. The names of all triggers and their corresponding BASIC programs are stored
in the table’s SICA.

Trigger programs run with the SQL privileges of the trigger’s creator, not with the
privileges of the user whose action fires the trigger.

Triggers fired BEFORE an INSERT or UPDATE event are executed before integrity
checks are performed. BEFORE triggers can change the data before it is written.
They can also reject and roll back the current SQL statement or BASIC operation by
using the SetDiagnostics function to set an error condition.

Triggers fired AFTER an INSERT, UPDATE, or DELETE event are executed after
the changed data has been written to the transaction cache. AFTER triggers typically
change related rows, audit database activity, and print or send messages, because at
this point the full details of the row are known, the change has passed all tests, and
the database can be updated.

The trigger program must be a subroutine with the following 14 arguments specified
in the following order:

trigger.name
schema
table
event
time
new.recordID
new.record
old.recordID
old.record
association
association.event
count
chain.cascade
cascade
6-49 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Note: Do not create a trigger while a program using the table is running. Results can
be unpredictable.

For more information about writing trigger programs, see Chapter 5, “Triggers.”

Example
This example creates the trigger AUDIT_EMPLOYEES on the EMPLOYEES table.
It executes the AUDIT program whenever an INSERT, UPDATE, or DELETE event
changes the table.

>CREATE TRIGGER AUDIT_EMPLOYEES
SQL+BEFORE INSERT OR UPDATE OR DELETE
SQL+ON EMPLOYEES FOR EACH ROW CALLING 'AUDIT';
 CREATE TRIGGER 6-50

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
CREATE VIEW
Use the CREATE VIEW statement to create a virtual table in the schema you are
logged in to, derived from other tables and views. To create a view, you need
SELECT Privilege on the underlying tables and views. To grant SELECT, INSERT,
UPDATE, and DELETE privileges on a view you own to others, you must have the
privileges WITH GRANT OPTION on all underlying tables and views.

Syntax
CREATE VIEW viewname [(columnnames)] AS query_expression [WITH
[LOCAL | CASCADED] CHECK OPTION] ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

viewname An identifier specifying the name of the view. viewname must
not exist in the schema or be the ID of a record in the VOC file.
The current account directory must not contain a file named
viewname or D_viewname.

columnnames Identifiers specifying the names of the columns in the view,
separated by commas. The number of columns in column-
names must be the same as the number of columns in the
SELECT clause of the query specification. That is, if you
name any of the view’s columns, you must name all columns
specified in the SELECT clause.

query_expression The SELECT statement that creates the view.

CREATE VIEW Parameters
6-51 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
CREATE VIEW defines a virtual table derived from one or more base tables or
views. CREATE VIEW also creates a file dictionary for the view. A view behaves in
many ways like a table created with the CREATE TABLE statement.

Updatable Views

A view is updatable if the following conditions in the query expression are met:

At least one item in the SELECT clause must be a simple reference to a
column in the base table, or at least one condition in the WHERE clause
must state that a primary key column in the base table (or @ID if the base
table has no primary key) equals some value.
The SELECT Clause does not contain the keyword DISTINCT.
The FROM clause:

Identifies only one table
Does not contain an UNNEST Clause

WITH CHECK OPTION Specifies that any change made to the view must fulfill the
conditions specified in query_expression. If you do not specify
LOCAL or CASCADED, the change must also fulfill the
conditions specified in all views underlying this one. The view
must be updatable if you specify WITH CHECK OPTION.

LOCAL Specifies that only the WHERE clause of the view defined in
query_expression is checked when an INSERT or UPDATE
statement is executed.

CASCADED Specifies that the WHERE clause of the view defined in
query_expression as well as in all underlying views are
checked when an INSERT or UPDATE statement is executed.
This is the default action.

Parameter Description

CREATE VIEW Parameters (Continued)
 CREATE VIEW 6-52

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The table expression:
Identifies a base table or an updatable view
Does not contain the keywords JOIN or UNION
Does not reference an association of multivalued columns or an unasso-
ciated multivalued column as a dynamically normalized table

The WHERE Clause does not contain a subquery to the same table.
There is no WHEN Clause, GROUP BY Clause, or HAVING Clause.

You can use the INSERT, UPDATE, DELETE, and SELECT statements against an
updatable view. You can use only the SELECT statement against a read-only view.

Note: Read-only views created before Release 9.3.1 must be recreated to make them
updatable. Nested views must be recreated from the bottom up.

Inherited Associations

A view inherits an association from the table or view it is derived from. Any columns
belonging to the association in the underlying table or view are associated in the view.
The view definition determines the order of the associated columns in the view.

If the view is updatable, it inherits an association from the table or view it is derived
from only if the following conditions are met:

All parts of the base table’s primary key (or @ID if the base table has no
primary key) are referenced in the query expression.
Each column in the association is referenced by its simple column name.
If the association has keys, all association keys are referenced in the
SELECT clause.
If the association has no keys, all columns in the association are referenced
in the SELECT Clause.

Query Expression

The query expression is a standard UniVerse SQL SELECT statement, except for the
following:

Field modifiers (AVG, BREAK ON, BREAK SUPPRESS, CALC, PCT,
TOTAL, and their synonyms are not allowed.
6-53 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The field qualifiers SINGLEVALUED, MULTIVALUED, ASSOC,
ASSOCIATED, and their synonyms are not allowed.
Report qualifiers (HEADER, FOOTER, and so on) are not allowed.
The TO SLIST clause is not allowed.
The FROM clause cannot specify a UniVerse file or a table that is a part file
of a distributed file.
The ORDER BY clause is not allowed.

Specifying Rows Explicitly

When you create a view, you can use the FROM clause of the query specification to
specify the rows you want the view to include. The FROM clause can include any of
the following:

A list of explicit primary keys
An SLIST clause
The INQUIRING keyword

Explicit Primary Keys

You can specify explicit primary keys in the CREATE VIEW statement even if the
primary keys do not currently exist in the base table. Only the specified rows that
exist when users access the view are included in the view.

SLIST Clause

You can specify a numbered select list in the CREATE VIEW statement even if the
specified select list does not currently exist. When users access the view, the specified
select list must exist, otherwise no view is generated.

INQUIRING Keyword

When you specify the INQUIRING keyword in the CREATE VIEW statement, no
prompts appear asking you to specify primary keys. When users access the view, they
are prompted to enter the primary keys they want to include.
 CREATE VIEW 6-54

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Columns in a View

In a view, a column’s name, data type, heading, format, and conversion are derived
from the columns in the underlying tables and views. The width of a column is deter-
mined by either the width of the column heading or the width defined by a FMT
clause, whichever is larger.

Column Names

Since the names of a view’s columns are derived from the columns in the underlying
tables and views, you do not need to name them explicitly in the CREATE VIEW
statement, unless the SELECT clause in the query specification:

Uses a select expression or EVAL expression to define a virtual column
Specifies a set function to define a virtual column
Specifies duplicate column names (even if they are qualified)

In these cases you must specify column names. Column names must be unique in a
view. You can explicitly name a view’s columns in two ways:

Specify columnnames after viewname in the CREATE VIEW statement.
Specify a column alias for the expression, set function, or duplicate column
name in the query expression.

Column Heading

The column heading is derived from one of the following, in order of precedence:

A DISPLAYNAME clause
The column or column alias named in a DISPLAYLIKE clause
A column alias
A select expression or column name
6-55 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Format

The column’s format is derived from a FMT clause, if there is one, or from the
column or column alias named in a DISPLAYLIKE clause. Default column formats
are as follows:

Conversion

The column’s conversion is derived from one of the following, in order of
precedence:

A CONV clause
The conversion field in the column or alias named in a DISPLAYLIKE
clause
For columns, the conversion field of the dictionary
For expressions, an appropriate conversion code for the data type

Column Format

Column name As defined in the format field of the dictionary.

EVAL expression 10L, unless the dictionary entry for the leftmost column defined in
the EVAL expression contains an MD conversion or specifies right
justification, in which case the format is 10R.

Set function 10R for COUNT and AVG of a column whose data type is INT or
SMALLINT.
For MAX, MIN, SUM, and AVG of a column whose data type is not
INT or SMALLINT: as defined in the format field of the dictionary.

Select expression 11R for an expression whose data type is DATE.
8R for an expression whose data type is TIME.
10R for numeric expression of any other data type.

Constant 10T for a character expression.
8L if the constant is USER.
1L if the constant is NULL.

Column Formats
 CREATE VIEW 6-56

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Examples
This example creates a view that includes all the columns from the INVENTORY
table. The column names in INV_VIEW are the same as the names of the columns in
the INVENTORY table.

>CREATE VIEW INV_VIEW AS SELECT * FROM INVENTORY;
Creating View "INV_VIEW"
Adding Column "PROD.NO"
Adding Column "DESC"
Adding Column "QOH"
Adding Column "COST"
Adding Column "SELL"
Adding Column "MARKUP"

If you subsequently add columns to the underlying table using ALTER TABLE, this
view is unaffected by the additional columns. That is, the view in the preceding
example still contains six columns.

The next example creates a view PRODQTY_VIEW that includes only two columns,
PRODNO and QOH, from the INVENTORY table:

>CREATE VIEW PRODQTY_VIEW AS SELECT PRODNO, QOH FROM INVENTORY;

The next example creates a view DEPTINFO based on the DEPTS table in the
OTHERSCHEMA schema:

>CREATE VIEW DEPTINFO (DEPTNAME, DEPTHEAD)
SQL+AS SELECT DEPTNAME, MANAGER FROM OTHERSCHEMA.DEPTS;

The query specification in the next example extracts the columns
ORDERS.ORDERNO and ITEMS.ORDERNO from the ORDERS and ITEMS
tables. You must specify unique, corresponding column names (CUSTNO and
OCUSTNO) in the CREATE VIEW statement. Since this query specification
specifies a virtual column resulting from a calculation (ITEMS.TOTPRICE * 1.25),
you must also name the corresponding column in the view (NEWPRICE).

>CREATE VIEW SOLD_VIEW (CUSTNO, OCUSTNO, NEWPRICE)
SQL+AS SELECT ORDERS.ORDERNO, ITEMS.ORDERNO,
SQL+ITEMS.TOTPRICE * 1.25
SQL+FROM ORDERS, ITEMS
SQL+WHERE ORDERS.ORDERNO = ITEMS.ORDERNO
SQL+AND ITEMS.TOTPRICE > 150;
6-57 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
In the next example the CREATE VIEW statement uses SLIST 0 to create the
ORD_VIEW view. When you use a SELECT statement to access the view, SLIST 0
must be active.

>CREATE VIEW ORD_VIEW AS SELECT * FROM ORDERS SLIST 0;
Creating View "ORD_VIEW"
Adding Column "ORDER.NO"
Adding Column "CUST.NO"
Adding Column "PROD.NO"
Adding Column "QTY"
Adding Column "ORDER.TOTAL"
Adding association "BOUGHT"
>SELECT TO SLIST 0 FROM ORDERS;

7 record(s) selected to SELECT list #0.
>>SELECT * FROM ORD_VIEW;
Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1
10006 6518 112 3 $18.00
10004 4450 704 1 $205.00
 301 9
10005 9874 502 9 $45.00
10003 9825 202 10 $100.00
 204 10
10001 3456 112 7 $265.00
 418 4
 704 1
10007 9874 301 3 $30.00

7 records listed.
 CREATE VIEW 6-58

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The next example uses the INQUIRING keyword to create the ORD_VIEW view.
When you use a SELECT statement to access the view, you are prompted to enter
primary keys.

>CREATE VIEW ORD_VIEW AS SELECT * FROM ORDERS INQUIRING;
Creating View "ORD_VIEW"
Adding Column "ORDER.NO"
Adding Column "CUST.NO"
Adding Column "PROD.NO"
Adding Column "QTY"
Adding Column "ORDER.TOTAL"
Adding association "BOUGHT"
>SELECT * FROM ORD_VIEW;
Primary Key for table ORD_VIEW = 10002

Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1

Primary Key for table ORD_VIEW =
6-59 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
DELETE
Use the DELETE statement to remove rows from a table, view, or UniVerse file. You
must own the table or view, or have DELETE Privilege on it, to use the DELETE
statement. To delete rows from a view, you must also have DELETE privilege on the
underlying base table and any underlying views. You cannot use DELETE on a type
1, type 19, or type 25 file.

Syntax
DELETE FROM table_expression [WHERE clause] [qualifiers] ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

table_expression Specifies the table or view whose rows you want to delete. For
the syntax of table_expression, see “Table.” If table_expression
references an association of multivalued columns or an unasso-
ciated multivalued column as a dynamically normalized table,
only data in the selected association rows is deleted.

WHERE clause Specifies the criteria that data in the rows must meet for the rows
to be deleted. If you omit the WHERE clause, all rows in the
table are deleted (except when table_expression specifies a
subset of rows to delete).

qualifiers One or more of the following processing qualifiers separated by
spaces:

EXPLAIN Lists the tables referenced by the
DELETE statement and explains how
the query optimizer will handle
execution of the statement.

DELETE Parameters
 DELETE 6-60

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Description
If you try to delete more than one row and the DELETE statement fails (due to a
constraint violation, for example), no rows are deleted.

If you delete an association row from a dynamically normalized association that is
defined as STABLE, the @ASSOC_ROW values of the remaining association rows
stay the same.

If you use the DELETE statement on a table that is referenced by a foreign key, the
deleted data must meet the constraint criteria. You also need write permissions on the
directory and the VOC file in the account.

NO.OPTIMIZE Suppresses the optimizer when
processing the WHERE clause.

NOWAIT If the DELETE statement encounters a
lock set by another user, it terminates
immediately. It does not wait for the
lock to be released.

REPORTING Displays the primary key of each
deleted row. If the table has no primary
key, displays the value in @ID.

Parameter Description

DELETE Parameters (Continued)
6-61 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
If you delete rows in a referenced table, rows in the referencing table may also be
deleted or changed, depending on the referential constraint action prescribed by the
referencing table’s REFERENCES clause. The following table shows what happens
when the referencing table’s REFERENCES clause contains the ON DELETE
CASCADE clause:

If the referenced
column is...

And if the
referencing column
is...

The following referential integrity
action occurs:

Singlevalued Singlevalued The row in the referencing table corre-
sponding to the deleted row in the
referenced table is also deleted. If the
corresponding columns are parts of a
multipart column set, all corresponding
part-columns must match for the corre-
sponding rows in the referencing table
to be deleted.

Multivalued Singlevalued The row in the referencing table corre-
sponding to the deleted association row
in the referenced table is also deleted.

Singlevalued Multivalued The association row in the referencing
table corresponding to the deleted row
in the referenced table is also deleted.

Multivalued Multivalued The association row in the referencing
table corresponding to the deleted
association row in the referenced table
is also deleted.

ON DELETE CASCADE Clause Results
 DELETE 6-62

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The following table shows what happens when the referencing table’s REFER-
ENCES clause contains the ON DELETE SET NULL or ON DELETE SET
DEFAULT clause:

Using EXPLAIN

The EXPLAIN keyword lists all tables referenced by the DELETE statement,
including tables referenced by subqueries in the WHERE clause, and explains how
the query optimizer will use indexes, process joins, and so forth, when the statement
is executed. If the WHERE Clause includes subqueries, information is given about
each query block.

If you use EXPLAIN in an interactive DELETE statement, after viewing the
EXPLAIN message, press Q to quit, or press any other key to continue processing.

If you use EXPLAIN in a DELETE statement executed by a client program, the
statement is not processed. Instead, an SQLSTATE value of IA000 is returned, along
with the EXPLAIN message as the message text.

Using NOWAIT

The NOWAIT condition applies to:

If the referenced
column is...

And if the
referencing column
is...

If the referencing table, either a null
value or the column’s default value
replaces...

Singlevalued Singlevalued The value in the referencing column
corresponding to the deleted row in the
referenced table.

Multivalued Singlevalued The value in the referencing column
corresponding to the deleted
association row in the referenced table.

Singlevalued Multivalued The multivalue in the referencing
column corresponding to the deleted
row in the referenced table.

Multivalued Multivalued The multivalue in the referencing
column corresponding to the deleted
association row in the referenced table.

ON DELETE SET NULL or ON DELETE SET DEFAULT Clause Results
6-63 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
All locks encountered by the DELETE statement
All cascaded updates and deletes that result from the DELETE statement
All SQL operations in trigger programs fired by the DELETE statement

In these cases, the DELETE statement and all its dependent operations are terminated
and rolled back, and an SQLSTATE of 40001 is returned to client programs.

Examples
This example deletes all rows from the CUST table:

>DELETE FROM CUST;

The next example deletes two rows from the EMPS table:

>DELETE FROM EMPS '2727' '2728';

The next example uses the keyword INQUIRING to prompt you for the primary key
of the row you want to delete from CUSTOMERS:

>DELETE FROM CUSTOMERS INQUIRING;

Record =

The next example uses the REPORTING keyword to list the primary keys of the
deleted rows:

>DELETE FROM CUSTOMERS REPORTING;
UniVerse/SQL: Record "4450" deleted.
UniVerse/SQL: Record "7230" deleted.
UniVerse/SQL: Record "9480" deleted.
UniVerse/SQL: Record "3456" deleted.
UniVerse/SQL: Record "6518" deleted.
UniVerse/SQL: Record "9874" deleted.
UniVerse/SQL: Record "9825" deleted.
UniVerse/SQL: Record "1001" deleted.
UniVerse/SQL: Record "1043" deleted.
UniVerse/SQL: Record "2309" deleted.
UniVerse/SQL: 10 records deleted.

This example deletes rows where any value in the multivalued PROD.NO column is
102:

>DELETE FROM ORDERS
SQL+WHERE PROD.NO = 102;
 DELETE 6-64

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The next example deletes all the rows of the EMPS table for sales personnel where
the sales are below average:

>DELETE FROM EMPS
SQL+WHERE DEPTCODE = 'Sales'
SQL+AND SALES < (SELECT AVG(SALES) FROM EMPS);

The next example removes rows whose department number is 209 from the DEPTS
table in the OTHERSCHEMA schema:

>DELETE FROM OTHERSCHEMA.DEPTS
SQL+WHERE OTHERSCHEMA.DEPTS.DEPTNO = 209;

The next example removes a line item from an order in the ORDERS table. Line
items in the ORDERS table are association rows.

>DELETE FROM ORDERS_BOUGHT
SQL+WHERE ORDER.NO = '10001'
SQL+AND PROD.NO = 888;

UniVerse/SQL: 1 record deleted.

ORDER.NO is the primary key and PROD.NO is the key of the association
BOUGHT.
6-65 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
DROP INDEX
Use the DROP INDEX statement to delete a secondary index created by the CREATE
INDEX statement. You must be the owner of the table, have ALTER Privilege on it,
or have DBA Privilege to drop a table’s indexes.

Syntax
DROP INDEX tablename . indexname ;

Parameters
The following table describes each parameter of the syntax.

Description
DROP INDEX removes the specified secondary index from the table.

Note: You cannot use DROP INDEX on secondary indexes created by the UniVerse
command CREATE.INDEX.

Example
This example drops the secondary indexes from the VENDORS.T table:

>DROP INDEX VENDORS.T.VENDORS_INDEX;
Dropping Index "VENDORS_INDEX".

Parameter Description

tablename An identifier specifying the name of a table in the schema you are
logged in to whose indexes you want to drop.

indexname An identifier specifying the name of the index you want to drop.

DROP INDEX Parameters
 DROP INDEX 6-66

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
DROP SCHEMA
Use the DROP SCHEMA statement to delete a schema. You must be the owner of the
schema or have DBA Privilege to drop it. You must issue the DROP SCHEMA
statement from a schema other than the one you want to drop.

Syntax
DROP SCHEMA schema [CASCADE] ;

Parameters
The following table describes each parameter of the syntax.

Description
DROP SCHEMA removes the specified schema and all its tables and views from the
SQL catalog. You cannot drop a schema if any of its tables are referenced by tables
in other schemas.

Note: You must first drop any referential constraints defined in other schemas that
refer to tables in schema before using DROP SCHEMA CASCADE to drop schema.

Parameter Description

schema An identifier specifying the name of the schema you want to drop.

CASCADE Drops all SQL tables and views in schema. You must specify
CASCADE if the schema has any SQL tables.

DROP SCHEMA Parameters
6-67 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Depending on whether the schema was created in a non-UniVerse directory or was
converted from an existing UniVerse account, DROP SCHEMA has different results:

Example
This example drops the schema Susan, including all its tables and views:

>DROP SCHEMA Susan CASCADE;

Schema was
created as...

Schema has
SQL tables

Using DROP SCHEMA
without CASCADE...

Using DROP
SCHEMA with
CASCADE...

A new schema in a
non-UniVerse
directory

No Deletes all UniVerse files
created by CREATE
SCHEMA. Does not
delete UniVerse data
files.

Deletes all UniVerse
files created by
CREATE SCHEMA.
Does not delete
UniVerse data files.

Yes Displays a message
telling you to use
CASCADE.

Deletes all SQL tables
and UniVerse files
created by CREATE
SCHEMA. Does not
delete UniVerse data
files.

A converted
UniVerse account

No Turns schema back into a
normal UniVerse
account, deleting
nothing.

Turns schema back
into a normal
UniVerse account,
deleting nothing.

Yes Displays a message
telling you to use
CASCADE.

Deletes all SQL tables
and turns schema
back into a normal
UniVerse account.

DROP SCHEMA Results
 DROP SCHEMA 6-68

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
DROP TABLE
Use the DROP TABLE statement to delete a table. You must be the owner of the table
or have DBA Privilege to drop it.

Syntax
DROP TABLE tablename [CASCADE] ;

Parameters
The following table describes each parameter of the syntax.

Description
DROP TABLE removes the table and all views depending on it from the SQL
catalog. It also deletes the UniVerse data file, its associated dictionary, and any
secondary indexes.

DROP TABLE automatically revokes all privileges on the table.

Parameter Description

tablename An identifier specifying the name of the table you want to drop. The table
must be in the schema you are logged in to.

CASCADE Drops all views derived from tablename. You must specify CASCADE
if the table has views depending on it.

DROP TABLE Parameters

Table has
dependent
views

Using DROP TABLE without
CASCADE...

Using DROP TABLE with
CASCADE...

No Deletes the table. Deletes the table.

Yes Displays a message telling you to
use CASCADE.

Deletes the table and all its dependent
views.

DROP TABLE Results
6-69 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You cannot drop a table that is a part file of a distributed file or that has a partitioning
algorithm attached to it. To drop such a table, use the DEFINE.DF command with the
CANCEL option to remove the partitioning algorithm, then drop the table.

You cannot drop a table that is referenced by a foreign key constraint in another table.
To drop such a table, first drop any referential constraints in the referencing table,
then drop the referenced table.

Example
This example drops the table CUSTOMERS, including all views depending on it:

>DROP TABLE CUSTOMERS CASCADE;
 DROP TABLE 6-70

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
DROP TRIGGER
Use the DROP TRIGGER statement to drop a trigger created by the CREATE
TRIGGER statement. You must be the table’s owner or have ALTER Privilege on it,
or you must be a DBA to drop a table’s triggers.

Syntax
DROP TRIGGER tablename { triggername | ALL } ;

Parameters
The following table describes each parameter of the syntax.

Description
When you drop a trigger, its name is removed from the table’s SICA, but the corre-
sponding BASIC program is not deleted.

Do not drop a trigger while a program using the table is running. Results may be
unpredictable.

Example
This example drops the AUDIT_EMPLOYEES trigger from the EMPLOYEES
table:

>DROP TRIGGER EMPLOYEES AUDIT_EMPLOYEES;

Parameter Description

tablename An identifier specifying the name of the table whose trigger you want to
drop.

triggername An identifier specifying the trigger you want to drop.

ALL Drops all of a table’s triggers.

DROP TRIGGER Parameters
6-71 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
DROP VIEW
Use the DROP VIEW statement to delete a view. You must be the owner of the view
or have DBA Privilege to drop it.

Syntax
DROP VIEW viewname [CASCADE] ;

Parameters
The following table describes each parameter of the syntax.

Description
DROP VIEW removes the view from the SQL catalog. It also deletes its associated
dictionary.

DROP VIEW automatically revokes all privileges on the view.

Parameter Description

viewname An identifier specifying the name of the view you want to drop. The view
must be in the schema you are logged in to.

CASCADE Drops all views derived from viewname. You must specify CASCADE if
the view has views depending on it.

DROP VIEW Parameters

View has
dependent
views

Using DROP VIEW without
CASCADE...

Using DROP VIEW with
CASCADE...

No Deletes the view. Deletes the view.

Yes Displays a message telling you to use
CASCADE.

Deletes the view and all its
dependent views.

DROP VIEW Results
 DROP VIEW 6-72

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
You can query the UV_TABLES table for information about names of views derived
from tables or from other views.

Example
This example drops the INV_VIEW view:

>DROP VIEW INV_VIEW;
6-73 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
GRANT
Use the GRANT statement to assign user privileges. UniVerse SQL users can assign
table privileges on tables and views they own or on which they have the right to grant
specific privileges. You must be a database administrator (DBA) to assign database
privileges.

Syntax
GRANT database_privilege TO users;

GRANT table_privileges ON tablename TO { users | PUBLIC } [WITH GRANT
OPTION] ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

database_privilege One of the following:
CONNECT
RESOURCE
DBA

table_privileges One or more of the following, separated by commas:
SELECT
INSERT
UPDATE [(columnnames)]
DELETE
REFERENCES [(columnnames)]
ALTER
ALL PRIVILEGES

tablename An identifier specifying the name of an existing table or view.

GRANT Parameters
 GRANT 6-74

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Description

On UNIX Systems

When UniVerse is first installed, only one user is registered as an SQL user. If there
is a user named uvsql in the /etc/passwd file, the owner of the CATALOG schema is
set to uvsql, and uvsql is put in the UV_USERS table as the first SQL user with DBA
Privilege. If no uvsql user is defined in /etc/passwd, the installer is prompted to do
one of the following:

Suspend the installation process in order to register a user named uvsql
Let root or uvadm be the owner of the SQL catalog

Either uvsql, root, or uvadm, as the database administrator, has DBA privilege. The
DBA registers other UniVerse SQL users by granting them the appropriate database
privileges.

On Windows Platforms

When UniVerse is first installed, only the user NT AUTHORITY\SYSTEM is regis-
tered as an SQL user. This user is put in the UV_USERS table as the first SQL user
with DBA Privilege. The DBA registers other UniVerse SQL users by granting them
the appropriate database privileges.

Database Privileges
There are three levels of database privilege. From lowest to highest they are:

CONNECT

users One or more user names separated by commas.

PUBLIC Specifies all UniVerse users, whether or not they are defined in
the SQL catalog.

WITH GRANT
OPTION

Specifies that users can grant the specified table privileges to
others.

Parameter Description

GRANT Parameters (Continued)
6-75 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
RESOURCE
DBA

Only a user with DBA privilege can grant database privileges to other users.

CONNECT Privilege

CONNECT privilege registers a user as a UniVerse SQL user. The user must be
defined in the /etc/passwd file. When you grant CONNECT privilege to users, they
are registered in the UV_USERS table of the SQL catalog.

Users with CONNECT privilege can do the following:

Create tables
Alter and drop tables they own
Grant and revoke privileges on tables they own
Use the SELECT, INSERT, UPDATE, and DELETE statements on tables
they have access to
Create and drop views on tables they have access to

This example grants CONNECT privilege to users maria and mark, who are defined
in the /etc/passwd file. The GRANT statement registers them in the SQL catalog.

>GRANT CONNECT
SQL+TO maria, mark;

RESOURCE Privilege

RESOURCE privilege lets UniVerse SQL users create schemas. RESOURCE
privilege includes all capabilities of the CONNECT Privilege. You can grant
RESOURCE privilege only to users with CONNECT privilege.

DBA Privilege

DBA privilege lets UniVerse SQL users execute all SQL statements on all tables and
files as if they owned them. It is the highest database privilege. You can grant DBA
privilege only to users with CONNECT privilege. DBA privilege includes all
capabilities of the RESOURCE privilege and in addition lets the database adminis-
trator do the following:

Grant and revoke database privileges
 GRANT 6-76

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Create schemas and tables for other UniVerse SQL users
Grant privileges on any table to any user
Revoke privileges on any table from any user

Table Privileges
When you create a table, you are the only user with privileges on it, except for users
with DBA privilege. The owner of a table can grant any of the following table privi-
leges on it to other users:

SELECT
INSERT
UPDATE
DELETE
REFERENCES
ALTER

You can use the ALL PRIVILEGES keyword to grant all six table privileges at once.

To create a view, you must have SELECT Privilege on the underlying tables or views.
You can grant privileges on a view only if you are the owner of the view or if you
have been granted SELECT privilege on them WITH GRANT OPTION.

SELECT Privilege

SELECT privilege lets users retrieve data from a table.

INSERT Privilege

INSERT privilege lets users add new rows to a table with the INSERT statement.
UniVerse users who have INSERT and UPDATE privileges can add or change data
in a table using the Editor, ReVise, or a BASIC program.
6-77 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UPDATE Privilege

UPDATE privilege lets users modify existing data in a table using the UPDATE
statement. UniVerse users who have the INSERT Privilege and the UPDATE
Privilege can add or change data in a table using the Editor, ReVise, or a BASIC
program. You can grant UPDATE privilege on all columns in a table or on specific
columns. The syntax is as follows:

UPDATE [(columnnames)]
columnnames is one or more column names separated by commas. If you do not
specify column names, users can update all columns in the table.

DELETE Privilege

DELETE privilege lets users delete rows from a table.

REFERENCES Privilege

REFERENCES privilege lets users define referenced columns in a referential
constraint. You can specify REFERENCES privilege on all columns in a table or on
specific columns. The syntax is as follows:

REFERENCES [(columnnames)]
columnnames is one or more column names separated by commas. If you do not
specify column names, users can specify all columns in the table as referenced
columns.

ALTER Privilege

ALTER privilege lets users change the structure of a table. Users with ALTER
privilege can do the following:

Add columns to a table
Add and remove table constraints
Add and remove association definitions
Set and remove default specifications
 GRANT 6-78

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Examples
This example grants SELECT, UPDATE, and DELETE privileges on the
CUSTOMERS table to users maria and mark:

>GRANT SELECT, UPDATE, DELETE
SQL+ON CUSTOMERS
SQL+TO maria, mark;

The next example gives maria the ability to grant SELECT privilege on the
CUSTOMERS table to others:

>GRANT SELECT
SQL+ON CUSTOMERS
SQL+TO maria
SQL+WITH GRANT OPTION;

The next example gives mark the ability to update the CUSTNO, FNAME, and
LNAME columns of the CUSTOMERS table:

>GRANT UPDATE (CUSTNO, FNAME, LNAME)
SQL+ON CUSTOMERS
SQL+TO mark;
6-79 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
INSERT
Use the INSERT statement to insert new rows into a table, view, or UniVerse file. To
insert data into a table or view, you must own it or have INSERT Privilege on it. To
insert data into a view, you must also have INSERT privilege on the underlying base
table and any underlying views. You cannot use INSERT to insert data into a type 1,
type 19, or type 25 file.

Syntax
INSERT INTO table_expression [(columnnames)] values [qualifiers] ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

table_expression Specifies the table or view into which to insert new data. For the
syntax of table_expression, see “Table.” If table_expression
references an association of multivalued columns or an unasso-
ciated multivalued column as a dynamically normalized table,
INSERT inserts a new association row into specified base table
rows.

columnnames Identifiers specifying the names of one or more columns in the
table or view, separated by commas. If you do not specify
columnnames, all columns are assumed. If table_expression
references an association of multivalued columns or an unasso-
ciated multivalued column as a dynamically normalized table,
you can use the @ASSOC_ROW keyword to specify unique
association row keys if the association has no keys.

values Values to insert in the columns. values can be a VALUES Clause
or a query specification.

qualifiers One or more of the following processing qualifiers separated by
spaces:

INSERT INTO Parameters
 INSERT 6-80

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Description
The INSERT statement creates one or more new rows in a table or file. You can
specify the values you want to insert in one row, or you can use a SELECT statement
to insert a set of rows from another table.

If you use the INSERT statement on a table that has column or table constraints, the
inserted data must meet the constraint criteria.

If you try to insert more than one row and the INSERT statement fails (due to a
constraint violation, for example), no new rows are added.

You cannot insert data into the same table from which you select data.

Using EXPLAIN

The EXPLAIN keyword lists all tables referenced by a query specification in
INSERT statement and explains how the query optimizer will use indexes, process
joins, etc., when the statement is executed. Information is given about each query
block.

EXPLAIN Lists the tables referenced by a query
specification in an INSERT statement
and explains how the query optimizer
will handle execution of the query
specification.

NO.OPTIMIZE Suppresses the optimizer when
processing a query specification.

NOWAIT If the INSERT statement encounters a
lock set by another user, it terminates
immediately. It does not wait for the
lock to be released.

REPORTING Displays the primary key of each
inserted row. If the table has no primary
key, displays the value in @ID.

Parameter Description

INSERT INTO Parameters (Continued)
6-81 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
If you use EXPLAIN in an interactive INSERT statement, after viewing the
EXPLAIN message, press Q to quit, or press any other key to continue processing.

If you use EXPLAIN in an INSERT statement executed by a client program, the
statement is not processed. Instead, an SQLSTATE value of IA000 is returned, along
with the EXPLAIN message as the message text.

Using NOWAIT

The NOWAIT condition applies to:

All locks encountered by the INSERT statement
All cascaded updates and deletes that result from the INSERT statement
All SQL operations in trigger programs fired by the INSERT statement

In these cases the INSERT statement and all its dependent operations are terminated
and rolled back, and an SQLSTATE of 40001 is returned to client programs.

Specifying Columns

Tables

You can specify the columns into which you want to insert values. The order and
number of the values to insert must be the same as the order and number of the
column names you specify. If you specify fewer columns than the table contains, the
unnamed single-valued columns are filled with default values, and unnamed multi-
valued columns are left empty. If you specify no columns, you must specify values
for all columns in the table.

If several column names map to the same column in a view’s underlying base table
or view, the last column name in the list determines the value of the column.

Values are inserted into columns in the order in which the columns were defined or
last altered.

This example inserts a row into the ORDERS table. The primary key is 10009. All
other columns are filled with default values.

>INSERT INTO ORDERS (ORDER.NO) VALUES (10009);
UniVerse/SQL: 1 record inserted.
 INSERT 6-82

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
UniVerse Files

When you insert data into a UniVerse file, the order and number of the values to insert
must be the same as the order and number of the column names you specify.
Unnamed columns are left empty.

If you specify no columns, the file dictionary must contain an @INSERT phrase. (An
@INSERT phrase in a table dictionary is ignored.) The @INSERT phrase defines the
fields into which INSERT can insert values and the order in which to insert them. The
order and number of values to insert must be the same as the order and number of
fields in the @INSERT phrase. If the @INSERT phrase specifies fewer fields than
are defined in the file dictionary, the unnamed fields are left empty.

Dynamic Normalization

If table_expression is of the form tablename_association, the specified association of
multivalued columns is treated as a virtual first-normal-form table. Using both the
primary key of the base table and the key of the association, you can insert new
association rows into specified base table rows. If the base table has no primary key,
the values in @ID are used. If the association does not have association keys, use the
@ASSOC_ROW keyword as a column name. Dynamic normalization combines the
base table’s primary keys with the value mark count generated by @ASSOC_ROW
to create a set of jointly unique association row keys. These keys let you specify the
particular association rows to insert.

If you insert an association row into a dynamically normalized association that is
defined as STABLE, the @ASSOC_ROW value for the new row cannot already
exist. If the @ASSOC_ROW value of the new row is higher than the highest existing
@ASSOC_ROW value, empty association rows are inserted between the last
existing row and the new one.

If you dynamically normalize a UniVerse file and you specify no columns, values are
inserted only in the associated multivalued columns included in the @INSERT
phrase.

Specifying Values
Specify values to insert using one of the following:

A VALUES Clause
A query specification
6-83 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The number of values supplied must equal the number expected, as determined by
the columns you specify (see Specifying Columns).

VALUES Clause
Use the VALUES clause to insert a single row into a table. The VALUES clause has
two syntaxes:

VALUES (valuelist)
DEFAULT VALUES

valuelist is one or more values separated by commas. You can specify each value as
one of the following:

Value Description

expression Specifies a literal; the keywords USER, CURRENT_DATE, or
CURRENT_TIME; or numbers, combined using arithmetic operators or
the concatenation operator. Character value expressions can include any
of the function expressions. The primary key of the new row must be
unique.

NULL If the value is NULL, the column cannot have the column constraint
NOT NULL. You cannot specify NULL as the value of a column that is
part of a primary key.

multivalues A set of comma-separated values enclosed in angle brackets, to insert
into a multivalued column. The syntax is as follows:
<value [, value …]>

The angle brackets are part of the syntax and must be typed. A value can
be NULL or an expression. If the column belongs to an association, the
number and order of values for each row must be the same as the number
and order of the corresponding values in the association key.

If table_expression references an association of multivalued columns or
an unassociated multivalued column as a dynamically normalized table,
you cannot specify multivalues in the VALUES clause.

valuelist Values
 INSERT 6-84

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
You can insert a row of default values into a table by specifying DEFAULT VALUES.
Default values are defined by the CREATE TABLE and ALTER TABLE statements.
If no default values are defined for columns in a table, the default value is null. For
columns in a UniVerse file, the empty string is the default value.

Query Specification
Use a query specification to insert multiple rows into a table. The query specification
selects rows from a table, a view, or a UniVerse file. The query specification is a
standard UniVerse SQL SELECT statement, except for the following:

Field modifiers (AVG, BREAK ON, BREAK SUPPRESS, CALC, PCT,
TOTAL, and their synonyms) are not allowed.
Field qualifiers (CONV, FMT, and so on) are not allowed.
Report qualifiers are not allowed.
The ORDER BY Clause is not allowed.

Examples
The following example writes a new row with data in four columns into the ORDERS
table. The columns ITEM and QTY are multivalued.

>INSERT INTO ORDERS (ORDNO, CUSTOMER, ITEM, QTY)
SQL+VALUES (2, 'STAR', <'BOLT', 'SCREW', 'HINGE'>, <33, 34, 35>);

The next example extracts from the EMPS table all rows with information about
employees in the Sales department and inserts them into the SALESMEN table:

>INSERT INTO SALESMEN
SQL+SELECT * FROM EMPS
SQL+WHERE DEPTCODE = 'SALES';

The next example inserts a row into the DEPTS table in the remote schema
OTHERSCHEMA:

>INSERT INTO OTHERSCHEMA.DEPTS (DEPTNO) VALUES (316);
6-85 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The next example inserts data from the PHONE and NAME columns of the
CUSTOMERS file into the PHONES table. The UNNEST clause explodes the multi-
values in the PHONE field, generating a separate row for each multivalue.

>INSERT INTO PHONES
SQL+SELECT PHONE, NAME
SQL+FROM UNNEST CUSTOMERS ON PHONE;

The next example inserts a line item into an order in the ORDERS table. Line items
in the ORDERS table are association rows.

>INSERT INTO ORDERS_BOUGHT
SQL+VALUES ('10001', 888, 5);
UniVerse/SQL: 1 record inserted.

10001 is the primary key, and 888 is the key of the association BOUGHT. The base
table row must already exist when you are inserting an association row.
 INSERT 6-86

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
REVOKE
Use the REVOKE statement to remove privileges from users. UniVerse SQL users
can revoke specific table privileges they granted on tables and views. You must be a
database administrator (DBA) to revoke database privileges.

Syntax
REVOKE database_privilege FROM users;

REVOKE [GRANT OPTION FOR] table_privileges ON tablename FROM
{ users | PUBLIC } ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

database_privilege One of the following:
CONNECT
RESOURCE
DBA
For more information see “Database Privileges” on page 76.

table_privileges One or more of the following, separated by commas:
SELECT
INSERT
UPDATE [(columnnames)]
DELETE
REFERENCES [(columnnames)]
ALTER
ALL PRIVILEGES

tablename An identifier specifying the name of an existing table or view.

REVOKE Parameters
6-87 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Description
When you revoke a user’s ability to grant a privilege to others (privileges granted
using WITH GRANT OPTION), you do not break the chain of privileges granted by
that user. Only that user’s grant option is revoked; all privileges granted by that user
remain in effect.

You cannot revoke privileges from yourself.

Database Privileges
There are three levels of database privilege. From lowest to highest they are:

CONNECT
RESOURCE
DBA

Only a user with DBA privilege can revoke database privileges.

CONNECT Privilege

CONNECT privilege registers a user as a UniVerse SQL user. When you revoke a
user’s CONNECT privilege, the user is removed from the UV_USERS table of the
SQL catalog. All of the user’s other database and table privileges are also revoked.
Schemas and tables formerly owned by users whose CONNECT privilege is revoked
become the property of the owner of the SQL catalog (on UNIX systems, either uvsql,
root, or uvadm; on Windows platforms, NT AUTHORITY\SYSTEM).

users One or more user names separated by commas.

PUBLIC Specifies all UniVerse users, whether or not they are defined in
the SQL catalog.

GRANT OPTION FOR Specifies that users can no longer grant the specified table privi-
leges to others.

Parameter Description

REVOKE Parameters (Continued)
 REVOKE 6-88

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
To revoke CONNECT privilege from users who also have RESOURCE or DBA
privilege, you must first revoke their RESOURCE Privilege. Revoking RESOURCE
privilege also revokes DBA privilege from users who have it.

Users with CONNECT privilege can do the following:

Create tables
Alter and drop tables they own
Grant and revoke table privileges on tables they own
Use the SELECT, INSERT, UPDATE, and DELETE statements on tables
they have access to
Create and drop views on tables they have access to

This example revokes maria’s and mark’s CONNECT privileges. The GRANT
statement removes their names from the SQL catalog. All their tables become the
property of the owner of the SQL catalog.

>REVOKE CONNECT
SQL+FROM maria, mark;

RESOURCE Privilege

RESOURCE privilege lets UniVerse SQL users create schemas. RESOURCE privi-
lege includes all capabilities of the CONNECT Privilege. When you revoke a user’s
RESOURCE privilege, the user still has CONNECT privilege. When you revoke
RESOURCE privilege from a user who also has DBA privilege, DBA privilege is
also revoked.

DBA Privilege

DBA privilege lets UniVerse SQL users execute all SQL statements on all tables and
files as if they owned them. It is the highest database privilege. DBA privilege
includes all capabilities of the CONNECT Privilege and the RESOURCE Privilege.
Users with DBA privilege can also do the following:

Grant and revoke database privileges
Create schemas and tables for other UniVerse SQL users
Grant privileges on any table to any user
Revoke privileges on any table from any user
6-89 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
When you revoke a user’s DBA privilege, the user still has RESOURCE and
CONNECT privileges.

Table Privileges
When you create a table, you are the only user with privileges on it, except for users
with DBA privilege. The owner of a table can grant any of the following table privi-
leges on it to other users:

SELECT
INSERT
UPDATE
DELETE
REFERENCES
ALTER

You can use the ALL PRIVILEGES keyword to revoke all six table privileges at
once.

SELECT Privilege

SELECT privilege lets users retrieve data from a table.

INSERT Privilege

INSERT privilege lets users add new rows to a table with the INSERT statement.
UniVerse users must have INSERT and UPDATE privileges to add or change data in
a table using the Editor, ReVise, or a BASIC program.

UPDATE Privilege

UPDATE privilege lets users modify existing data in a table with the UPDATE
statement. UniVerse users must have INSERT and UPDATE privileges to add or
change data in a table using the Editor, ReVise, or a BASIC program. You can revoke
UPDATE privilege on all columns in a table or on specific columns. The syntax is as
follows:

UPDATE [(columnnames)]
 REVOKE 6-90

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
columnnames is one or more column names separated by commas. If you do not
specify column names, the privilege is revoked on all columns.

DELETE Privilege

DELETE privilege lets users delete rows from a table.

REFERENCES Privilege

REFERENCES privilege lets users define referenced columns in a referential
constraint. You can revoke REFERENCES privilege on all columns in a table or on
specific columns. The syntax is as follows:

REFERENCES [(columnnames)]
columnnames is one or more column names separated by commas. If you do not
specify column names, the privilege is revoked on all columns.

ALTER Privilege

ALTER privilege lets users change the structure of a table. Users with ALTER
privilege can do the following:

Add columns to a table
Add and remove table constraints
Add and remove association definitions
Set and remove default specifications

Examples
This example revokes SELECT, UPDATE, and DELETE privileges on three tables
from users maria and mark:

>REVOKE SELECT, UPDATE, DELETE
SQL+ON CUSTOMERS, ORDERS, INVENTORY
SQL+FROM maria, mark;
6-91 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The next example revokes maria’s ability to grant SELECT privilege on the
CUSTOMERS table:

>REVOKE GRANT OPTION FOR SELECT
SQL+ON CUSTOMERS
SQL+FROM maria;

The next example revokes mark’s UPDATE privilege on the CUSTNO column of the
CUSTOMERS table:

>REVOKE UPDATE (CUSTNO)
SQL+ON CUSTOMERS
SQL+FROM mark;
 REVOKE 6-92

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
SELECT
Use the SELECT statement to retrieve data from SQL tables and UniVerse files. You
must have SELECT Privilege on a table or view in order to retrieve data from it. If
you have SELECT privilege only on certain columns of a table, you can retrieve data
only from those columns.

Syntax
SELECT clause FROM clause
 [WHERE clause]
 [WHEN clause [WHEN clause] …]
 [GROUP BY clause]
 [HAVING clause]
 [ORDER BY clause]
 [FOR UPDATE clause]
 [report_qualifiers]
 [processing_qualifiers]
 [UNION SELECT statement] ;

Description
The SELECT statement can comprise up to nine fundamental clauses. The SELECT
and FROM clauses are required.

Parameter Description

SELECT clause Specifies the columns to select from the database.

FROM clause Specifies the tables containing the selected columns.

WHERE clause Specifies the criteria that rows must meet to be selected.

WHEN clause Specifies the criteria that values in a multivalued column must
meet for an association row to be output.

GROUP BY clause Groups rows to summarize results.

SELECT Parameters
6-93 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You must specify clauses in the SELECT statement in the order shown. You can use
the SELECT statement with type 1, type 19, and type 25 files only if the current
isolation level is 0 or 1. The following sections describe each clause in detail.

SELECT Clause
The SELECT clause specifies the columns you want to select from the database. The
syntax is as follows:

SELECT { [ALL | DISTINCT] column_specifications
| [schema .] tablename [_association].*
| * } [TO SLIST list]

HAVING clause Specifies the criteria that grouped rows must meet to be
selected.

ORDER BY clause Sorts selected rows.

FOR UPDATE clause Locks selected rows with exclusive record or file locks.

report_qualifiers Formats a report generated by the SELECT statement.

processing_qualifiers Modifies or reports on the processing of the SELECT
statement.

UNION Combines two SELECT statements into a single query that
produces one result table.

Parameter Description

SELECT Parameters (Continued)
 SELECT: SELECT Clause 6-94

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The following table describes each parameter of the syntax.

Parameter Description

ALL Selects all specified values, including duplicate values. ALL is
the default.

DISTINCT Eliminates duplicate rows. You can use DISTINCT once per
query block.

column_specifications One or more column expressions, select expressions, or both,
separated by commas. In programmatic SQL you cannot use a
parameter marker in place of a column specification.

[schema .] tablename
[_association] . *

Selects all columns in tablename, tablename_association,
schema.tablename, or schema.tablename_association.
tablename is an identifier specifying the name of a table, view,
or UniVerse data file. association is an identifier specifying
either the name of an association of multivalued columns in
tablename or the name of an unassociated multivalued column.
The _ (underscore) is part of the syntax and must be typed. If you
specify schema, tablename cannot be the name of a UniVerse
file.

If the FROM clause has defined an alias for tablename, you must
use alias . * instead of tablename . * . If you use schema or
association, they also must be specified in the FROM clause.

If the table dictionary contains an @SELECT phrase,
tablename.* means all columns, real and virtual, listed in the
phrase. The list of columns in @SELECT takes precedence over
the table’s SICA.

If tablename is a UniVerse file, tablename . * means all fields in
the @SELECT phrase for the file. If there is no @SELECT
phrase, “all columns” means all fields in the @ phrase, plus the
record ID (unless the @ phrase contains the ID.SUP keyword).
If neither @SELECT nor the @ phrase exist, tablename . *
means just the record ID field.

SELECT Clause Parameters
6-95 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Column Expression

A column expression has the following syntax:

[field_modifier] column [field_qualifiers]

* Selects all columns. Columns from a table are selected in the
order in which they were defined in the CREATE TABLE
statement. If the table dictionary contains an @SELECT phrase,
“all columns” means all columns, real and virtual, listed in the
phrase. The list of columns in @SELECT takes precedence over
the table’s SICA.
When used to query a UniVerse file, “all columns” means all
fields in the @SELECT phrase for the file. If there is no
@SELECT phrase, “all columns” means all fields in the
@ phrase, plus the record ID (unless the @ phrase contains the
ID.SUP keyword). If neither @SELECT nor the @ phrase exist,
“all columns” means just the record ID field.

list Specifies a UniVerse select list to be created. list is one of the
following:
A number from 0 through 10. The select list must be inactive.
The name of a select list to be saved in the &SAVEDLISTS&
file. The name must contain no spaces and be enclosed in single
quotation marks.

If you use the TO SLIST clause, you can omit
column_specifications when you are selecting from a single
table. Such a query selects values from the @ID column to the
select list.

If you use the TO SLIST clause, column_specifications cannot
specify columns containing multivalued data (unless you are
selecting from an association), and the SELECT statement
cannot include the WHEN, GROUP BY, or HAVING clauses, or
the UNION keyword.

Parameter Description

SELECT Clause Parameters (Continued)
 SELECT: SELECT Clause 6-96

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The following table describes each parameter of the syntax.

Parameter Description

field_modifier One of the following:
TOTAL
AVG
PCT 'n'
BREAK ON "text 'options' … "
BREAK SUPPRESS "text 'options' … "
CALC

Field modifiers do calculations or insert breakpoints before
listing the specified column.

In programmatic SQL you cannot use field modifiers.

column You can specify a column by its name, by an EVAL expression,
or by an alias. If the table expression references an association
of multivalued columns or an unassociated multivalued column
as a dynamically normalized table, you can use the
@ASSOC_ROW keyword to specify a column containing
unique association row numbers when the association has no
association keys.

field_qualifiers One or more of the following, separated by spaces:
[AS] alias
DISPLAYLIKE { [tablename .] columnname | alias }
DISPLAYNAME name
CONV code
FMT format
MULTIVALUED | SINGLEVALUED
ASSOC association
ASSOCIATED { [tablename .] columnname | alias }

Field qualifiers are valid only for the duration of the current
SELECT statement. They define column aliases and override
column definitions in the table’s dictionary.
With the @ASSOC_ROW keyword, you can use only the AS,
DISPLAYLIKE, DISPLAYNAME, and FMT field qualifiers.

Column Expressions
6-97 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Select Expression

A select expression is one or more column expressions, set functions, CAST
functions, literals, the keyword NULL, or the keyword USER, combined using arith-
metic or string operators and parentheses. A select expression can be followed by one
or more field qualifiers.

In programmatic SQL you cannot use a parameter marker in place of a select
expression.

Column Aliases

You can use the AS field qualifier to define an alias for any column, whether
specified by a column expression or a select expression. You can define only one
column alias for each column or select expression.

You can reference the alias later in the same SELECT statement in the following
places:

Select expression
Set function
After the DISPLAYLIKE field qualifier
WHERE Clause1
WHEN Clause
GROUP BY Clause2
HAVING Clause
ORDER BY Clause

The alias name is used as the column heading, unless it is overridden by the
DISPLAYNAME or DISPLAYLIKE keyword.

1. If the alias is defined for a set function or for a select expression that includes a set func-
tion, you cannot reference the alias later in a WHERE or WHEN clause.

2. If the alias is defined for a select expression or a set function, you cannot reference the alias
later in a GROUP BY clause.
 SELECT: SELECT Clause 6-98

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Field Modifiers

You can use the following field modifiers in a column expression. Field modifiers
always precede the column specification.

Field Modifier Description

TOTAL Calculates totals for numeric columns. This modifier is often
used with breakpoints to produce subtotals. When used in a
breakpoint query, the subtotal appears under a row of dashes
(----) indicating the breakpoint. If a breakpoint comprises
only one line, the subtotal is the same as the detail value. The
grand total appears at the end of the report under a row of equal
signs (====).

AVG Calculates the average for numeric columns. Nonnumeric
values are treated as zero values. When used in a breakpoint
query, breakpoint averages are listed in addition to the overall
average at the end of the report.

PCT n Calculates percentages for numeric columns. PCT calculates
the total value of the specified column for all rows, then calcu-
lates the percent of the total value of the specified column for
each row. n is an integer from 0 through 5 that specifies how
many digits to display after the decimal point. If you omit n, two
digits are displayed.

BREAK ON "text
'options' … "

Specifies which column to use to create breaks in a report. A
break occurs when the column values change. Asterisks or user-
specified text indicates the breakpoint. This modifier is often
used with AVG, CALC, PCT, and TOTAL to perform the
specified action and display results when the values change.

To make the report more effective, sort the breakpointed
column to process and display the same values together. If the
column is multivalued, use the UNNEST clause to list associ-
ation rows separately.

text is the text you want to appear under the column value in the
breakpoint line. If you do not specify text, a row of asterisks is
used. text is not displayed when the report is in vertical format.

Field Modifiers
6-99 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
options can be any of the following formatting options. All
options suppress the breakpoint row of asterisks.

B Used with the B option of the HEADING or
FOOTING report qualifier, includes the current
breakpoint value in the heading or footing. Every
time the breakpoint value changes, a new page is
generated. Only the first B option in a query is used.

D Suppresses printing of the breakpoint line if there is
only one line of detail for a value, but leaves a blank
line between rows.

L Suppresses printing of the breakpoint line, but still
skips a line when the value changes. If text is
specified, it is ignored.

N Resets the page number to 1 for each new breakpoint
value.

O Outputs each breakpoint value only once.

P Begins a new page for every new breakpoint value.

V Inserts the breakpoint field value instead of asterisks.

BREAK SUPPRESS
"text 'options' … "

Same as BREAK ON, except BREAK SUPPRESS does not
display a row of asterisks or the values in the specified column.

options can be B, D, and P, as described under BREAK ON.

CALC Calculates totals in I-descriptors that contain the TOTAL
function. Use CALC with breakpointing to produce subtotals.
When used with breakpointing, CALC displays intermediate
values for the expression on the breakpoint lines. Subtotals
calculate an intermediate value at the breakpoint. A grand total
is printed at the bottom of the report.

Field Modifier Description

Field Modifiers (Continued)
 SELECT: SELECT Clause 6-100

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Field Qualifiers

You can use the following field qualifiers in a column expression. They always
follow the column specification. Field qualifiers temporarily override the table
dictionary for the duration of the query.

Field Qualifier Description

AS alias Specifies a new name for column. If you omit AS, alias must be
the first field qualifier in the list. alias cannot duplicate the name
of an entry in the table’s or view’s dictionary.

DISPLAYLIKE { [tablename .] columnname | alias }

Sets a column’s display characteristics to be the same as those of
another column. When used in the same column expression with
other field qualifiers, DISPLAYLIKE is processed before
CONV, DISPLAYNAME, FMT, SINGLEVALUED, MULTI-
VALUED, ASSOC, and ASSOCIATED. You can use any of
these field qualifiers to override display characteristics set by
DISPLAYLIKE.

DISPLAYNAME name Defines a column heading for column. To specify a line break in
the column heading, use the letter L enclosed in single quotation
marks and enclose name in double quotation marks. In program-
matic SQL, you cannot use a parameter marker in place of name.

CONV code Defines a conversion for column. code is any BASIC conversion
code available to the ICONV and OCONV functions. If there is
a conversion in the dictionary entry and you want no conversion
applied, specify an empty string in the CONV clause. For more
information about conversion codes, see UniVerse BASIC. In
programmatic SQL you cannot use a parameter marker in place
of code.

FMT format Defines a format for column. format specifies the width of the
display column, the character used to pad the display field, the
type of justification, the format of numeric data, and a format
mask. For full details about the syntax of the format expression
see the FMT function in UniVerse BASIC. If you specify format
as an empty string, a default format of 10L is used. Invalid
format expressions can give unpredictable results. In program-
matic SQL you cannot use a parameter marker in place of
format.

Field Qualifiers
6-101 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse Select List

The TO SLIST clause creates either an active or a saved select list. The select list can
comprise multicolumn primary keys or association row keys. The resulting select list
can be used to restrict the action of any SQL statement or UniVerse command to the
rows specified in the select list. See “Specifying Rows with a Select List” on
page 110.

In addition to the syntax of the SELECT clause shown earlier in this section, you can
use the following simpler syntax to create a UniVerse select list of a table’s primary
keys:

MULTIVALUED Specifies that column be treated as multivalued, overriding any
existing specification in field 6 of the table dictionary. You
cannot use MULTIVALUED in the same column expression
with SINGLEVALUED. You cannot use MULTIVALUED in
programmatic SQL.

SINGLEVALUED Specifies that column be treated as single-valued, overriding any
existing specification in field 6 of the table dictionary. You
cannot use SINGLEVALUED in the same column expression
with MULTIVALUED, ASSOC, or ASSOCIATED. You cannot
use SINGLEVALUED in programmatic SQL.

ASSOC association Associates column with an existing association of multivalued
columns in the same table. association is the record ID of the
entry in the table dictionary that defines an association. You
cannot use ASSOCIATED or SINGLEVALUED in the same
column expression with ASSOC. You cannot associate a column
with an association in another table. You cannot use ASSOC in
programmatic SQL.

ASSOCIATED { [tablename .] columnname | alias }

Associates columnname or alias with another multivalued
column expression in the same table. You cannot use ASSOC or
SINGLEVALUED in the same column expression with
ASSOCIATED. You cannot associate a column with a column in
another table. You cannot use ASSOCIATED in programmatic
SQL.

Field Qualifier Description

Field Qualifiers (Continued)
 SELECT: SELECT Clause 6-102

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
SELECT TO SLIST list [FROM clause] [WHERE clause]
[ORDER BY clause] ;

If a query expression or SELECT statement contains the TO SLIST clause, it cannot
contain any of the following:

UNION operator
WHEN clause
GROUP BY clause
HAVING clause

Examples

The following examples show different ways to refer to columns in the SELECT
clause.

Using Column Names

This example selects two columns by name from the INVENTORY table:

>SELECT PROD.NO, "DESC"
SQL+FROM INVENTORY;
Part No Description...................

210 Red/Blue/Yellow Juggling Bag
102 Red Silicon Ball
112 Red Vinyl Stage Ball
202 Red Juggling Bag
502 Red Classic Ring
318 Gold Deluxe Stage Club
.
.
.

Selecting All Columns

The next example uses the * (asterisk) to select all columns from the INVENTORY
table:

>SELECT * FROM INVENTORY;
Part No Description............... Available Cost... Price..
Reorder At

210 Red/Blue/Yellow Juggling Bag 77 $3.40 $5.00
21
6-103 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
102 Red Silicon Ball 45 $14.00 $25.00
9
112 Red Vinyl Stage Ball 20 $3.50 $6.00
12
202 Red Juggling Bag 94 $3.40 $5.00
21
502 Red Classic Ring 42 $2.80 $5.00
9
318 Gold Deluxe Stage Club 45 $14.00 $23.00
9

Eliminating Duplicate Rows

The next example uses DISTINCT to eliminate duplicate rows from the results:

>SELECT DISTINCT CUST.NO
SQL+FROM ORDERS;
Customer No

 6518
 4450
 9874
 9825
 3456

5 records listed.

Using Constants

The next example uses a text string to clarify output. The text Amount in stock
is: is printed for each row, in its own column.

>SELECT 'Amount in stock is:',QOH,PROD.NO
SQL+FROM INVENTORY;
Amount in stock is: Available Part No

Amount in stock is: 77 210
Amount in stock is: 45 102
Amount in stock is: 20 112
Amount in stock is: 94 202
Amount in stock is: 42 502
Amount in stock is: 45 318

.

.

.

 SELECT: SELECT Clause 6-104

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Selecting Set Functions

The next example uses a set function and two field qualifiers to calculate and list the
average profit on items in inventory:

>SELECT AVG(SELL-COST) - 1.2 DISPLAYNAME 'Average Profit' CONV
'MD2$'
SQL+FROM INVENTORY;
Average Profit

 $6.30

1 records listed.

Using Field Modifiers and Field Qualifiers

The next example uses the field modifier TOTAL and the field qualifiers CONV,
FMT, and AS:

>SELECT PROD.NO,TOTAL QOH,EVAL 'SELL-COST' CONV 'MD2$' FMT '6R' AS
PROFIT
SQL+FROM INVENTORY
SQL+WHERE PROFIT > 10;
SELL - COST
Part No Available PROFIT

102 45 $11.00
418 12 $12.00
704 12 $33.00
605 4 $18.00
101 25 $11.00
103 30 $11.00
419 12 $12.00
 =========
 140

7 records listed.

Using CAST Functions

The next example joins two tables on a character column and an integer column:

>SELECT CAST(CHARCOL AS INT) FROM TABLEA UNION
SQL+SELECT INTCOL FROM TABLEB;

The next example joins two tables using a place holder:

>SELECT COLNAME, CAST(NULL AS DATE) FROM TABLEA UNION
SQL+SELECT COLNAME, DATECOL FROM TABLEB;
6-105 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The next example adds a number to a character column without modifying the file
dictionary:

>SELECT CAST(@ID AS INT) + 1 FROM FILE;

The next example adds 5 to a character column, then concatenates it with a %
(percent sign):

>SELECT CAST(CAST(COLNAME AS INT)+5 AS VARCHAR)||'%'
SQL+FROM TABLEA;

The next example finds the internal value of a date:

>SELECT CAST('1996-12-25' AS INT) FROM TABLE;

The next example finds the date representation of an integer:

>SELECT CAST(10587 AS DATE) FROM TABLE;

FROM Clause
The FROM clause specifies one or more tables or UniVerse files from which to select
data. Its syntax is as follows:

FROM { table_specification [[AS] alias] | joined_table_specification }
[, { table_specification [[AS] alias] | joined_table_specification } …]

The following table describes each parameter of the syntax.

Parameter Description

table_specification Either a table expression or an UNNEST clause.

table_expression For the syntax of
table_expression, see “Table.”

FROM Parameters
 SELECT: FROM Clause 6-106

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Examples

The following examples show different ways to refer to tables in the FROM clause.

Using Table Names

This example uses a simple table name to identify the source of the data:

>SELECT BILL.TO FROM CUSTOMERS;
Bill to.......................

Mr. B. Clown
1 Center Ct.
New York, NY 10020
Mr. D. Juggler
10 Pin Lane
Smalltown, MI 09876
Ms. H. Rider
RFD 3
Hayfield, VT 12345

.

.

.

UNNEST clause For information about the
UNNEST clause, see
“UNNEST Clause.”

alias An identifier specifying another name for table_specification.
You can use a table’s alias to refer to it in other clauses of the
SELECT statement. If table_specification references an associ-
ation of multivalued columns or an unassociated multivalued
column as a dynamically normalized table, alias cannot be the
same as the name of a column in the base table.

joined_table_specificatio
n

Specifies a temporary table made up of two or more tables. For
the syntax of joined_table_specification, see “Joined Tables” on
page 112.

Parameter Description

FROM Parameters (Continued)
6-107 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Specifying Rows

The next example specifies a subset of rows in the CUSTOMERS file as the source
of the data:

>SELECT BILL.TO FROM CUSTOMERS '6518''2309''1043';
Bill to.......................

Parade Supply Store
6100 Ohio Ave.
Washington, D.C. 14567
The Great Bandini
45 Cornnut Way
Anytown, OR 34257
Circus Performers Society
P.O. Box 3030
Chicago, IL 71945

3 records listed.

Using Aliases

The next example defines two aliases, A and B, for the same table name, and uses the
aliases to qualify the PROD.NO and QOH columns so that values in each column can
be compared to other values in the same column. This query returns products where
two or more have the same quantity on hand (QOH).

>SELECT DISTINCT A.PROD.NO, A."DESC", A.QOH
SQL+FROM INVENTORY A, INVENTORY B
SQL+WHERE A.QOH = B.QOH AND A.PROD.NO <> B.PROD.NO
SQL+ORDER BY A.QOH;
Part No Description................... Available

418 Gold Deluxe Stage Torch 12
419 Silver Deluxe Stage Torch 12
704 Sure Balance Unicycle 12
204 Blue Juggling Bag 45
111 White Vinyl Stage Ball 45
102 Red Silicon Ball 45
318 Gold Deluxe Stage Club 45

7 records listed.
 SELECT: FROM Clause 6-108

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Specifying Rows with a Select List

The next example uses the TO SLIST clause of the SELECT statement to create a
select list of all orders dated later than June 1, 1992, then uses the select list in the
FROM clause of another SQL SELECT statement. (In programmatic SQL you can
use a named select list, but you cannot use a numbered select list.)

>SELECT TO SLIST 0 FROM ORDERS WHERE "DATE" > '06-01-92';

4 record(s) selected to SELECT list #0.
>>SELECT ORDER.NO, "DATE", CUST.NO, PROD.NO, QTY FROM ORDERS SLIST
0;
Order No Order Date Customer No Product No Qty.

10002 14 JUL 92 6518 605 1
 501 1
 502 1
 504 1
10004 22 AUG 92 4450 704 1
 301 9
10005 25 NOV 92 9874 502 9
10007 06 JUL 92 9874 301 3

4 records listed.

Specifying Rows Interactively

The next example uses INQUIRING to prompt the user to enter a primary key. If the
table has no primary key, enter a value from the @ID column. When the user enters
a valid value at the prompt, the requested row is returned and the user is prompted to
enter another primary key. (In programmatic SQL you cannot use INQUIRING.)

>SELECT * FROM ORDERS INQUIRING;
Order No Customer No Product No Qty. Total.......

Primary Key for table ORDERS = 10001
Order No Customer No Product No Qty. Total.......

10001 3456 112 7 $265.00
 418 4
 704 1

Primary Key for table ORDERS =
6-109 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UNNEST Clause

The UNNEST clause unnests the multivalued data of an association. Its syntax is as
follows:

UNNEST table ON { columnname | association }
The following table describes each parameter of the syntax.

UNNEST explodes associated table rows containing multivalued data, generating a
separate row for each multivalue. Unnested columns are treated as singlevalued
columns for the rest of the query processing. UNNEST acts before all other states of
query processing.

The number of unnested rows created per base table row is determined as follows:

For SQL tables, by the maximum number of multivalues in the unnested
association key columns, as defined in the SICA
For UniVerse files, by the maximum number of multivalues in the unnested
association phrase columns or in the controlling attribute column

You cannot use UNNEST if an exploded select list is active. An exploded select list
is a select list created using the BY.EXP or BY.EXP.DSND keyword.

Parameter Description

table The name of a table or UniVerse file. You can specify table in two ways:

tablename The name of a table or UniVerse data file.

DATA filename , datafile Specifies a data file that is part of a file
with multiple data files.

columnname The name of a column. columnname cannot be a column alias.

association The name of an association.

UNNEST Parameters
 SELECT: FROM Clause 6-110

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Example
This example unnests the ORDERS table on the association called BOUGHT and
sorts the data by product number. BOUGHT associates the columns PROD.NO and
QTY.

>SELECT *
SQL+FROM UNNEST ORDERS ON BOUGHT
SQL+ORDER BY PROD.NO;
Order No Customer No Product No Qty. Total.......

10006 6518 112 3 $18.00
10001 3456 112 7 $265.00
10003 9825 202 10 $100.00
10003 9825 204 10 $100.00
10004 4450 301 9 $205.00
10007 9874 301 3 $30.00
10001 3456 418 4 $265.00
10002 6518 501 1 $55.00
10005 9874 502 9 $45.00
10002 6518 502 1 $55.00
10002 6518 504 1 $55.00
10002 6518 605 1 $55.00
10004 4450 704 1 $205.00
10001 3456 704 1 $265.00

14 records listed.

Joined Tables

The joined_table_specification can specify an inner join or a left outer join. The
syntax is as follows:

{ table_specification | joined_table_specification } [INNER | LEFT
[OUTER]] JOIN table_specification { ON condition | USING
(columns) }
6-111 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

Multiple joins are processed from left to right. You cannot use parentheses in the
syntax of a joined table specification to change the order in which multiple joins are
processed.

You cannot use the INQUIRING keyword in the table specifications of a joined table
specification.

If you omit the INNER or LEFT keywords, or if you specify INNER, the join
condition applies to the Cartesian product of the two table specifications. The result
table is similar to the one created by the following syntax:

FROM table_specification1, table_specification2

Parameter Description

table_specification Either a table expression or an UNNEST clause:

table_expression For the syntax of table_expression, see
“Table.”

UNNEST clause For information about the UNNEST
clause, see “UNNEST Clause.”

joined_table_specification Specifies a temporary table made up of two or more tables.

INNER Specifies an inner join.

LEFT [OUTER] Specifies a left outer join.

condition The columns specified in condition must refer to columns in
the joined tables that precede the ON keyword. If the joined
table specification is part of a subquery, the columns specified
in condition can refer to columns outside the joined table
specification if they are valid outer references.
Column names in condition cannot be aliases defined in the
SELECT clause.

columns Specifies the columns on which to join the tables.

joined_table_specification Parameters
 SELECT: FROM Clause 6-112

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The result table of an outer join can contain more rows than the result table of the
corresponding inner join, because a row is generated for each row in the first table
specification (the outer table) that does not meet the join condition against any row
in the second table specification. In an inner join, if a row in the first table specifi-
cation does not meet the join condition against any row in the second table
specification, that row is left out of the result table.

In the result of an outer join, the rows from the outer table that do not match any rows
of the second table contain null values for all selected columns of the second table. If
such a column is multivalued, the row is padded with a single null value.

WHERE Clause
The WHERE clause specifies the criteria that data in a row must meet for the row to
be selected. The syntax is as follows:

WHERE [NOT] { condition | subquery_condition }
[{ AND | OR } [NOT] { condition | subquery_condition } …]

The following table describes each parameter of the syntax.

A condition can do the following:

Compare values to other values, including values returned by a subquery
Specify a range of values
Match a phonetic or string pattern
Test for the null value
Test whether a subquery produces results

Parameter Description

condition For the syntax of condition, see “Condition.”

subquery_condition For the syntax of subquery_condition, see “Subquery.”

AND Both conditions connected by AND must be true for the row to
be selected.

OR Either condition connected by OR can be true for the row to be
selected.

WHERE Parameters
6-113 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Precede a condition with the keyword NOT to reverse the condition. When you
reverse a condition, the test is true only if the condition is false.

A WHERE condition can specify either a condition or a join. The condition can be
simple, or it can include another SELECT statement, called a subquery.

You cannot use a set function in a WHERE condition, unless it is part of a subquery.

The following sections provide examples of the kinds of condition you can specify
in a WHERE clause.

Comparing Values

You can compare values using relational operators or the IN keyword.

Using Relational Operators

You can compare one expression to another using relational operators.

This example uses the relational operator < (less than) to select only those orders
dated before April 1, 1994:

>SELECT CUST.NO, "DATE"
SQL+FROM ORDERS
SQL+WHERE "DATE" < '4/1/92';
Customer No Order Date

 9825 07 MAR 92
 3456 11 FEB 92

2 records listed.

The next example evaluates the expression QOH − REORDER and uses the < (less
than) operator to select only those items in inventory where the difference between
the quantity on hand and the number to reorder is less than 10:

>SELECT "DESC", QOH, REORDER.QTY
SQL+FROM INVENTORY
SQL+WHERE QOH - REORDER.QTY < 10;
Description................... Available Reorder At

Red Vinyl Stage Ball 20 12
Gold Deluxe Stage Torch 12 15
Sure Balance Unicycle 12 3
Collapsible Felt Top Hat 4 5
Silver Deluxe Stage Torch 12 15

5 records listed.
 SELECT: WHERE Clause 6-114

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Using the IN Keyword

You can compare an expression to a list of values using the IN keyword.

This example selects items from inventory where the markup (selling price minus
cost) is either $33.00 or $18.00:

>SELECT * FROM INVENTORY
SQL+WHERE SELL - COST IN (33.00, 18.00);
Part No Description........... Available Cost... Price..
Reorder At

704 Sure Balance Unicycle 12 $82.00 $115.00
3
605 Collapsible Felt Top Hat 4 $22.00 $40.00
5

2 records listed.

Specifying a Range: BETWEEN

You can specify a range within which the selected data should be found using the
BETWEEN keyword.

This example selects order dates and customer numbers of orders dated between
March 1 and May 1, 1994:

>SELECT "DATE", CUST.NO
SQL+FROM ORDERS
SQL+WHERE "DATE" BETWEEN '3/1/92' AND '5/1/92';
Order Date Customer No

 22 APR 92 6518
 07 MAR 92 9825

2 records listed.

The next example selects items in inventory whose cost is outside the range $3.00
through $22.00:

>SELECT PROD.NO, COST FROM INVENTORY
SQL+WHERE COST NOT BETWEEN 3 AND 22;
Part No Cost...

502 $2.80
504 $2.80
704 $82.00
501 $2.80

4 records listed.
6-115 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Phonetic Matching: SAID

You can test whether a character string is phonetically like another string using the
SAID or SPOKEN keyword.

This example selects all customers whose last name sounds like Smith:

>SELECT FNAME, LNAME, CITY, STATE
SQL+FROM CUSTOMERS
SQL+WHERE LNAME SAID 'SMITH';
FNAME.......... LNAME.......... CITY........... STATE

Susan Smith Somerville MA
Brad Smythe New York NY

2 records listed.

Pattern Matching: LIKE

You can test whether data matches a pattern using the LIKE, MATCHING, or
MATCHES keyword.

This example selects all customers with the word Clown in their name:

>SELECT CUST.NO, BILL.TO, PHONE
SQL+FROM CUSTOMERS
SQL+WHERE BILL.TO LIKE '%Clown%';
Cust No Bill to....................... Phone Number...

4450 Mr. B. Clown (918) 737-2118
 1 Center Ct.
 New York, NY 10020
9874 The Clown Convention (617) 665-9890
 18 Porter St.
 Somerville, MA 02143

2 records listed.

Testing for the Null Value: IS NULL

You can test whether a value is the null value using the IS NULL keyword.
 SELECT: WHERE Clause 6-116

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
This example selects engagement dates where gate revenue is null (because the dates
are all for future engagements):

>SELECT DISTINCT "DATE"
SQL+FROM ENGAGEMENTS.T
SQL+WHERE GATE_REVENUE IS NULL
SQL+ORDER BY "DATE";
DATE......

12/28/94
12/29/94
12/31/94
01/01/95
01/03/95
01/04/95
01/18/95
01/19/95
01/22/95
01/23/95
01/24/95
02/16/95

.

.

.

Using Subqueries

You can introduce a subquery in a WHERE clause in three ways. Use one of the
following:

A relational operator
The IN keyword
The EXISTS keyword

This example uses the = (equal to) operator with a subquery to select the least
expensive products, with their cost and selling price. The set function in the subquery
returns one row.

>SELECT "DESC", COST, SELL FROM INVENTORY
SQL+WHERE SELL = (SELECT MIN(SELL) FROM INVENTORY);
Description................... Cost... Price..

Red/Blue/Yellow Juggling Bag $3.40 $5.00
Red Juggling Bag $3.40 $5.00
Red Classic Ring $2.80 $5.00
6-117 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Blue Juggling Bag $3.40 $5.00
Blue Classic Ring $2.80 $5.00
White Classic Ring $2.80 $5.00
Yellow Juggling Bag $3.40 $5.00

7 records listed.

The next example uses the ANY keyword to select any orders which include a
product whose selling price is greater than $25.00:

>SELECT * FROM ORDERS
SQL+WHERE PROD.NO = ANY (SELECT CAST(PROD.NO AS INT)
SQL+FROM INVENTORY
SQL+WHERE SELL > 25);
Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1
10004 4450 704 1 $205.00
 301 9
10001 3456 112 7 $265.00
 418 4
 704 1

3 records listed.

In the subquery, the CAST function changes the data type of the PROD.NO column
(in the INVENTORY table) to INT so it can be compared to the corresponding
PROD.NO column in the ORDERS table.

The next example uses the IN keyword with a subquery to extract the names and
addresses of customers who have ordered item number 502 from June 30 through
August 1, 1992:

>SELECT BILL.TO FROM CUSTOMERS
SQL+WHERE CAST(CUST.NO AS INT) IN (SELECT CUST.NO FROM ORDERS
SQL+WHERE PROD.NO = 502
SQL+AND "DATE" BETWEEN '30 JUN 92' AND '1 AUG 92');
Bill to.......................

Parade Supply Store
6100 Ohio Ave.
Washington, D.C. 14567

1 records listed.
 SELECT: WHERE Clause 6-118

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The next example uses the EXISTS keyword with a subquery to request billing
addresses for all customers who have an outstanding order:

>SELECT BILL.TO FROM CUSTOMERS
SQL+WHERE EXISTS (SELECT * FROM ORDERS
SQL+WHERE CUST.NO = CAST(CUSTOMERS.CUST.NO AS INT))
SQL+DOUBLE SPACE;
BILLTO........................

Mr. B. Clown
1 Center Ct.
New York, NY 10020

Ms. F. Trapeze
1 High Street
Swingville, ME 98765

Parade Supply Store
6100 Ohio Ave.
Washington, D.C. 14567

The Clown Convention
18 Porter St.
Somerville, MA 02143
North American Juggling
Association
123 Milky Way
Dallas, TX 53485

5 records listed.

Joining Tables

A join creates a temporary table made up of two or more tables. There are two types
of join:

Inner join
Outer join

This section describes inner joins.

You use the WHERE clause to relate at least one column of one table to at least one
column of another table. If the data in the related columns meets the criteria, the
query returns a pair of related rows, one row from each table.

To join two or more tables in a query, you must do the following:

List the tables to be joined in the FROM clause.
6-119 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Specify a join condition in the WHERE clause.

A join condition defines the relationships among the tables. The syntax is as follows:

SELECT Clause
FROM table1 , table2 [, tablen …]
WHERE table1.columnname operator table2.columnname
[AND tablen.columnname operator tablem.columnname …]

This example joins the ORDERS and INVENTORY tables on the PROD.NO
columns in each table. Since PROD.NO is multivalued in the ORDERS table, the
data is unnested to produce one row for each multivalue. The rows are sorted by order
number. Because both tables contain a PROD.NO column, each column name is
qualified by prefixing it with its table name.

>SELECT ORDER.NO, QTY, "DESC"
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY
SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+ORDER BY ORDER.NO;
Order No Qty. Description...................

10001 7 Red Vinyl Stage Ball
10001 4 Gold Deluxe Stage Torch
10001 1 Sure Balance Unicycle
10002 1 Collapsible Felt Top Hat
10002 1 Blue Classic Ring
10002 1 White Classic Ring
10002 1 Red Classic Ring
10003 10 Red Juggling Bag
10003 10 Blue Juggling Bag
10004 9 Classic Polyethylene Club
10004 1 Sure Balance Unicycle
10005 9 Red Classic Ring
10006 3 Red Vinyl Stage Ball
10007 3 Classic Polyethylene Club

14 records listed.
 SELECT: WHERE Clause 6-120

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The next example shows a reflexive join on the ORDERS table: that is, it joins the
ORDERS table to itself. The query finds all orders of customers who have submitted
more than one order. The FROM clause specifies the ORDERS table twice, assigning
different aliases to each table specification. The WHERE clause uses the aliases to
distinguish two references to the same column in the same table. The SELECT clause
also uses the aliases to avoid ambiguity.

>SELECT A.CUST.NO, A."DATE"
SQL+FROM ORDERS A, ORDERS B
SQL+WHERE A.CUST.NO = B.CUST.NO
SQL+AND A."DATE" <> B."DATE";
Customer No Order Date

 6518 14 JUL 92
 6518 22 APR 92
 9874 25 NOV 92
 9874 06 JUL 92

4 records listed.

The next example shows a three-table join on the ORDERS, CUSTOMERS, and
INVENTORY tables. The ORDERS table is unnested on the multivalued field QTY,
and the report is double-spaced to make it easier to read.

>SELECT ORDER.NO, BILL.TO, QTY, "DESC"
SQL+FROM UNNEST ORDERS ON QTY, CUSTOMERS, INVENTORY
SQL+WHERE ORDERS.CUST.NO = CUSTOMERS.CUST.NO
SQL+AND ORDERS.PROD.NO = INVENTORY.PROD.NO DBL.SPC;
Order No Bill to....................... Qty.
Description................

 10002 Parade Supply Store 1 Collapsible Felt
Top Hat
 6100 Ohio Ave.
 Washington, D.C. 14567

 10002 Parade Supply Store 1 White Classic Ring
 6100 Ohio Ave.
 Washington, D.C. 14567

 10002 Parade Supply Store 1 Red Classic Ring
 6100 Ohio Ave.
 Washington, D.C. 14567

 10002 Parade Supply Store 1 Blue Classic Ring
 6100 Ohio Ave.
 Washington, D.C. 14567

 10006 Parade Supply Store 3 Red Vinyl Stage
Ball
 6100 Ohio Ave.
 Washington, D.C. 14567
6-121 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse

 10004 Mr. B. Clown 9 Classic
Polyethylene Club
 1 Center Ct.
 New York, NY 10020

 10005 The Clown Convention 9 Red Classic Ring
 18 Porter St.
 Somerville, MA 02143

 10003 North American Juggling 10 Red Juggling Bag
 Association
 123 Milky Way
 Dallas, TX 53485

 10003 North American Juggling 10 Blue Juggling Bag
 Association
 123 Milky Way
 Dallas, TX 53485

 10001 Ms. F. Trapeze 7 Red Vinyl Stage
Ball
 1 High Street
 Swingville, ME 98765

 10001 Ms. F. Trapeze 4 Gold Deluxe Stage
Torch
 1 High Street
 Swingville, ME 98765

 10001 Ms. F. Trapeze 1 Sure Balance
Unicycle
 1 High Street
 Swingville, ME 98765

 10007 The Clown Convention 3 Classic
Polyethylene Club
 18 Porter St.
 Somerville, MA 02143

14 records listed.

WHEN Clause
The WHEN clause limits output from multivalued columns to rows in an association
that meet the specified criteria. WHEN lists selected multivalues in associated
columns without having to unnest the association first. The syntax is as follows:

WHEN [NOT] { condition | subquery_condition }
[{ AND | OR } [NOT] { condition | subquery_condition } …]
 SELECT: WHEN Clause 6-122

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The following table describes each parameter of the syntax.

A condition can do the following:

Compare values to other values, including values returned by a subquery
Specify a range of values
Match a phonetic or string pattern
Test for the null value
Test whether a subquery produces results

Precede a condition with the keyword NOT to reverse the condition. When you
reverse a condition, the test is true only if the condition is false.

A WHEN condition can be simple, or it can include another SELECT statement,
called a subquery.

You cannot use a set function in a WHEN condition unless it is part of a subquery.

The following sections provide examples of the kinds of condition you can specify
in a WHEN clause.

Comparing Values

You can compare values using relational operators or the IN keyword.

Using Relational Operators

You can compare one expression to another using relational operators.

Parameter Description

condition For the syntax of condition, see “Condition.”

subquery_condition For the syntax of subquery_condition, see “Subquery.”

AND Both conditions connected by AND must be true for the row to
be selected.

OR Either condition connected by OR can be true for the row to be
selected.

WHEN Parameters
6-123 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This example selects all rows from the ORDERS file but lists only the quantity
ordered of product number 704:

>SELECT CUST.NO, "DATE", QTY, PROD.NO
SQL+FROM ORDERS
SQL+WHEN PROD.NO = 704;
Customer No Order Date Qty. Product No

 6518 14 JUL 92
 6518 22 APR 92
 4450 22 AUG 92 1 704
 9874 25 NOV 92
 9825 07 MAR 92
 3456 11 FEB 92 1 704
 9874 06 JUL 92

7 records selected. 2 values listed.

Using the IN Keyword

You can compare an expression to a list of values using the IN keyword.

This example selects all rows in the ORDERS table but lists the quantity ordered only
of product numbers 502 and 112:

>SELECT * FROM ORDERS WHEN PROD.NO IN (502,112);
Order No Customer No Product No Qty. Total.......

10002 6518 502 1 $55.00
10006 6518 112 3 $18.00
10004 4450 $205.00
10005 9874 502 9 $45.00
10003 9825 $100.00
10001 3456 112 7 $265.00
10007 9874 $30.00

7 records selected. 4 values listed.

Specifying a Range: BETWEEN

You can specify a range within which the selected data should be found using the
BETWEEN keyword.
 SELECT: WHEN Clause 6-124

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
This example select all rows in the ORDERS file but lists the product numbers and
quantity ordered only if more than 5 or fewer than 20 were ordered:

>SELECT * FROM ORDERS WHEN QTY BETWEEN 5 AND 20;
Order No Customer No Product No Qty. Total.......

10002 6518 $55.00
10006 6518 $18.00
10004 4450 301 9 $205.00
10005 9874 502 9 $45.00
10003 9825 202 10 $100.00
 204 10
10001 3456 112 7 $265.00
10007 9874 $30.00

7 records selected. 5 values listed.

Phonetic Matching: SAID

You can test whether a character string is phonetically like another string using the
SAID or SPOKEN keyword.

Pattern Matching: LIKE

You can test whether data matches a pattern using the LIKE, MATCHING, or
MATCHES keyword.

This example selects all rows in the LOCATIONS table but lists media information
only for radio stations:

>SELECT DESCRIPTION FMT '30T', MEDIA_NAME, MEDIA_CONTACT,
MEDIA_PHONE
SQL+FROM LOCATIONS.T
SQL+WHEN MEDIA_NAME LIKE '%Radio%';

DESCRIPTION. Houston State Fair Ground
MEDIA_NAME..... MEDIA_CONTACT............ MEDIA_PHONE.
KKSR Radio Irwin, Sandra 713/293-6175
KSHG Radio Unruh, Sheryl 713/572-8998

DESCRIPTION. Washington State Fair Ground
MEDIA_NAME..... MEDIA_CONTACT............ MEDIA_PHONE.
WGBU Radio Yamaguchi, James 202/522-5618

DESCRIPTION. Springfield State Fair Ground
MEDIA_NAME..... MEDIA_CONTACT............ MEDIA_PHONE.
KDVT Radio Kroll, Vanessa 217/428-3921
KBXZ Radio Martinez, Darlene 217/390-9427
6-125 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
.

.

.
DESCRIPTION. Kansas City State Fair Ground
MEDIA_NAME..... MEDIA_CONTACT............ MEDIA_PHONE.
KHMU Radio Kozlowski, Nancy 816/978-1378
KTEA Radio Macbride, Gary 816/782-3572

32 records selected. 44 values listed.

Testing for the Null Value: IS NULL

You can test whether a value is the null value using the IS NULL keyword.

Using Subqueries

You can introduce a subquery in a WHEN clause in two ways. Use one of the
following:

A relational operator
The IN keyword

You cannot use the EXISTS keyword in a WHEN subquery.

This example selects all rows in the ORDERS table but lists only those items ordered
whose selling price is the lowest of all products in the INVENTORY table:

>SELECT ORDER.NO, PROD.NO, SELL FROM ORDERS
SQL+WHEN SELL = (SELECT MIN(SELL) FROM INVENTORY);
Order No Product No Sell.....

10002 605 $5.00
 501 $5.00
 502 $5.00
 504
10006 112
10004 704
 301
10005 502 $5.00
10003 202 $5.00
 204 $5.00
10001 112
 418
 704
10007 301

7 records selected. 6 values listed.
 SELECT: WHEN Clause 6-126

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The next example uses the ANY keyword to select any orders for products whose
selling price is greater than $25.00:

>SELECT * FROM ORDERS
SQL+WHEN PROD.NO = ANY (SELECT CAST(PROD.NO AS INT)
SQL+FROM INVENTORY WHERE SELL > 25);
Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
10006 6518 $18.00
10004 4450 704 1 $205.00
10005 9874 $45.00
10003 9825 $100.00
10001 3456 418 4 $265.00
 704 1
10007 9874 $30.00

7 records selected. 4 values listed.

The next example uses the IN keyword with a subquery to select all rows in the
ORDERS table but list only those items ordered whose selling price is $5.00:

>SELECT ORDER.NO, "DATE", PROD.NO, QTY, SELL FROM ORDERS
SQL+WHEN PROD.NO IN (SELECT CAST(PROD.NO AS INT) FROM INVENTORY
SQL+WHERE SELL = 5.00);
Order No Order Date Product No Qty. Sell.....

10002 14 JUL 92 501 1 $40.00
 502 1 $5.00
 504 1 $5.00
 $5.00
10006 22 APR 92 $6.00
10004 22 AUG 92 $115.00
 $10.00
10005 25 NOV 92 502 9 $5.00
10003 07 MAR 92 202 10 $5.00
 204 10 $5.00
10001 11 FEB 92 $6.00
 $27.00
 $115.00
10007 06 JUL 92 $10.00

7 records selected. 6 values listed.

GROUP BY Clause
The GROUP BY clause groups rows that have identical values in all grouping
columns and returns a single row of results for each group. The syntax is as follows:

GROUP BY { columnname | alias } [{ , columnname | alias } …]
6-127 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Each column in a GROUP BY clause must be singlevalued.

alias can refer only to a named column or an EVAL expression. It cannot refer to a
select expression or a set function.

Each column selected in the SELECT Clause must be included in the GROUP BY
clause. If the SELECT clause includes an EVAL expression, you must assign it an
alias with the AS keyword, and include the alias in the GROUP BY clause. If the
SELECT clause includes a set function, the set function is applied to each group.

Examples

This example groups all items from inventory that have the same selling price and
shows how many items are in each selling price group. Each selling price produces a
different row.

>SELECT SELL, COUNT(*)
SQL+FROM INVENTORY
SQL+GROUP BY SELL;
SELL... COUNT (*)

 $5.00 7
 $6.00 3
 $10.00 1
 $19.00 1
 $23.00 2
 $25.00 3
 $27.00 2
 $40.00 1
$115.00 1

9 records listed.

The next example groups items ordered and lists the total number and price for each
item ordered:

>SELECT ORDERS.PROD.NO, SUM(QTY), SUM(QTY * ORDERS.SELL) CONV
'MR2$'
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY
SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+GROUP BY ORDERS.PROD.NO;
Product No SUM (QTY) SUM (QTY * ORDERS.SELL)

 112 10 $1054.00
 202 10 $100.00
 204 10 $100.00
 301 12 $1155.00
 418 4 $592.00
 501 1 $55.00
 SELECT: GROUP BY Clause 6-128

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
 502 10 $100.00
 504 1 $55.00
 605 1 $55.00
 704 2 $273.00

10 records listed.

HAVING Clause
The HAVING clause specifies the criteria that data in a group must meet for the group
to be selected. The syntax is as follows:

HAVING [NOT] { condition | subquery_condition }
[{ AND | OR } [NOT] { condition | subquery_condition } …]

The following table describes each parameter of the syntax.

A condition can do the following:

Compare values to other values, including values returned by a subquery
Specify a range of values
Match a phonetic or string pattern
Test for the null value
Test whether a subquery produces results

Precede a condition with the keyword NOT to reverse the condition. When you
reverse a condition, the test is true only if the condition is false.

A HAVING condition can be simple, or it can include another SELECT statement,
called a subquery.

Parameter Description

condition For the syntax of condition, see “Condition.”

subquery_condition For the syntax of subquery_condition, see “Subquery.”

AND Both conditions connected by AND must be true for the group
to be selected.

OR Either condition connected by OR can be true for the group to be
selected.

HAVING Parameters
6-129 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You most often use the HAVING clause with a GROUP BY Clause. If you do not
include a GROUP BY clause, the whole table is considered to be a group.

Example

This example groups orders by customer number and selects only those customers
whose order quantity is greater than 11:

>SELECT CUST.NO, SUM(QTY)
SQL+FROM ORDERS
SQL+GROUP BY CUST.NO
SQL+HAVING SUM(QTY) > 11
SQL+ORDER BY CUST.NO;
CUST.NO.... SUM (QTY)

 3456 12
 9825 20
 9874 12

3 records listed.

ORDER BY Clause
The ORDER BY clause sorts the results of a query. The syntax is as follows:

ORDER BY { column | col# } [ASC | DESC] [, { column | col# }
[ASC | DESC] …]
 SELECT: ORDER BY Clause 6-130

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
The following table describes each parameter of the syntax.

If column or col# is multivalued, value marks are ignored, and the values are treated
as a single field and sorted as a unit. To sort by values in a multivalued column, use
the UNNEST clause of the FROM clause, or dynamically normalize the multivalued
column or association.

If the SELECT statement includes a GROUP BY Clause, you can sort only on
columns included in the SELECT clause.

If the SELECT clause includes both the DISTINCT keyword and the TO SLIST
clause, you cannot use an ORDER BY clause in the SELECT statement.

Parameter Description

column For the syntax of column, see “Column.”

col# A number representing the position of the column specification in the
SELECT Clause. If you use an * (asterisk) in the SELECT clause to
specify all columns, col# represents the position of the column name in
the column list contained in the @SELECT phrase of the table dictionary.
If there is no @SELECT phrase, col# represents the position of the
column definition in the CREATE TABLE statement that created the
table.
In programmatic SQL you cannot use a parameter marker in place of a
column number.
If the SELECT clause includes the TO SLIST clause but does not include
column specifications, you cannot use col# to specify the ordering
column.

ASC Sorts values in ascending order. ASC is the default sort order.

DESC Sorts values in descending order.

ORDER BY Parameters
6-131 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Examples

This example shows the column DESCRIP listed first in the SELECT clause,
followed by the expression SELL − COST. The column is referred to as position 1,
and the expression is referred to as position 2 in the ORDER BY clause.

>SELECT "DESC", SELL - COST
SQL+FROM INVENTORY
SQL+ORDER BY 2 DESC, 1;
Description................... SELL - COST

Sure Balance Unicycle 33
Collapsible Felt Top Hat 18
Gold Deluxe Stage Torch 12
Silver Deluxe Stage Torch 12
Red Silicon Ball 11
White Silicon Ball 11
Yellow Silicon Ball 11
Gold Deluxe Stage Club 9
Silver Deluxe Stage Club 9

.

.

.

FOR UPDATE Clause
The FOR UPDATE clause locks all selected rows with update record locks (READU)
or exclusive file locks (FX) until the end of the current transaction. This lets client
programs update or delete the selected rows later within the same transaction, without
being delayed by locks held by other users. You can also use the FOR UPDATE
clause in an interactive SELECT statement.

The syntax is as follows:

FOR UPDATE [OF { [[schema .] tablename .] columnname | alias }
[, { [[schema .] tablename .] columnname | alias }] …]

The OF clause limits the acquiring of update record locks or file locks to those tables
or files containing the named columns. It is useful only in a join where data is selected
from two or more tables.

columnname cannot be the keyword @ASSOC_ROW. alias must refer to a named
column, not to a select expression, an EVAL expression, or @ASSOC_ROW.

You cannot use the FOR UPDATE clause in:

A subquery
 SELECT: FOR UPDATE Clause 6-132

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
A view definition
A trigger program

You cannot use the FOR UPDATE clause if the SELECT statement includes:

The UNION operator
Set functions
A GROUP BY clause
A HAVING clause

The current isolation level determines which locks are set when a SELECT statement
includes the FOR UPDATE clause. The following table shows which locks are set:

A file lock is set instead of record locks when a table or file already has the maximum
number of record locks allowed by your system. The MAXRLOCK configurable
parameter determines the maximum number of record locks.

Note: The FOR UPDATE clause has no effect on locks set by a subquery. Rows,
tables, and files selected by a subquery are given shared record locks appropriate to
the current isolation level.

This example selects one column from each of two tables for update. It sets READU
locks on all rows selected from the ORDERS table and sets READL locks on all rows
selected from the CUSTOMER table.

>SELECT ORDERS.CUSTNO, CUSTOMER.CUSTID
SQL+FROM ORDERS, CUSTOMER
SQL+WHERE ORDERS.CUSTNO = CUSTOMER.CUSTID
SQL+FOR UPDATE OF ORDERS.CUSTNO;

Isolation Level Locks Set

0 or 1 Update record locks (READU) are set for all selected rows, even though
an ordinary SELECT statement does not set locks at these isolation
levels.

2 or 3 Update record locks (READU) are set for all selected rows, instead of
the shared record locks (READL) set by an ordinary SELECT
statement.

4 Exclusive file locks (FX) are set for all tables and files referenced by the
SELECT statement, instead of the shared file locks (SH) set by an
ordinary SELECT statement.

Isolation Levels
6-133 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Report Qualifiers
Report qualifiers format the output of interactive SELECT statements. For more
information about Report Qualifier Keywords, see the UniVerse User Reference.

Specifying Headings and Footings

Use the following report qualifiers to define a heading or footing for the report:

Report Qualifier Description

HEADING " text
['options '] … "

options (in single quotation marks) can be included anywhere
inside the double quotation marks. options can be any of the
following:

B[n] Inserts the current breakpoint field value in a field of
n spaces when used with the B option of BREAK ON.
Each new value generates a new page.

C[n] Centers the heading in a field of n spaces.

D Inserts the current date.

F[n] Inserts the filename left-justified in a field of n
spaces.

G Inserts gaps in the heading format.

I[n] Inserts the record ID left-justified in a field of n
spaces. Same as R.

L Inserts a carriage return and linefeed to make a
multiple-line heading.

N Suppresses page pause during a terminal display.

P[n] Inserts the page number left-justified in a field of n
spaces. The keyword begins with page 1 and adds 1
for each successive page.

Q Lets you use the characters] (right bracket), ̂ (caret),
and \ (backslash) in heading text.

R[n] Inserts the record ID left-justified in a field of n
spaces. Same as I.

Report Qualifiers
 SELECT: Report Qualifiers 6-134

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
If you do not use the HEADING keyword, the output report has no heading line and
starts on the next line of the screen. If you specify HEADING, output starts on a new
page or at the top of the screen.

HEADER is a synonym for HEADING. FOOTER is a synonym for FOOTING.

This example defines a centered heading for a report:

>SELECT * FROM INVENTORY HEADING "CURRENT INVENTORY LIST: 'TC'";
 CURRENT INVENTORY LIST: 12:31:41PM 23 Jul 1997
Part No Description.................. Available Cost...
Price.. Markup

210 Red/Blue/Yellow Juggling Bag 77 $3.40
$5.00 47%
102 Red Silicon Ball 45 $14.00
$25.00 79%
112 Red Vinyl Stage Ball 20 $3.50
$6.00 71%

The T option prints the current time and date, and the C option centers the heading.

Specifying Text for a Grand Total Line

Use GRAND TOTAL to specify text to print on the grand total line of a report. The
syntax is as follows:

GRAND TOTAL "text 'options ' … "

Options are L and P. L suppresses the display of the double bar line above the grand
total line. P prints the double bar line and grand total line on a separate page.

S Inserts the page number left-justified. One character
space is reserved for the number. If the number of
digits exceeds 1, text to the right of the number is
shifted right by the number of extra digits.

T Inserts the current time and date.

HEADING DEFAULT Generates the standard RetrieVe heading line.

FOOTING " text
['options '] … "

options (in single quotation marks) can be included anywhere
inside the double quotation marks. options are the same as those
listed for the HEADING report qualifier.

Report Qualifier Description

Report Qualifiers (Continued)
6-135 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
GRAND.TOTAL is a synonym for GRAND TOTAL.

Suppressing Column Headings

Use SUPPRESS COLUMN HEADING to suppress default column headings.
COL.SUP and SUPPRESS COLUMN HEADER are synonyms for SUPPRESS
COLUMN HEADING.

This example suppresses the default column headings of the ORDERS table:

>SELECT * FROM ORDERS SUPPRESS COLUMN HEADING;

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1
10006 6518 112 3 $18.00
10004 4450 704 1 $205.00
 301 9
10005 9874 502 9 $45.00
10003 9825 202 10 $100.00
 204 10
10001 3456 112 7 $265.00
 418 4
 704 1
10007 9874 301 3 $30.00

7 records listed.

Suppressing Row Count

Use COUNT.SUP to suppress the message that lists the number of rows selected.

This example suppresses the message 7 records listed., which is normally
printed after the last row:

>SELECT * FROM ORDERS COUNT.SUP;
Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1
10006 6518 112 3 $18.00
10004 4450 704 1 $205.00
 301 9
10005 9874 502 9 $45.00
 SELECT: Report Qualifiers 6-136

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
10003 9825 202 10 $100.00
 204 10
10001 3456 112 7 $265.00
 418 4
 704 1
10007 9874 301 3 $30.00

Suppressing Breakpoint Detail Lines

Use SUPPRESS DETAIL in a SELECT statement that includes the BREAK ON field
modifier to display breakpoint lines only. DET.SUP is a synonym for SUPPRESS
DETAIL.

This example unnests the multivalued column PROD.NO and sorts the rows by
PROD.NO. The quantity of each product ordered is totalled for each product. Only
the breakpoint lines showing the totals are shown.

>SELECT ORDER.NO, BREAK ON PROD.NO, TOTAL QTY
SQL+FROM UNNEST ORDERS ON PROD.NO
SQL+ORDER BY PROD.NO
SQL+SUPPRESS DETAIL;
Order No Product No Qty.

10001 112 10
10003 202 10
10003 204 10
10007 301 12
10001 418 4
10002 501 1
10002 502 10
10002 504 1
10002 605 1
10001 704 2
 ====
 61

14 records listed.

Adjusting Spacing

Use the following report qualifiers to adjust spacing between columns, rows, and at
the left margin:

DOUBLE SPACE
COLUMN SPACES[n]
MARGIN n
6-137 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
DBL.SPC is a synonym for DOUBLE SPACE. COL.SPCS and COL.SPACES are
synonyms for COLUMN SPACES.

This example double-spaces each row for ease in reading. Multivalues within rows
are single-spaced.

>SELECT * FROM ORDERS DOUBLE SPACE;
Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1

10006 6518 112 3 $18.00

10004 4450 704 1 $205.00
 301 9

10005 9874 502 9 $45.00

10003 9825 202 10 $100.00
 204 10

10001 3456 112 7 $265.00
 418 4
 704 1

10007 9874 301 3 $30.00

.

.

.

The next example reduces the column spacing to two spaces:

>SELECT * FROM ORDERS COLUMN SPACES 2;
Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1
10006 6518 112 3 $18.00
10004 4450 704 1 $205.00
 301 9
10005 9874 502 9 $45.00
10003 9825 202 10 $100.00
 204 10
 SELECT: Report Qualifiers 6-138

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
10001 3456 112 7 $265.00
 418 4
 704 1
10007 9874 301 3 $30.00

7 records listed.

Listing Data in Vertical Format

Use VERTICALLY to force output to be listed in vertical format. Each column of
each row is listed on a separate line. VERT is a synonym for VERTICALLY.

This example displays each column value on its own line. Multivalues within rows
are listed in columns.

>SELECT * FROM ORDERS VERTICALLY;

Order No.... 10002
Customer No. 6518
Product No Qty.
 605 1
 501 1
 502 1
 504 1
Total....... $55.00

Order No.... 10006
Customer No. 6518
Product No Qty.
 112 3
Total....... $18.00

Order No.... 10004
Customer No. 4450
Product No Qty.
 704 1
 301 9
Total....... $205.00

.

.

.

Suppressing Paging

Use NOPAGE to override automatic paging. The report is scrolled continuously on
the screen or printed without formatted page breaks on the printer. NO.PAGE is a
synonym for NOPAGE.
6-139 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Sending Output to the Printer

Use LPTR [n] to send output to the system printer. n is an integer from 0 through 255
specifying a logical print channel number. Use AUX.PORT to send output to a printer
attached to the terminal’s auxiliary port (output also goes to the screen).

Processing Qualifiers
Processing qualifiers affect or report on the processing of SQL queries.

Showing How a Query Will Be Processed (EXPLAIN)

Use EXPLAIN in a SELECT statement to display information about how the
statement will be processed. This lets you decide if you want to rewrite the query
more efficiently.

EXPLAIN lists the tables included in the query, explains how data will be retrieved
(that is, by table, select list, index lookup, or explicit ID), and explains how any joins
will be processed. After each message, press Q to quit, or press any other key to
continue the query.

If you use EXPLAIN in a SELECT statement executed by a client program, the
statement is not processed. Instead, an SQLSTATE value of IA000 is returned, along
with the EXPLAIN message as the message text.

This example shows what the EXPLAIN display looks like:

>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY
SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+EXPLAIN;

UniVerse/SQL: Optimizing query block 0
Tuple restriction: ORDERS.PROD.NO = value expression

Driver source: ORDERS
Access method: file scan

1st join primary: ORDERS est. cost: 73
 secondary: INVENTORY est. cost: 42
 type: cartesian join using scan of secondary file

Order No Order Date Customer No
Description................... Qty.
10002 14 JUL 92 6518 Collapsible Felt Top Hat
 SELECT: Processing Qualifiers 6-140

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
1
10002 14 JUL 92 6518 White Classic Ring
1
10002 14 JUL 92 6518 Red Classic Ring
1
10002 14 JUL 92 6518 Blue Classic Ring
1
10006 22 APR 92 6518 Red Vinyl Stage Ball
3
10004 22 AUG 92 4450 Sure Balance Unicycle
1
10004 22 AUG 92 4450 Classic Polyethylene Club
9
10005 25 NOV 92 9874 Red Classic Ring
9
10003 07 MAR 92 9825 Red Juggling Bag
10
10003 07 MAR 92 9825 Blue Juggling Bag
10
10001 11 FEB 92 3456 Red Vinyl Stage Ball
7
10001 11 FEB 92 3456 Gold Deluxe Stage Torch
4
10001 11 FEB 92 3456 Sure Balance Unicycle
1
10007 06 JUL 92 9874 Classic Polyethylene Club
3

14 records listed.

Disabling the Query Optimizer (NO.OPTIMIZE)

The query optimizer tries to determine the most efficient way to process a SELECT
statement. To avoid using the optimizer, use the NO.OPTIMIZE keyword.

This example runs the preceding example without using the query optimizer:

>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY
SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+NO.OPTIMIZE;
6-141 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Avoiding Lock Delays (NOWAIT)

At isolation level 2 or higher, when a SELECT statement tries to access a row or table
locked by another user or process, it waits for the lock to be released, then continues
processing. Use the NOWAIT keyword to stop processing instead of waiting when
the SELECT statement encounters a record or file lock. If the SELECT statement is
used in a transaction, processing stops and the transaction is rolled back. The user ID
of the user who owns the lock is returned to the terminal screen or the client program.

If a SELECT statement with NOWAIT selects an I-descriptor or an EVAL expression
that executes a BASIC subroutine, the NOWAIT condition applies to all the SQL
operations in the subroutine.

You cannot use NOWAIT in a subquery or a view definition.

Note: At isolation level 0 or 1, a SELECT statement never encounters the locked
condition.

This example runs the preceding example. If the query encounters a lock set by
another user, it terminates immediately; it does not wait for the lock to be released.

>SELECT ORDER.NO, "DATE", CUST.NO, "DESC", QTY
SQL+FROM UNNEST ORDERS ON PROD.NO, INVENTORY
SQL+WHERE ORDERS.PROD.NO = CAST(INVENTORY.PROD.NO AS INT)
SQL+NO.OPTIMIZE NOWAIT;

Limiting Number of Rows Selected (SAMPLE and SAMPLED)

Use SAMPLE and SAMPLED to limit the number of rows selected:

SAMPLE [n] Selects the first n rows.

SAMPLED [n] Selects every nth row.

SAMPLE and SAMPLED select a limited number of rows before the ORDER BY
clause processes the data.

In programmatic SQL you cannot use a parameter marker in place of n to specify
rows.
 SELECT: Processing Qualifiers 6-142

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
This example selects a sample of three rows from the ORDERS table:

>SELECT * FROM ORDERS SAMPLE 3;
Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1
10006 6518 112 3 $18.00
10004 4450 704 1 $205.00
 301 9

Sample of 3 records listed.

UNION Operator
The UNION operator combines the results of two SELECT statements into a single
result table. A set of SELECT statements joined by UNION operators is called a
query expression. You can use query expressions as interactive SQL queries,
programmatic SQL queries, and in the CREATE VIEW statement. However, you
cannot use a query expression as a subquery or in the INSERT statement.

The syntax of a query expression is as follows:

SELECT statement [UNION [ALL] SELECT statement] …

The following table describes each parameter of the syntax.

By default, SELECT statements joined by the UNION operator are processed from
left to right. Use parentheses to specify a different processing order.

Note: You cannot enclose the entire query expression in parentheses.

The column names, column headings, formats, and conversions used when gener-
ating the result table are all taken from the first SELECT statement.

Parameter Description

UNION Combines two SELECT statements.

ALL Specifies that duplicate rows not be removed from the result table. If you
do not specify ALL, duplicate rows are removed from the result table.

UNION Parameters
6-143 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
If the query expression is used in a CREATE VIEW statement, the view’s SICA and
table dictionary will contain only one set of column definitions, based on the first
SELECT statement. Such a view is not updatable.

The following restrictions apply to SELECT statements joined by the UNION
operator:

All of the SELECT statements must specify the same number of result
columns.
Corresponding columns among the SELECT statements must all belong to
the same data category (character, number, date, or time). For information
about data categories, see Chapter 3, “Data Types.”
You cannot use the INQUIRING keyword in FROM clauses.
You cannot use field modifiers in column expressions.
You can use only the field qualifiers AS, DISPLAYLIKE,
DISPLAYNAME, CONV, and FMT. Except for AS, you must use these
field qualifiers only in the first SELECT statement.
In an interactive or programmatic SQL query, you can specify an ORDER
BY Clause only after the last SELECT statement in the query expression.
You must use integers, not column specifications, to specify the columns by
which you want to order the result set. Ordering applies to the entire result
table.
You cannot use the following report qualifiers in a query expression:
GRAND TOTAL
SUPPRESS DETAIL
You can specify all other report qualifiers only after the last SELECT state-
ment in the query expression, and only after the ORDER BY clause if there
is one.
You cannot use the following processing qualifiers in a query expression:
EXPLAIN
SAMPLE
SAMPLED
You can specify NO.OPTIMIZE and NOWAIT only after the last SELECT
statement in the query expression, and only after the ORDER BY clause if
there is one.
 SELECT: UNION Operator 6-144

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Example

Consider the following three SELECT statements:

SELECT ITEM FROM INVENTORY;
SELECT PRODUCT FROM SHELF;
SELECT REQUEST FROM ORDER;

The first query returns two rows: NUT and BOLT. The second query also returns two
rows: HINGE and BOLT. The third query returns one row: NUT. If you combine
these queries this way:

>SELECT ITEM FROM INVENTORY UNION
SQL+SELECT PRODUCT FROM SHELF UNION ALL
SQL+SELECT REQUEST FROM ORDER;

the resulting rows are NUT, BOLT, HINGE, and NUT. If you use parentheses to
change the order of processing, like this:

>SELECT ITEM FROM INVENTORY UNION
SQL+(SELECT PRODUCT FROM SHELF UNION ALL
SQL+SELECT REQUEST FROM ORDER);

the resulting rows are NUT, BOLT, and HINGE.
6-145 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UPDATE
Use the UPDATE statement to modify values in a table, view, or UniVerse file. To
update data in a table or view, you must own it or have UPDATE Privilege on it. To
update a view you must also have UPDATE privilege on the underlying base table
and any underlying views. You also need write permissions on the directory and the
VOC file in the account. You cannot update rows in a type 1, type 19, or type 25 file.

Syntax
UPDATE table_expression

SET set_expressions
[WHERE clause]
[WHEN clause [WHEN clause] …]
[qualifiers] ;

Parameters
The following table describes each parameter of the syntax.

Parameter Description

table_expression Specifies the table or view to update with new data. For the
syntax of table_expression, see “Table.” If table_expression
references an association of multivalued columns or an unasso-
ciated multivalued column as a dynamically normalized table,
UPDATE changes data in specified association rows.

SET Introduces the SET clause.

set_expressions One or more set expressions separated by commas. A set
expression specifies the columns in the table to be updated and
the new values for these columns.

WHERE Clause Specifies which rows are to be updated.

UPDATE Parameters
 UPDATE 6-146

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Description
You must specify clauses in the UPDATE statement in the order shown. If you do not
specify a WHERE Clause, all rows are updated. If you specify a WHEN Clause, only
values in the specified association rows are updated. If you are updating multivalued
columns or an unassociated multivalued column and you do not specify a WHEN
clause, all multivalues in the selected rows are updated.

When you use the UPDATE statement to modify rows in a table, the modified rows
are written back to the original table. If you use the UPDATE statement on a table
that has column or table constraints, the new data must meet the constraint criteria. If
the UPDATE statement fails while it is updating more than one row, no rows are
updated.

WHEN Clause Specifies criteria for updating rows in an association. You can
use one or more WHEN clauses. Multivalued columns named in
a WHEN clause must all belong to the same association.
You cannot use a WHEN clause if table_expression references
an association of multivalued columns or an unassociated multi-
valued column as a dynamically normalized table.

qualifiers One or more of the following processing qualifiers separated by
spaces:

EXPLAIN Lists the tables referenced by the
UPDATE statement and explains how the
query optimizer will handle execution of
the statement.

NO.OPTIMIZE Suppresses the optimizer when
processing WHERE and WHEN clauses.

NOWAIT If the UPDATE statement encounters a
lock set by another user, it terminates
immediately. It does not wait for the lock
to be released.

REPORTING Displays the status of the update and the
primary keys of the rows updated. If the
table has no primary key, displays the
values in @ID.

Parameter Description

UPDATE Parameters (Continued)
6-147 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Using EXPLAIN

The EXPLAIN keyword lists all tables referenced by the UPDATE statement,
including tables referenced by subqueries in the WHERE and WHEN clauses, and
explains how the query optimizer will use indexes, process joins, and so forth, when
the statement is executed. If the WHERE Clause or WHEN Clause include
subqueries, information is given about each query block.

If you use EXPLAIN in an interactive UPDATE statement, after viewing the
EXPLAIN message, press Q to quit, or press any other key to continue processing.

If you use EXPLAIN in an UPDATE statement executed by a client program, the
statement is not processed. Instead, an SQLSTATE value of IA000 is returned, along
with the EXPLAIN message as the message text.

Using NOWAIT

The NOWAIT condition applies to:

All locks encountered by the UPDATE statement
All cascaded updates and deletes that result from the UPDATE statement
All SQL operations in trigger programs fired by the UPDATE statement

In these cases the UPDATE statement and all its dependent operations are terminated
and rolled back, and an SQLSTATE value of 40001 is returned to client programs.

Set Expressions
Use the SET clause to specify update values. The SET clause can include one or more
set expressions separated by commas. A set expression specifies the column to
update and assigns new values to the column. The syntax for a set expression is as
follows:

columnname = values

columnname is the name of the column containing values to update. If the column is
multivalued, all values in each specified row are updated.

If several column names in a SET clause map to the same column in a view’s under-
lying base table or view, the last column name in the SET clause determines the value
of the column.
 UPDATE 6-148

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
values is one of the following:

This example changes every value in the multivalued column COLOR to BLACK:

>UPDATE INVENTORY SET COLOR = 'BLACK';

The next example multiplies every value in the multivalued column QTY by 2:

>UPDATE ORDERS SET QTY = QTY * 2;

Value Description

expression Specifies the data elements with which to update the column.
You cannot use set functions in a set expression. Any multi-
valued columns in expression must be associated with
columnname.

NULL Specifies the null value.

DEFAULT For tables, specifies the default value. If no default value is
defined, the default value is null. For multivalued columns, the
default value is the empty string. For files, the default value is
also the empty string.

multivalues A set of comma-separated values enclosed in angle brackets, to
update a multivalued column. The syntax is as follows:
<value [, value …]>

The angle brackets are part of the syntax and must be typed. A
value can be NULL, DEFAULT, or an expression. For each row,
the number and order of values must be the same as the number
and order of the corresponding values in the association key.

You cannot specify multivalues if the UPDATE statement
includes a WHEN clause.
Note: If table_expression references an association of
multivalued columns or an unassociated multivalued column as
a dynamically normalized table, you cannot use this syntax to
update multivalues in association rows.

UPDATE Values
6-149 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can also use the SET clause to perform mathematical operations on associated
multivalued columns. In the next example, the SET clause multiplies the first value
in PRICE by the first value in QTY, and so on, and puts the result in ITEM.EXT, one
association row at a time. You can perform mathematical operations using multi-
valued columns only if they belong to the same association:

>UPDATE ORDERS SET ITEM.EXT = PRICE * QTY;

The next example raises all prices in the PRODUCTS table by 10% and resets the
accumulated sales to 0:

>UPDATE PRODUCTS
SQL+SET PRICE = PRICE * 1.1,
SQL+SALESTD = 0;

WHERE Clause
Use the WHERE clause to specify rows to update. If table_expression references an
association of multivalued columns or an unassociated multivalued column as a
dynamically normalized table, you can use the @ASSOC_ROW keyword to specify
unique association rows if the association has no keys.

This example changes the department from SALES to SALES,EAST for employees
301 through 399:

>UPDATE EMPLOYEES
SQL+SET DEPT = 'SALES,EAST'
SQL+WHERE DEPT = 'SALES' AND EMPNO BETWEEN 301 AND 399;

The next example updates every value in the multivalued column QTY for order
10003. The REPORTING keyword displays the status of the update and the
record ID of the updated row.

>UPDATE ORDERS SET QTY = QTY + 10
SQL+WHERE ORDER.NO = 10003 REPORTING;

UniVerse/SQL: Record "10003" updated.
UniVerse/SQL: 1 record updated.

The next example resets CUSTOMER values in specified rows of the ORDERS table
to the default values:

>UPDATE ORDERS SET CUSTOMER = DEFAULT
SQL+WHERE CUSTOMER = 'AJAX';
 UPDATE 6-150

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
You can update a table in a remote schema by specifying the name of the remote
schema in the table expression. The next example modifies the DEPTS table in the
remote schema OTHERSCHEMA:

>UPDATE OTHERSCHEMA.DEPTS
SQL+SET DEPTNAME = 'TELSALES', MANAGER = 'JONES'
SQL+WHERE DEPTNO = 316;

WHEN Clause
Use a WHEN clause to specify the association rows to update. The WHEN clause
restricts selected association rows to those that pass the WHEN criteria. This lets you
update specific values in multivalued columns.

Note: You cannot use a WHEN clause if a set expression specifies a set of multivalues
for a column. You cannot use a WHEN clause if the table expression references an
association of multivalued columns or an unassociated multivalued column as a
dynamically normalized table.

In this example the WHERE clause limits the update to order 10007. The WHEN
clause further limits the update to values in association rows containing BOLT in the
ITEM column. For those association rows, 10 is added to the quantity orders, and the
name of the item is changed to HINGE. The QTY and ITEM columns are associated.

>UPDATE ORDERS SET QTY = QTY + 10, ITEM = 'HINGE'
SQL+WHERE ORDER.NO = 10007
SQL+WHEN ITEM = 'BOLT';

Referential Integrity Actions
If you update rows in a referenced table, rows in the referencing table may also be
changed, depending on the referential constraint action prescribed by the referencing
table’s REFERENCES clause.
6-151 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table shows what happens when the referencing table’s REFER-
ENCES clause contains the ON UPDATE clause:

If the referenced
column is...

And if the
referencing column
is...

The following referential integrity action
occurs:

Single-valued Single-valued ON UPDATE CASCADE replaces the value
in the referencing column with the updated
value in the referenced column.
ON UPDATE SET NULL and ON UPDATE
SET DEFAULT replace the value in the
referencing column with a null value or the
column’s default value, respectively.
If the corresponding columns are parts of a
multipart column set, all corresponding part-
columns must match for the corresponding
values in the referencing columns to be
updated.

Multivalued Single-valued ON UPDATE CASCADE is not allowed if
the referenced column is multivalued.
ON UPDATE SET NULL and ON UPDATE
SET DEFAULT replace the value in the
referencing column with a null value or the
column’s default value, respectively.

Single-valued Multivalued ON UPDATE CASCADE replaces the
multivalue in the referencing column with
the updated value in the referenced column.
ON UPDATE SET NULL and ON UPDATE
SET DEFAULT replace the multivalue in the
referencing column with a null value or the
column’s default value, respectively.

Multivalued Multivalued ON UPDATE CASCADE is not allowed if
the referenced column is multivalued.
ON UPDATE SET NULL and ON UPDATE
SET DEFAULT replace the multivalue in the
referencing column with a null value or the
column’s default value, respectively.

Referential Integrity Actions
 UPDATE 6-152

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Column
Use column syntax when you see column in a syntax line. You can use column syntax
in the following clauses of the SELECT statement:

SELECT Clause
GROUP BY Clause
ORDER BY Clause

You can also use column syntax in conditional expressions in the following clauses
of the SELECT statement:

WHERE Clause
WHEN Clause
HAVING Clause

Syntax
You can specify a column in one of three ways: as a column name, an EVAL
expression, or an alias. column has one of the following syntaxes:

[[schema .] tablename .] columnname
EVAL [UATE] [[schema .] tablename .] 'I_type_expression'
alias
6-153 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

Parameter Description

schema . The name of a schema other than the current schema, followed
by a . (period), used to reference a table in a remote schema.

tablename . The name of a table or table alias, followed by a . (period), used
to distinguish between columns having the same name.

columnname The name of a column as defined in the SICA of one of the tables
in the FROM clause.
If the table expression of a SELECT statement references an
association of multivalued columns or an unassociated multi-
valued column as a dynamically normalized table, you can use
the @ASSOC_ROW keyword to specify a column containing
unique association row numbers when the association has no
association keys. You can also use @ASSOC_ROW in WHERE
clause comparisons. You can qualify @ASSOC_ROW with
tablename.

EVAL [UATE] Introduces an in-line I-type expression, sometimes called an
EVAL expression.

I_type_expression Any valid I-type expression, enclosed in single or double
quotation marks.

If you name more than one table in the FROM clause, you must
precede I_type_expression with the name of the table containing
the columns named in the expression. If you name a table in
another schema in the FROM clause, you must precede any
reference to that table with the schema name.

In programmatic SQL you cannot use a parameter marker in
place of an I-type expression.

alias An alternate name for a column expression or a select
expression, or the name of an EVAL expression or set function
expression. Aliases are defined using the AS keyword.

Column Parameters
 Column 6-154

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
EVAL Expressions
An EVAL expression defines a new virtual column which exists only for the duration
of the current SELECT statement. When the column is output, the following default
conditions apply:

The column heading is the text of the I-type expression, unless you use the
DISPLAYNAME keyword (or one of its synonyms) to specify a column
heading. If the text is longer than 20 characters, value marks are inserted in
the text every 20 characters or at the width defined by the display format,
whichever is greater. This creates a multiline column heading.
The conversion, display format, single- or multivalue code, and association
specifications are derived from the dictionary entry that defines the first
column appearing in the I-type expression.
If no column appears in the I-type expression, the temporary column has no
conversion, its format is 10L, and it is singlevalued.

For more details about I-type expressions, see the UniVerse System Description.
6-155 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Condition
Use condition syntax when you see condition in a syntax line. You use conditions to
determine whether data meets specified criteria. You can use conditions in the
following statements:

ALTER TABLE (CHECK constraint)
CREATE TABLE (CHECK constraint)
DELETE (WHERE Clause)
SELECT (WHERE Clause, WHEN Clause, and HAVING Clause)
UPDATE (WHERE Clause and WHEN Clause)

A condition is one or more search conditions combined using AND, OR, NOT, and
parentheses, which when evaluated give a logical result of true, false, or unknown.
Conditions can do the following:

Compare expressions to other expressions
Compare expressions to values returned by a subquery

Syntax
This list summarizes the syntax of conditions that compare expressions:

expression operator expression
expression [NOT] IN ('value' [, 'value' …])
expression [NOT] BETWEEN expression AND expression
expression [NOT] { SAID | SPOKEN } 'string'
expression [NOT] { LIKE | MATCHING | MATCHES } 'pattern' [ESCAPE

'character']
expression IS [NOT] NULL

In WHERE clauses and CHECK constraints you can precede any of these conditions
with the keyword EVERY. EVERY specifies that every value in a multivalued
column must meet the criteria. If both expressions in a comparison are multivalued
and you specify EVERY, EVERY is implied on the right side of the comparison. If
you do not specify EVERY, any single pair of values can meet the criteria.

Subsequent sections explain each syntax line in detail.
 Condition 6-156

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
CHECK Constraint Conditions

You cannot use CURRENT_DATE or CURRENT_TIME in a CHECK constraint
condition.

If expression refers to several different multivalued columns, they must all belong to
the same association. Only corresponding values in each association row are
compared to each other.

If you later add or drop an association, you must drop and recreate any CHECK
constraints.

Comparing Values
You can compare values using relational operators or the IN keyword.

Using Relational Operators

You can compare one expression to another using relational operators. The syntax is
as follows:

expression operator expression

operator is one of the relational operators. In programmatic SQL, if you use a
parameter marker in place of the first expression, you cannot use a parameter marker
in place of the second expression; if you use a parameter marker for the second
expression, you cannot use a parameter marker for the first expression.

You cannot use relational operators to test for the null value. To test for null, use the
IS NULL keyword.

Here are some examples:

PROD.NO = 704
"DATE" < "06-01-94"
LNAME = "Smith" AND FNAME = "Barbara"
ORDERS.PARTNO = I.PARTNO
STATE <> 'VT'

The second expression can be a subquery.
6-157 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Using the IN Keyword

You can compare an expression to a list of values using the IN keyword. The syntax
is as follows:

expression [NOT] IN ('value' [, 'value' …])

value is a character string, bit string, numeric, date, or time literal. You cannot use
character string functions with value. In programmatic SQL you cannot use
parameter markers in place of both expression and the first value after the IN
keyword.

Here are two examples:

STATE IN ('MA', 'NY', 'CT')
COST NOT IN (14.00, 3.40, 3.50)

You can also use the IN keyword to compare an expression to the values returned by
a subquery.

Specifying a Range: BETWEEN
You can specify a range within which the selected data should be found using the
BETWEEN keyword. The syntax is as follows:

expression [NOT] BETWEEN expression AND expression

The second and third expressions must be single-valued. In programmatic SQL, if
you use a parameter marker in place of the first expression, you cannot use a
parameter marker in place of the second or third expression. If you use a parameter
marker for the second or third expression, you cannot use a parameter marker for the
first expression.

Here are some examples:

"DATE" BETWEEN '01-01-94' AND '06-30-94'
ORDER.NO NOT BETWEEN 10100 AND 10400
PRICE BETWEEN 5.00 AND 20.00
 Condition 6-158

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Phonetic Matching: SAID
You can test whether a character string is phonetically like another string using the
SAID or SPOKEN keyword. The syntax is as follows:

expression [NOT] { SAID | SPOKEN } 'string'

expression is described in the section “Expression.” string is a character string literal.
You cannot use character string functions with string.

Here are two examples:

LNAME SAID 'SMITH'
NAME SAID 'PIERCE'

Pattern Matching: LIKE
You can test whether data matches a pattern using the LIKE, MATCHING, or
MATCHES keyword. The syntax is as follows:

expression [NOT] { LIKE | MATCHING | MATCHES } 'pattern'
[ESCAPE 'character']

expression is described in the section “Expression.” pattern is a character string
literal. It can include the wildcard character % (percent), which matches zero or more
characters. It can include the wildcard character _ (underscore), which matches any
single character. You cannot use character string functions with pattern.

If you want to use % or _ as a literal character in pattern, you must remove its
wildcard status by preceding it with an escape character. You must also use the
ESCAPE clause to specify the escape character. You cannot specify any of the
following characters as escape characters:

Character Description

% Percent

_ Underscore

Invalid Escape Characters
6-159 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Here are some examples:

"DESC" LIKE '%Ball%'
BILL.TO MATCHES '%Dallas%'
ADR3 LIKE '%CA%'
TABLE_NAME LIKE 'UV_%' ESCAPE '\'

Testing for the Null Value: IS NULL
You can test whether a value is the null value using the IS NULL keyword. You can
test whether a value is not the null value using IS NOT NULL. The syntax is as
follows:

expression IS [NOT] NULL

expression is described in the section “Expression.”

Here are two examples:

PAID IS NULL
CLOSED IS NOT NULL

The IS NULL keyword is the only way to test for the null value. You cannot use
relational operators to test for null.

. Period

' Single quotation mark

" Double quotation mark

Character Description

Invalid Escape Characters (Continued)
 Condition 6-160

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Data Type
The data type of a column specifies the kind of data the column contains. You specify
data types in the following statements and functions:

CREATE TABLE
ALTER TABLE
CAST Function

You must define a data type for each column in a table. UniVerse SQL recognizes 15
data types.

Syntax
To specify a data type, use the following syntax:

CHAR [ACTER] [(n)]
{ VARCHAR | CHAR [ACTER] VARYING } [(n)]
{ NCHAR | NATIONAL CHAR[ACTER] } [(n)]
{ NVARCHAR | NCHAR VARYING | NATIONAL CHAR[ACTER]

VARYING [(n)]
BIT [(n)]
{ VARBIT | BIT VARYING } [(n)]
INT [EGER]
SMALLINT
FLOAT [(precision)]
REAL
DOUBLE PRECISION
DEC [IMAL] [(precision [, scale])]
NUMERIC [(precision [, scale])]
DATE
TIME
For detailed information about data types, see Chapter 3, “Data Types.”
6-161 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Expression
An expression is one or more data elements combined using arithmetic operators, the
concatenation operator, and parentheses. You can use expressions in the following
statements:

SELECT
DELETE (WHERE Clause)
UPDATE (SET clause, WHERE Clause, and WHEN Clause)
CREATE TABLE (CHECK constraint)
ALTER TABLE (CHECK constraint)

The order in which operations are performed is as follows, with expressions in paren-
theses being performed first:

1. Negation
2. Multiplication and division
3. Addition and subtraction

In programmatic SQL you cannot use parameter markers to replace data elements on
both sides of an arithmetic operator.

Data elements you can use in an expression are as follows:

Data Element Description

column For the syntax of column, see “Column” on page 157.”

set_function For the syntax of set_function, see “Set Function” on page 178.

literal A character string, a bit string, a number, a date, or a time. For
information about literals, see “Literal” on page 175.

function expression One of the following:
SUBSTRING
TRIM
UPPER
LOWER
CHAR_LENGTH

Data Elements in Expressions
 Expression 6-162

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Concatenation Operator
You can use the concatenation operator (||) to concatenate two character string
expressions.

You cannot use the concatenation operator in a CHECK condition that references
multivalued columns.

CAST Function
You can use the CAST function to convert the data type of an expression. The syntax
is as follows:

CAST (expression AS datatype)

The following data conversions are not allowed:

Scaled or approximate numbers to DATE or TIME
Dates to scaled or approximate numbers, or to TIME
Times to scaled or approximate numbers, or to DATE

datatype cannot be NCHAR, NVARCHAR, BIT, or VARBIT.

Function Expressions
You can use five function expressions in a character string expression:

Substring function
Upper function

cast_function For the syntax of cast_function, see CAST Function.

CURRENT_DATE Specifies the current system date.

CURRENT_TIME Specifies the current system time.

USER Specifies the current effective user name.

Data Element Description

Data Elements in Expressions (Continued)
6-163 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Lower function
Trim function
Length function

Substring Function

The substring function extracts a substring from a character string. The syntax is as
follows:

SUBSTRING (character_string FROM start [FOR length)
The following table describes each parameter of the syntax.

Upper and Lower Functions

The upper function converts the letters a through z to A through Z. The lower
function converts the letters A through Z to a through z. The syntax is as follows:

UPPER (character_string)
LOWER (character_string)

character.string is a value expression that evaluates to a character string.

Parameter Description

character_string A value expression that evaluates to a character string.

start An integer specifying the character from which to start the
extraction. If start is 0 or negative, it represents an imaginary
character position to the left of the first real character. In this
case, length counts from the imaginary position, but the returned
substring starts at the first real character.

length An integer specifying the number of characters to extract. If
length is negative, SUBSTRING returns an empty string. If you
do not specify length, the returned substring is from start to the
end of the string.

SUBSTRING Parameters
 Expression 6-164

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Trim Function

The trim function removes all occurrences of a specified character from the
beginning, the end, or both ends of a character string. The syntax is as follows:

TRIM ([{ LEADING | TRAILING | BOTH } [character] FROM]
character_string)

The following table describes each parameter of the syntax.

Length Function

The length function returns the length of a character string as an integer. The syntax
is as follows:

CHAR [ACTER] _LENGTH (character_string)

character_string is a value expression that evaluates to a character string.

Examples
Here are some examples of expressions that use arithmetic operators:

(PRICE - COST)/COST
PRICE * 1.25
"DATE" + 30

Parameter Description

LEADING Removes all instances of character from the left of
character_string.

TRAILING Removes all instances of character from the right of
character_string.

BOTH Removes all instances of character from both ends of
character_string. This is the default.

character The character you want to trim. The default is the space character.

character_string A value expression that evaluates to a character string.

TRIM Parameters
6-165 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Here are some examples of character string expressions that use function expressions
and the concatenation operator:

SUBSTRING('String Expression' FROM 8 FOR 4)
UPPER('UniVerse')
TRIM(' word ')
TRIM(BOTH ' ' FROM ' word ')
CHAR_LENGTH('sub'||'zero')

The returned values are:

Expr
UNIVERSE
word
word
7

 Expression 6-166

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Identifier
Identifiers specify the names of the following SQL objects:

Schemas
Tables
Views
Indexes
Triggers
Columns
Associations
Constraints

Identifiers can also be the following:

Correlation names
Column aliases

Identifiers that are not delimited start with a letter and can include letters, digits, and
underscores.

Delimited Identifiers
You can enclose any identifier in double quotation marks, making it a delimited
identifier. In addition to letters, digits, and underscores, delimited identifiers can
include the space character and all printable 7-bit ASCII characters except the
following:

The five system delimiters:
Item mark (CHAR(255))
Field mark
Value mark
Subvalue mark
Text mark

All control characters (CHAR (0) through CHAR (32))
6-167 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
A single double quotation mark
The null value (CHAR (128))

To embed a single double quotation mark in a delimited identifier, use two consec-
utive double quotation marks within the identifier.

In UniVerse SQL you can use double quotation marks:

To specify a delimited identifier
After the following keywords and their synonyms, to enclose the required
character string literals:

BREAK ON
BREAK SUPPRESS
CONV
DISPLAYNAME
EVAL
EXPLAIN
FMT
FOOTING
GRAND TOTAL
HEADING
LIKE
SAID

You can also use single quotation marks to enclose literals that follow these
keywords.

Note: You cannot use double quotation marks to enclose character string literals
anywhere else in UniVerse SQL.

The following rules apply to delimited identifiers:

Schema names cannot contain any periods.
 Identifier 6-168

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Table and view names cannot contain commas, slashes, or question marks.
In addition, using the following characters in table and view names may
make them inaccessible to some UniVerse commands:
" (double quotation mark)' (single quotation mark)
\ (backslash), (comma)
Space

On UNIX systems, table and view names cannot begin with a period.
On Windows platforms, table and view names cannot contain the
following characters:

" (double quotation mark) > (right bracket)
* (asterisk) % (percent)
: (colon) \ (backslash)
< (left bracket)
Table and view names cannot duplicate the names of any VOC entries.
Column names cannot contain any spaces.
Column names used in CHECK constraints, UNIQUE constraints, the
CREATE INDEX statement, and EVAL Expressions cannot contain the
following characters:
" (double quotation mark) [(left bracket)
~ (tilde)] (right bracket)
! (exclamation point) { (left brace)
@ (at sign) } (right brace)
(hash sign) \ (backslash)
^ (caret) | (vertical bar)
& (ampersand) ; (semicolon)
* (asterisk) : (colon)
((left parenthesis) ‘ (single quotation mark)
) (right parenthesis) , (comma)
+ (plus sign) < (left bracket)
– (minus sign) > (right bracket)
= (equal sign) / (slash)
? (question mark)
Table and column names in EVAL Expressions should not be enclosed in
quotation marks, unless this is proper UniVerse BASIC syntax.
6-169 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can use delimited identifiers in compound syntax items such as qualified column
names or a dynamically normalized association. For example:

"PERSONNEL".EMPLOYEES."SALARY"
ORDERS_"ITEM#".PRICE
 Identifier 6-170

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Literal
There are six kinds of literal in UniVerse SQL:

Character strings
Bit strings
Hex strings
Numbers
Dates
Times

Character Strings
A character string literal is a string of characters enclosed in single quotation marks.
All characters except item marks, field marks, value marks, and subvalue marks are
allowed. To specify a single quotation mark in a character string, use two consecutive
single quotation marks within the quoted string. To specify an empty string (a
character string of zero length), use two consecutive single quotation marks alone.

Bit Strings
A bit string literal is an arbitrary sequence of bits (0’s and 1’s) enclosed in single
quotation marks and preceded by the base specifier B. An example of a bit string
literal is:

B'01111110'

Hex Strings
A hex string literal is a sequence of extended digits (0 – 9, A – F, a – f) enclosed in
single quotation marks and preceded by the base specifier X. An example of a hex
string literal is:

X'1F3A2'
6-171 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Numbers
A fixed-point number is a sequence of digits, which can contain a decimal point and
can be prefixed by a + (plus) or − (minus) sign. You cannot include commas in a
fixed-point number.

A floating-point number is a fixed-point number followed by the letter E and an
integer from −307 through +307. You can prefix the number with a plus sign.

You can include leading and trailing zeros after a decimal point.

Dates
UniVerse SQL dates are like UniVerse dates. You must enclose a date in single
quotation marks. A UniVerse SQL date must have two occurrences of its delimiter,
and the only delimiters you can use are - (hyphen), / (slash), and (space).

Use the keyword CURRENT_DATE to specify the current system date.

Some examples of date literals are:

'11 SEPT 1994'
'07/05/94'
'4-15-94'

Times
UniVerse SQL times are like UniVerse times. You must enclose a time in single
quotation marks. A UniVerse SQL time must have only one or two occurrences of its
delimiter, and the only delimiter you can use is : (colon).

Use the keyword CURRENT_TIME to specify the current system time.

Some examples of time literals are:

'9:34'
'15:50:30'
'0:00:00'

Note: When entering literals in UniVerse SQL statements, you cannot use the special
control-character sequences Ctrl-^, Ctrl-], and Ctrl-| to enter system delimiters, nor
can you use Ctrl-N to enter the null value.
 Literal 6-172

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Relational Operator
The relational operators are as follows:

When used with character strings, less than means before and greater than means
after, following ASCII order. For example A is less than B and Z is greater than Y.
Since lowercase letters follow uppercase letters, Z is less than a and z is greater than
A; and since alphabetic characters follow numeric, A is greater than 1 and 9 is less
than a.

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

<> Not equal to

Not equal to

Relational Operators
6-173 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Set Function
Use set function syntax when you see set_function in a syntax line. You can use set
functions in the following clauses of the SELECT statement:

SELECT Clause
HAVING Clause

A set function lists one value for a set of rows. It takes either all the values in a
column or a set of grouped values and summarizes the selected values in a single
value.

Syntax
COUNT(*)
{ AVG | MAX | MIN | SUM | COUNT } (DISTINCT column)
{ AVG | MAX | MIN | SUM | COUNT } ([ALL] select_expression)

The following table describes each parameter of the syntax.

Parameter Description

COUNT COUNT(*) counts the number of selected rows. Used with a column
expression or select expression, COUNT counts the number of values.

AVG Averages selected or grouped column values, or values returned by a
select expression.

MAX Returns the highest value in a column or group of values.

MIN Returns the lowest value in a column or group of values.

SUM Totals selected or grouped column values, or values returned by a select
expression.

DISTINCT Eliminates duplicate values from a column or group of values before
applying the set function.

COUNT Parameters
 Set Function 6-174

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Here are some set function examples:

SELECT COUNT(*) FROM ORDERS
SELECT SUM(ORDER.TOTAL) FROM ORDERS
SELECT SUM(QTY * SELL) FROM ORDERS
SELECT MAX(COST) FROM INVENTORY

ALL Specifies all values in a column or group of values, including duplicate
values. ALL is the default.

column For the syntax of column, see “Column” on page 157.

select_expressi
on

One or more columns, literals, or the keyword USER, combined using
arithmetic operators and parentheses.

Parameter Description

COUNT Parameters (Continued)
6-175 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Subquery
Use subquery syntax when you see subquery in a syntax line. You can use subqueries
in the following statements:

DELETE (WHERE Clause)
SELECT (WHERE Clause, WHEN Clause, and HAVING Clause)
UPDATE (WHERE Clause and WHEN Clause)

You use subqueries in conditions.

Syntax
There are three ways to include a subquery in a condition. The syntax is as follows:

expression operator [ALL | ANY | SOME] (subquery)
expression [NOT] IN (subquery)
[NOT] EXISTS (subquery)

The following table describes each parameter of the syntax.

Parameter Description

expression See “Expression” on page 166.

operator One of the relational operators. If you do not specify ALL, ANY,
or SOME, the subquery must return only one row.

ALL Compares expression to all values returned by the subquery. The
result of the condition is true only if all comparisons are true or
if the subquery returns no values.

ANY Compares expression to all values returned by the subquery. If
any comparison is true, the result of the condition is true.

SOME Same as ANY.

EXISTS Tests for the existence of data specified in the subquery.

Subquery Syntax
 Subquery 6-176

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
In WHERE conditions, you can precede the first two of the preceding conditions with
the keyword EVERY. EVERY specifies that every value in a multivalued column
must meet the criteria for the row to be selected. You cannot use EVERY in an
EXISTS condition.

In WHEN conditions, you cannot use the EXISTS keyword.

The syntax of a subquery is as follows:

(SELECT { [ALL | DISTINCT] select_expression } FROM clause
 [WHERE Clause]
 [GROUP BY Clause]
 [HAVING Clause])

select_expression must return values in only one column.

Examples
This example uses the = (equal to) operator with a subquery to select the least
expensive products, with their cost and selling price. The set function in the subquery
returns one row.

>SELECT "DESC", COST, SELL FROM INVENTORY
SQL+WHERE SELL = (SELECT MIN(SELL) FROM INVENTORY);
Description................... Cost... Price..

Red/Blue/Yellow Juggling Bag $3.40 $5.00
Red Juggling Bag $3.40 $5.00
Red Classic Ring $2.80 $5.00
Blue Juggling Bag $3.40 $5.00
Blue Classic Ring $2.80 $5.00
White Classic Ring $2.80 $5.00
Yellow Juggling Bag $3.40 $5.00

7 records listed.

The next example uses the ANY keyword to select any orders which include a
product whose selling price is greater than $25.00:

>SELECT * FROM ORDERS
SQL+WHERE PROD.NO = ANY(SELECT CAST(PROD.NO AS INT) FROM INVENTORY
SQL+WHERE SELL > 25);
Order No Customer No Product No Qty. Total.......

10002 6518 605 1 $55.00
 501 1
 502 1
 504 1
6-177 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
10004 4450 704 1 $205.00
 301 9
10001 3456 112 7 $265.00
 418 4
 704 1

3 records listed.

The next example uses the IN keyword with a subquery to extract the names and
addresses of customers who have ordered item number 502 from June 30 through
August 1, 1992:

>SELECT BILL.TO FROM CUSTOMERS
SQL+WHERE CAST(CUST.NO AS INT) IN (SELECT CUST.NO FROM ORDERS
SQL+WHERE PROD.NO = 502
SQL+AND "DATE" BETWEEN '30 JUN 92' AND '1 AUG 92');
Bill to.......................

Parade Supply Store
6100 Ohio Ave.
Washington, D.C. 14567

1 records listed.

The next example uses the EXISTS keyword with a subquery to request billing
addresses for all customers who have an outstanding order:

>SELECT BILL.TO FROM CUSTOMERS
SQL+WHERE EXISTS (SELECT * FROM ORDERS
SQL+WHERE CUST.NO = CAST(CUSTOMERS.CUST.NO AS INT))
SQL+DOUBLE SPACE;
Bill to.......................

Mr. B. Clown
1 Center Ct.
New York, NY 10020

Ms. F. Trapeze
1 High Street
Swingville, ME 98765

.

.

.
North American Juggling
Association
123 Milky Way
Dallas, TX 53485

5 records listed.
 Subquery 6-178

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
Table
Use table expression syntax when you see table_expression in a syntax line. You use
table expressions in the following statements:

DELETE
INSERT
SELECT
UPDATE

A table expression can specify just the name of a table, view, or UniVerse file. For
tables and files it can also specify which particular rows you want to process. And it
can specify an alternate dictionary to use with the table.

Syntax
The syntax of a table expression is as follows:

table [rows] [alt_dict] [NO.INDEX]
The following table describes each parameter of the syntax.

Expression Description

table The name of a table, view, or UniVerse file. You can specify table in three
ways:

[schema .] tablename [_association]
An identifier specifying the name of a table, view, or UniVerse file. associ-
ation is an identifier specifying either the name of an association of
multivalued columns in tablename or the name of an unassociated multi-
valued column. The _ (underscore) is part of the syntax and must be typed.
If you specify schema, tablename cannot be the name of a UniVerse file.

DICT [schema .] tablename
Specifies the dictionary of tablename as the source of the data. If you
specify schema, tablename cannot be the name of a UniVerse file.

DATA filename , datafile
Specifies a data file that is part of a file with multiple data files.

Table Expression Parameters
6-179 UniVerse SQL Reference

C:\Program
Files\Adobe\FrameMaker8\UniVerse
rows Specifies explicitly the rows you want to select from the table. You cannot
specify rows in an INSERT statement.

You can specify rows in three ways:

'primary_key' ['primary_key' …]
One or more primary key values, each enclosed in single quotation marks.
If the table has no primary key, specify values from the @ID column.

INQUIRING The INQUIRING keyword specifies that you
want the system to interactively prompt you to
enter primary key or @ID values. Prompting
continues until you press Return. You can use
INQUIRING only once in a SELECT statement.
You cannot using INQUIRING in a correlated
subquery or in programmatic SQL.

SLIST list Specifies a select list containing primary key
or @ID values. list is one of the following:

• A number from 0 through 10. If
select list 0 is active, you must
specify SLIST 0, otherwise a fatal
error occurs.

• The name of a saved select list in the
&SAVEDLISTS& file. The name
must be enclosed in single quotation
marks.

You cannot specify select list 0 in program-
matic SQL.

alt_dict Specifies an alternate dictionary for table. Use the USING DICT
keyword to specify an alternate dictionary:

USING DICT filename

filename is the name of a table, view, or UniVerse file whose
dictionary you want to use with table.

NO.INDEX Suppresses all use of a table’s secondary indexes.

Expression Description

Table Expression Parameters (Continued)
 Table 6-180

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Ch6
12/29/08
If you specify rows, and if the table expression references an association of multi-
valued columns or an unassociated multivalued column as a dynamically normalized
table, use the following format to specify primary key values:

table_keyTMassoc_key

table_key is the primary key of the base table. If the table has no primary key,
table_key is a value in the @ID column. assoc_key is the association key, and TM is
a text mark.

If an association has no association keys, use the following format to specify the
primary key values of a dynamically normalized table:

table_keyTM@ASSOC_ROW
6-181 UniVerse SQL Reference

:\Prog
2/29/0
A
Appendix

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
UniVerse SQL
Grammar
This appendix presents the syntax of the UniVerse SQL statements
using Backus Naur Form (BNF) notation together with some explan-
atory notes.

The formal syntax uses BNF and comprises a series of symbols and
production rules that successively break down a statement into its
components. The production rules end when a symbol is defined in
terms of terminal symbols. Terminals are the actual keywords and
variables that you enter to form the statement.
ram Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
BNF Conventions
BNF uses the following conventions:

Convention Description

<…> Angle brackets indicate nonterminal symbols that are further decom-
posed by production rules. For example, <column specification> is a
nonterminal that appears in the production rule for an <interactive value
expression> and which, in turn, has its own production rule.

{…} Braces indicate a group of symbols that must appear together. For
example, {, <user name>} means that a comma and then a <user name>
must appear together (this is known as a comma-list).

[…] Square brackets indicate optional symbols in the grammar. For example,
[{, <user name>}] means that a comma and then a <user name> are
optional here.

| A vertical bar indicates a series of choices, one of which may be chosen.
For example, the production rule for <action> is one of SELECT,
INSERT , DELETE, and UPDATE. These are separated from each other
by a vertical bar.

::= The ::= symbol denotes the production rule that decomposes the symbol
to the left of the ::= into its components to the right of the ::= .

BNF Conventions
 A-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Common Syntax Elements
This section describes common elements in UniVerse SQL syntax. These common
elements form the basis for other UniVerse SQL language components.

Tokens, Characters, and Symbols
A token is a character string that is treated as a single unit when parsing an SQL
statement. There are three kinds of token: keywords, delimiters, and identifiers.
Keywords are UniVerse SQL reserved words. Delimiters terminate the current token.
Identifiers are user-assigned names.

<token> ::=
<nondelimiter token>
| <delimiter token>

<nondelimiter token> ::=
<identifier>
| <key word>
|<unsigned numeric literal>
| <bit string literal>
| <hex string literal>

<identifier> ::=
<simple Latin letter> [{ [_] <letter or digit> } …]
| <delimited identifier>

<simple Latin Letter> ::=
<simple Latin upper case letter>
| <simple Latin lower case letter>

<delimited identifier> ::=
" { <letter or digit> | <" "> | <SQL special character> }… "

<letter or digit> ::=
<simple Latin upper case letter>
| <simple Latin lower case letter>
| <digit>

<SQL special character> ::=
The space character and all printable 7-bit ASCII characters
A-3 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
 other than letters, digits, and the double quotation mark

<delimiter token> ::=
<character string literal>
| , | (|) | < | > | . | : | = | * | + | − | / | | | <> | >= | <= | # | <space> | <tab>

Keywords
Keywords can be entered in uppercase, lowercase, or mixed case letters. For a list of
UniVerse SQL keywords, see Appendix B, “Reserved Words.”

Delimiters
With the few exceptions noted in the section “Literals” on page 5, these are the
<delimiter token>s supported in UniVerse SQL:

Delimiters in UniVerse SQL cannot appear in <identifier>s or <key word>s.

Token Description

One or more consecutive space, tab, or newline characters.

-- Two consecutive hyphens introduce a comment. A newline character
terminates the comment. You can put a comment within, but not before
or after, an SQL statement.

; A semicolon ends an SQL statement.

, . : Comma, period, colon.

() Left parenthesis, right parenthesis.

+ − * / Plus, minus, times, divided by.

< > = # Less than, greater than, equal, does not equal.

<> >= <= Does not equal, greater than or equal, less than or equal.

literal Character string. See “Literals” on page 5.

Delimiter Tokens
 A-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Literals
There are four kinds of literal: character string, numeric, bit string, and hex string. In
addition, SQL accepts the keywords USER, CURRENT_DATE, and
CURRENT_TIME in most places where it accepts a literal. The USER keyword
represents the current effective user name. The CURRENT_DATE keyword repre-
sents today’s date. The CURRENT_TIME keyword represents the current time.

<literal> ::=
<signed numeric literal>
| <character string literal>

Numeric Literals

An <unsigned numeric literal> is the same as in UniVerse, but should not be enclosed
in quotation marks. A fixed-point number is a sequence of digits that can contain a
decimal point and can be preceded by a plus or minus sign. Commas are not allowed.
A floating-point number is a fixed-point number followed by the letter E and an
integer from −307 through +307. A plus sign in the exponent is optional. Leading
zeros and trailing zeros after a decimal point are allowed.

<signed numeric literal> ::= [+ | −] <unsigned numeric literal>

<unsigned numeric literal> ::=
<exact numeric literal>
| <approximate numeric literal>

<exact numeric literal> ::=
<unsigned integer> [. [<unsigned integer>]]
| . <unsigned integer>

<unsigned integer> ::= <digit> …

<approximate numeric literal> ::= <mantissa> E <exponent>

<mantissa> ::= <exact numeric literal>

<exponent> ::= <signed integer>

<signed integer> ::= [+ | −] <unsigned integer>
A-5 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Bit String and Hex String Literals

Bit string and hex string literals are represented by a base specifier (B for binary, X
for hexadecimal) followed by a string of extended digits (numbers or letters) within
single quotation marks.

<bit string literal> ::= B ' [<bit> …] '

<bit> ::= 0 | 1
<hex string literal> ::= X ' [<hexit> …] '

<hexit> ::= <digit> | A | B | C | D | E | F | a | b | c | d | e | f

Character String Literals

<character string literal> is arbitrary text bounded at each end by a single quotation
mark. All characters except the single quotation mark are allowed in the literal text.
Two consecutive single quotation marks in the text represent one literal single
quotation mark. The empty string is a valid character string, represented as ' '.

<character string literal> ::= ' [<SQL language character> …] '

<SQL language character> ::=
<simple Latin letter>
| <digit>
| <SQL special character>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<simple Latin letter> ::=

<simple Latin upper case letter>
| <simple Latin lower case letter>

<simple Latin upper case letter> ::=
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U
| V | W | X | Y | Z

<simple Latin lower case letter> ::=
a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
 A-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Dates

A <date literal> is similar to a UniVerse date, bounded at each end by a single
quotation mark. It must have exactly two occurrences of its delimiter. Only the
following characters are allowed as delimiters: - (hyphen), / (slash), and (space).

Times

A <time literal> is similar to a UniVerse time, bounded at each end by a single
quotation mark. It must have exactly one or exactly two occurrences of its delimiter.
Only the : (colon) is allowed as a delimiter.

Identifiers and Names
Identifiers must start with a letter. They can include letters, digits, and underscores
and be up to 18 characters long. Delimited identifiers can include the space character
and all printable 7-bit ASCII characters except the following: the five system delim-
iters (item mark, field mark, value mark, subvalue mark, and text mark); all control
characters (CHAR (0) through CHAR (32)); and the null value
(CHAR (128)).

Identifiers include the following:

<schema name>
<table name>
<view name>
<index name>
<column name>
<association name>
<constraint name>
<correlation name>
<tempname>
<trigger name>

A <schema name> cannot contain a . (period). <column name>s cannot contain a
space. A <table name> or <view name> cannot contain a / (slash) or ? (question
mark). On UNIX systems a <table name> or <view name> cannot begin with a
. (period). On Windows platforms, a <table name> or <view name> cannot contain
the following characters: " (double quotation mark), % (percent), * (asterisk), \
(backslash), : (colon), and < > (angle brackets).
A-7 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
User Names

User names must start with a letter (either upper- or lowercase) and can include
letters, digits, and underscores. They can be any length allowed on the operating
system being used, but 18 characters is the recommended limit. User names include
the following:

<user name>
<schema owner>
<grantee>

File Names, Table Names, Field Names, and Column Names

The following kinds of name can be used in a UniVerse SQL SELECT statement
when you refer to non-SQL files. You can include a period in these names (normally
excluded for SQL applications).

<filename>
<table name>
<fieldname>
<column name>
<datafile>
 A-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Value Expressions
An SQL <value expression> is a combination of atomic values called <primary>s.
<primary>s can be combined using the arithmetic operators (+, −, *, /), the concate-
nation operator (||), and parentheses. The usual rules of arithmetic precedence
apply. In programmatic SQL you cannot use parameter markers on both sides of an
arithmetic operator, nor can you use parameter markers as the operand of a unary plus
or minus.

Primaries
The following rule defines the most general form of <primary>:

<primary> ::=
<column specification>
| <set function specification>
| <literal>
| CURRENT_DATE
| CURRENT_TIME
| USER
| <cast specification>

<cast specification> ::=
CAST (<cast operand> AS <cast target>)

<cast operand> ::=
<value expression>
| NULL

<cast target> ::= <data type>

The CURRENT_DATE keyword represents today’s date. The CURRENT_TIME
keyword represents the current time. The USER keyword represents the current
effective user name. For the <literal> rule, see “Literals” on page 5.

The <cast specification> converts data from one data type to another. The <cast
target> data type cannot be NCHAR, NVARCHAR, BIT, or VARBIT.

In certain cases some <primary> formats are disallowed. For example, in a <check
condition>, the <column specification> must be an unqualified <column name>, and
<set function specification>s are not allowed.
A-9 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Column Specifications
In UniVerse SQL a column specification can be either a qualified or unqualified
column name, a qualified or unqualified EVAL expression, or a temporary column
name.

<column specification> ::=
[<qualifier> .] <column name>
| EVAL [UATE] [<qualifier> .] <i-type specification>
| <tempname>

<qualifier> ::=
[<schema name> .] <table name>
| <correlation name>

A <column name> is the name of a column (field) in the dictionary of one of the
tables (files) named in the <from clause>. If it is not preceded by a <qualifier>, the
<column name> must be the name of a column in only one of the tables specified in
the <from clause>.

A <qualifier> is either a simple <table name> or a <table name> qualified by a
<schema name>.

A <table name> is a simple base table name (without DICT or DATA), or a <corre-
lation name>, that is exposed in the <from clause>. This table must contain the
specified <column name> (or columns named in the <i-type specification> if this is
an EVAL expression).

A <schema name> is a simple schema name. This schema must contain the specified
<table name>. The <table name> and <schema name> must each be followed by a
period.

An <i-type specification> is a character string, delimited by quotation marks, speci-
fying a valid I-descriptor expression for one of the tables (files) named in the <from
clause>. If the <from clause> names more than one table, the <i-type specification>
must be preceded by a <qualifier>. In programmatic SQL you cannot use a parameter
marker in place of an <i-type specification>.
 A-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Set Functions
<set function specification> ::=

COUNT(*)
| {AVG | MAX | MIN | SUM | COUNT} (DISTINCT <column

specification>)
| {AVG | MAX | MIN | SUM | COUNT} ([ALL] <value
 expression>)

The <value expression> cannot contain a <set function specification>. In program-
matic SQL you cannot use a parameter marker in place of a <column specification>
or <value expression>.

Set functions are used with explicit or implicit groups.

Groups are formed explicitly with the GROUP BY clause (see WHEN Clause). The
GROUP BY clause partitions a table into subtables (groups) each of which has the
same value for all the specified grouping columns.

In the absence of a GROUP BY clause, if any set function appears in the SELECT
clause, the entire table is treated implicitly as a group.

When a table has been explicitly or implicitly partitioned into groups, all operations
on the table must deal with groups of rows instead of with individual rows. The set
functions are designed to operate on groups of rows, returning a single value from the
set of values in each group. Other than set functions, the only other <primary>s that
can be specified for groups are (1) grouping columns and (2) constants.

The AVG and SUM set functions can be used only with numeric data. The other set
functions can be used with any data type.

Character Value Expressions
Character value expressions can be used wherever a <value expression> is allowed
and the data type can be CHAR, VARCHAR, NCHAR, or NVARCHAR.

<character value expression ::=
<concatenation>
| <character primary>

<concatenation> ::=
<character value expression> || <character primary>
A-11 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<character primary> ::=
<character value expression primary>
| <character value function>

<character value expression primary> ::=
<unsigned value specification>
| <column specification>
| (<character value expression>)

<unsigned value specification> ::=
<character string literal>
| USER

<character value function> ::=
<character substring function>
| <fold>
| <trim function>

<character substring function> ::=
SUBSTRING (<character value expression> FROM <start
position>
[FOR <string length>])

<fold> ::=
{ UPPER | LOWER } (<character value expression>)

<trim function> ::=
TRIM ([[<trim specification>] [<trim character>] FROM]
<character value expression>)

<trim specification> ::=
LEADING
| TRAILING
| BOTH

The SUBSTRING function returns a character string starting at <start position> and
continuing for the specified <string length> or until the end of the <character value
expression>. <start position> and <string length> must evaluate to integers. A <start
position> of 0 or a negative number represents an imaginary character position to the
left of the first real character; in that case the <string length> counts from the
imaginary position, but the returned substring starts at the first real character. If
<string length> is negative, SUBSTRING returns an empty string.
 A-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
UPPER converts the letters a through z to A through Z. LOWER converts the letters
A through Z to a through z. The <fold> functions do not convert any other characters.

The TRIM function removes all occurrences of <trim character> from the left, right,
or both ends of a character string. The default is BOTH, and the default <trim
character> is the space character.

Numeric Value Expressions
Numeric value expressions can be used wherever a <value expression> is allowed
and the data type can be DEC, DOUBLE PRECISION, FLOAT, INT, NUMERIC,
REAL, or SMALLINT.

<numeric value expression> ::=
<term>
| <numeric value expression> + <term>
| <numeric value expression> – <term>

<term> ::=
<factor>
| <term> * <factor>
| <term> / <factor>

<factor> ::=
[+ | –] <numeric primary>

<numeric primary> ::=
<numeric value expression primary>
| { CHAR [ACTER]_LENGTH } (<character value expression>)

<numeric value expression primary> ::=
<unsigned value specification>
| <column specification>
| <set function specification>
| (<numeric value expression>)

The CHAR_LENGTH function returns the length of a character string as an integer.
A-13 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Data Types
UniVerse SQL supports fifteen data types:

<data type> ::=
CHAR[ACTER] [(<length>)]
| { VARCHAR | CHAR[ACTER] VARYING } [(<length>)]
| { NCHAR | NATIONAL CHAR[ACTER] } [(<length>)]
| { NVARCHAR | NCHAR VARYING | NATIONAL
CHAR[ACTER] VARYING } [(<length>)]
| BIT [(<length>)]
| { VARBIT | BIT VARYING } [(<length>)]
| INT[EGER]
| SMALLINT
| FLOAT [(<precision>)]
| REAL
| DOUBLE PRECISION
| DEC[IMAL] [(<precision> [, <scale>])]
| NUMERIC [(<precision> [, <scale>])]
| DATE
| TIME

For details about these data types, see Chapter 3, “Data Types.”
 A-14

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Tables
In UniVerse SQL, the <table reference> has been expanded to allow for unnesting
tables in SELECT statements. The more limited <DML table reference>, which does
not include the UNNEST clause or the AS clause, is used in INSERT, UPDATE, and
DELETE statements.

<table reference> ::=
<table extension>
[<explicit ID specification>]
[<alternate dictionary specification>]
[[AS] <correlation name>]
[NO.INDEX]

<table extension> ::=
<base table name>
| UNNEST <base table name> ON { <column name>
| <association name> }

<DML table reference> ::=
<base table name>

[<explicit ID specification>]
[<alternate dictionary specification>]
[NO.INDEX]

<base table name> ::=
{ [<schema name> .] <table name> [_<association name>]
| DICT [<schema name> .] <table name>
| DATA <filename> , <datafile> }

<explicit ID specification> ::=
<character string literal> [{ , <character string literal> } …]
| INQUIRING
| SLIST { <unsigned integer> | '<list name>' }

<alternate dictionary specification> ::=
USING DICT [<schema name> .] <table name>
A-15 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
A <correlation name> is a temporary synonym for this table name, which can be used
elsewhere in a SELECT statement. One use of a <correlation name> is for correlated
subqueries. An <association_name> is the name either of an association of multi-
valued columns or of an unassociated multivalued column. If the <base table name>
includes the _<association name> extension, <correlation name> cannot be the same
as a <column name> in the base table.

The <base table name> in an UNNEST clause cannot include the
_<association name> extension. In programmatic SQL you cannot use INQUIRING
or select list 0 in a DML statement.

You cannot use an <explicit ID specification> in an INSERT statement.

NO.INDEX suppresses all use of a table’s secondary indexes.
 A-16

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Query Expressions
<query expression> ::=

<query term>
| <query expression> UNION [ALL] <query term>

<query term> ::=
<query specification>
| (<query expression>)

Query expressions take many forms. Release 9 of UniVerse uses two forms of query
expression, the simplest form of which is the query specification (see Simple Query
Specification). Query expressions can be used in two ways:

As an interactive or programmatic SELECT statement
As the SELECT statement that creates a view

The following sections describe three kinds of query specification. For information
about query specifications that are used in the INSERT and UPDATE statements, see
“INSERT Statement” on page 37 and “UPDATE Statement” on page 38.

A query specification takes the form of a SELECT statement. This appendix distin-
guishes three kinds of query specification:

The standard SQL SELECT statement
The interactive SQL SELECT statement
The interactive report statement

Simple Query Specification
<query specification> ::=

SELECT [ALL | DISTINCT] <select list> [TO SLIST
 { <unsigned

integer> | '<list name>' }] <table expression> [<updatability
clause>] [<processing qualifier list>]

<select list> ::=
*
| <value expression> [{ , <value expression> } …]
| { <table name> . * | <correlation name> . * }
A-17 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<updatability clause> ::=
FOR UPDATE [OF <column specification> [, <column
specification>] …]

<processing qualifier list> ::=
<processing qualifier> [<processing qualifier> …]

<processing qualifier> ::=
EXPLAIN
| NO.OPTIMIZE
| NOWAIT
| REPORTING
| SAMPLE [<unsigned integer>]
| SAMPLED [<unsigned integer>]

Description and Rules

The <select list> specifies actual and derived columns to be selected from the inter-
mediate table built by the <table expression>. For details about <table expression>,
see “Table Expression” on page 25. For details about <value expression>, see “Value
Expressions” on page 9.

In the <select list>, a <column name> is the name of a column (field) in the dictionary
of one of the tables (files) named in the <table expression>. If it is not preceded by a
<qualifier>, the <column name> must be the name of a column in only one of the
tables specified in the <table expression>.

In the <select list>, an <i-type specification> specifies a valid I-descriptor expression
for one of the tables (files) named in the <table expression>. If the <table expression>
names more than one table, the <i-type specification> must be preceded by a
<qualifier>.

In the <select list>, <value expression> can be the NULL keyword.

In programmatic SQL you cannot use a parameter marker in place of a <value
expression> in the <select list>.

The keyword DISTINCT means that duplicate rows are eliminated from the result of
the column-selection process, or from the rows in a group when computing a set
function. DISTINCT can appear only once in a SELECT statement (not counting
subqueries). The keyword ALL (the default) means that duplicate rows are not
eliminated.
 A-18

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
An * (asterisk), when specified instead of a <select list>, means “all columns.” <table
name> . * means all columns of <table name>. If a <table name> is given a <corre-
lation name> in the <table expression>, you must use <correlation name> . * in the
<select list>. You can also use <table name>_<association name> . *, <schema
name> . <table name> . *, and <filename> . *, as long as each of these identifiers
appear in the <table expression>. <filename> . * means all fields defined in the
@ phrase for the file, plus the record ID (unless the @ phrase contains ID.SUP).

If the table dictionary contains an @SELECT phrase, “all columns” means all
columns, real (defined by data descriptors) and virtual (defined by I-descriptors and
by A- and S-descriptors that use correlatives) listed in the @SELECT phrase for this
table. The list of columns in @SELECT takes precedence over the table’s SICA as
well as the file dictionary’s @ phrase. When referring to a UniVerse file that is not a
table, “all columns” means all fields defined in the @ phrase for this file, plus the
record ID (unless the @ phrase contains ID.SUP). If there is no @ phrase, “all
columns” means just the record ID.

The TO SLIST clause creates a UniVerse select list of entries, each of which
comprises the columns of the <select list> separated by key separators. If a <query
specification> includes the TO SLIST clause, <select list> cannot specify columns
containing multivalued data (unless you are selecting from an association); the <table
expression> cannot include the <when clause>, <group by clause>, or <having
clause>; and the <query expression> cannot include the UNION keyword. If a
<query specification> includes TO SLIST and its <table expression> references a
single table, you can omit the <select list>.

In the <updatability clause>, the <column specification> cannot be an EVAL
expression or @ASSOC_ROW. If a <query specification> includes an <updatability
clause>, <select list> cannot include a <set function>, and <table expression> cannot
include the <group by clause> or <having clause>. An <updatability clause> cannot
be included in a trigger program.

SAMPLE or SAMPLED selects a limited number of output rows before the action of
the <order by clause> if one is present. In programmatic SQL you cannot use a
parameter marker in place of the <unsigned integer>.

EXPLAIN displays information on the strategy that will be used to process the query.
In programmatic SQL this information is returned as error message text.

The keyword NOWAIT terminates and rolls back the SELECT statement when
another user’s record lock, group lock, or file lock is encountered.

In programmatic SQL you cannot use the keyword REPORTING.
A-19 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Interactive Query Specification
An interactive query specification is a special kind of query specification that you
execute from the UniVerse system prompt. You can use many of the same column
functions that are available in RetrieVe.

<interactive query specification> ::=
SELECT [ALL | DISTINCT] <interactive select list> [TO SLIST
{ <unsigned integer> | '<list name>' }] <table expression>
[<updatability clause>] [<processing qualifier list>]

<interactive select list> ::=
<interactive value expression> [{ , <interactive value
expression> } …]
| *

<interactive value expression> ::=
<value expression> [<field qualifier list>]
| [<field modifier>] <column specification> [<field qualifier
 list>]

<field modifier> ::=
TOTAL
| { AVERAGE | AVG }
| { PERCENT | PCT } [<unsigned integer>]
| { BREAK ON | BREAK.ON } [<character string literal>]
| { BREAK SUPPRESS | BREAK.SUP } [<character string
 literal>]
| { CALCULATE | CALC }

<field qualifier list> ::=
<field qualifier> [<field qualifier> …]
 A-20

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<field qualifier> ::=
[AS] <tempname>
| { DISPLAYLIKE | DISPLAY.LIKE } { [<qualifier> .] <column
 name>
| <tempname> }
| { DISPLAYNAME | DISPLAY.NAME | COL.HDG }
 <character
string literal>
| { CONVERSION | CONV } <character string literal>
| { FORMAT | FMT } <character string literal>
| { MULTIVALUED | MULTI.VALUE | SINGLEVALUED
| SINGLE.VALUE }
| { ASSOCIATION | ASSOC } <association name>
| { ASSOCIATED | ASSOC.WITH } { [<qualifier> .] <column
 name>
| <tempname> }

Description and Rules

The <field modifier>s have the same meaning as in RetrieVe. As the syntax definition
shows, a <field modifier> can be used only when the <value expression> is a
<column specification> (that is, a column name, an EVAL expression, or a tempname
assigned to a column or an EVAL expression). In programmatic SQL you cannot use
<field modifier>s.

The <field qualifier>s have the same syntax and semantics as in RetrieVe. When used
with a <value expression> that is just a constant, the only meaningful <field
qualifier>s are FORMAT and DISPLAYNAME (and their synonyms). Other <field
qualifier>s are ignored when used with a constant. In programmatic SQL you cannot
use ASSOCIATION, ASSOCIATED, MULTIVALUED, SINGLEVALUED, or their
synonyms.

In programmatic SQL you cannot use a parameter marker in place of a <character
string literal> after DISPLAYNAME, CONVERSION, FORMAT, or their
synonyms.
A-21 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Interactive Report Statement
An interactive report statement is an extended <interactive query expression> that
you execute from the UniVerse system prompt. With it you can order output rows and
use many of the report qualifiers that are available in RetrieVe.

<interactive report statement> ::=
<interactive query expression> [<order by clause>]
 [<updatability
clause>] [<report qualifier list>] [<processing qualifier list>]

<interactive query expression> ::=
<interactive query specification> [{ SUPPRESS DETAIL |
DET.SUP }]
| (<interactive query expression>)

ORDER BY Clause

<order by clause> ::=
ORDER BY <sort specification> [{ , <sort specification> } …]

<sort specification> ::=
{ <unsigned integer> | <column specification>} [ASC | DESC]

Description and Rules

The resulting rows of the query are displayed in the order specified by the first <sort
specification>. If the first <sort specification> produces duplicate values, the rows
are further sorted according to the second <sort specification>, and so on.

An <unsigned integer> can specify a sorting column by its ordinal position in the
<interactive select list>. In programmatic SQL you cannot use a parameter marker in
place of an <unsigned integer>.

If a <sort specification> is multivalued, the output is sorted according to the RetrieVe
conventions for sorting multivalued data. That is, value marks are ignored, and the
values are treated as a single field and sorted as a unit.
 A-22

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
If the SELECT clause includes the TO SLIST clause but does not include a <select
list>, <column specification> must be a <column name>. If the SELECT clause
includes a <select list>, <column specification> can be either a <column name> or
an <unsigned integer>. If the SELECT clause includes both the DISTINCT keyword
and the TO SLIST clause, you cannot include an <order by clause> in the SELECT
statement.

Report Qualifiers

<report qualifier list> ::=
<report qualifier> [<report qualifier> …]

<report qualifier> ::=
{ HEADING | HEADER } { <character string literal>
 | DEFAULT }
| { FOOTING | FOOTER } <character string literal>
| { COUNT.SUP }
| { SUPPRESS COLUMN HEADING | SUPPRESS COLUMN
HEADER | COL.SUP }
| { SUPPRESS DETAIL | DET.SUP }
| { NOPAGE | NO.PAGE }
| { DOUBLE SPACE | DBL.SPC }
| { COLUMN SPACES | COL.SPCS | COL.SPACES }

 [<unsigned
integer>]
| { GRAND TOTAL | GRAND.TOTAL } <character string
 literal>
| MARGIN <unsigned integer>
| { VERTICALLY | VERT }
| LPTR [<unsigned integer>]
| AUX.PORT

Description and Rules

RetrieVe-style formatting is available for the output of the SQL SELECT statement
via <report qualifier>s. The <report qualifier>s listed previously have the same
meaning as in RetrieVe.
A-23 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
If the HEADING keyword is not specified, the output of the query has no heading
line and starts on the next line of the display device. If HEADING is specified, the
output starts on a new page or at the top of the screen of the display device.
HEADING DEFAULT generates the standard RetrieVe heading line.

Table Expression
<table expression> ::=

<from clause>
[<where clause>]
[<when clause> [<when clause>…]]
[<group by clause>]
[<having clause>]

Description and Rules

The <from clause> can be thought of as creating an intermediate table, which is the
Cartesian product of its various <table reference>s. Later clauses of the SELECT
statement work with this intermediate table to produce the final result of the query.

FROM Clause
<from clause> ::=

FROM { <table reference> | <joined table> }
[{ , { <table reference> | <joined table> } } …]

<joined table> ::=
{ <table reference> | <joined table> } [<join type>] JOIN
<table reference> <join specification>

<join specification> ::=
ON <join condition>
| USING (<join column list>)

<join type> ::=
INNER
| LEFT [OUTER]
 A-24

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Description and Rules

Each <table reference> is said to have an exposed name. This is its <correlation
name>, if any, otherwise it is its <base table name>. The exposed names in the <from
clause> must all be different.

Base Table Names

A <base table name> in a <from clause> can take three forms: <base table name>
indicates the data file, DICT <base table name> indicates the file dictionary, and
DATA <filename>,<datafile> specifies a data file in a file comprising multiple data
files. An SQL SELECT query can be made against any UniVerse file whether or not
it is an SQL table. However, if you qualify the <base table name> with a <schema
name>, the table cannot be a UniVerse file.

UNNEST Clause

The UNNEST keyword unnests the multivalued data of an association. UNNEST
expands each table row by generating an unnested row for each value mark of the
unnested association up to the unnested association depth. The unnested association
depth is determined (for SQL tables) by the maximum number of value marks in the
unnested association key columns, as defined in the SICA, or (for UniVerse files) by
the maximum number of value marks in the unnested association phrase columns or
in the controlling attribute column. UNNEST acts before all other stages of query
processing, and unnested columns become single-valued columns for the rest of the
query processing.

Explicit IDs

An <explicit ID specification> names a source of known row identifiers. If the table
from which you are selecting data is a view, you cannot use an <explicit ID
specification>.

A <character string literal> list specifies that only records whose keys are in the list
are considered as candidate rows. Each key must be specified as a quoted literal.

The INQUIRING keyword prompts the user for keys. You can use INQUIRING only
once in a SELECT statement, and you cannot use it in a correlated subquery.
A-25 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
When you use the SLIST keyword, candidate rows are those records whose keys are
either in a currently active UniVerse select list, specified by a number from 0 through
10, or in a saved select list stored in the &SAVEDLISTS& file, specified by <list
name>. If the default select list (select list 0) is active when a UniVerse SQL SELECT
is executed, SLIST 0 must be specified for a <table reference> in the <from clause>;
otherwise the SELECT gives an error message. Select list 0 is always deactivated
after a UniVerse SQL SELECT.

Alternate Dictionaries

An <alternate dictionary specification> allows the use of alternate, stored formatting
and conversion definitions for named columns. The alternate dictionary has no effect
on the catalog or SICA information that defines the table.

Joins

A <join condition> is one or more <where predicate>s using columns from the <table
reference>s in the <joined table>. The <where predicate>s can be combined using
AND, OR, NOT, and parentheses, and can be evaluated giving a logical result of true,
false, or unknown. The <table reference>s in the <joined table> cannot include the
INQUIRING keyword.

WHERE Clause
<where clause> ::=

WHERE <where condition>

A <where condition> is one or more <where predicate>s, combined using AND, OR,
NOT, and parentheses, that can be evaluated giving a logical result of true, false, or
unknown.
 A-26

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<where predicate> ::=
[EVERY] <value expression> <comp op> <value expression>
| [EVERY] <value expression> [NOT] BETWEEN <value
expression> AND <value expression>
| [EVERY] <value expression> [NOT] IN (<value list>)
| [EVERY] <value expression> [NOT] { SAID | SPOKEN
 <literal>
| [EVERY] <value expression> IS [NOT] NULL
| [EVERY] <value expression> [NOT] { LIKE | MATCHES
| MATCHING } <pattern> [ESCAPE <escape character>]
| [EVERY] <value expression> <comp op> <subquery>
| [EVERY] <value expression> <comp op> { ALL | { ANY |

 SOME } }
<subquery>
| [EVERY] <value expression> [NOT] IN <subquery>
| EXISTS <subquery>

<subquery> ::=
(SELECT { [ALL | DISTINCT] <value expression> | * } <table
expression>)

Description and Rules

The <where clause> selects those rows that match the <where condition>, from the
Cartesian product of the tables named in the <from clause>.

A <value expression> in a <where clause> cannot contain a <set function
specification>.

For more information about <where predicate>s, see “Predicates” on page 34 and
“Subqueries” on page 31.

WHEN Clause
<when clause> ::=

WHEN <when condition>

A <when condition> is one or more <restriction criteria>, combined using AND, OR,
NOT, and parentheses, that, when evaluated, gives a logical result of true, false, or
unknown.
A-27 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<restriction criteria> ::=
<value expression> <comp op> <value expression>
| <value expression> [NOT] BETWEEN <value expression>
 AND
<value expression>
| <value expression> [NOT] IN (<value list>)
| <value expression> [NOT] { SAID | SPOKEN } <literal>
| <value expression> IS [NOT] NULL
| <value expression> [NOT] { LIKE | MATCHES |
 MATCHING }
<pattern> [ESCAPE <escape character>]
| <value expression> <comp op> <subquery>
| <value expression> <comp op> { ALL | { ANY | SOME } }
<subquery>
| <value expression> [NOT] IN <subquery>

<subquery> ::=
(SELECT { [ALL | DISTINCT] <value expression> | * } <table
expression>)

Description and Rules

The <when clause> extracts rows from an association (called a when association)
without having to unnest the association first. WHEN excludes specific association
rows from the when association.

The SELECT clause must specify at least one output column from the when
association.

<restriction criteria> must name at least one multivalued column. All columns named
in the <restriction criteria> must belong to the same association.

<restriction criteria> that name unnested columns must also include a multivalued
column from outside the unnested association. This is because UNNEST, which
makes the unnested columns singlevalued, is applied before WHEN, which must
specify at least one multivalued column.

<restriction criteria> in a <when clause> cannot contain a <set function
specification>.

You cannot use the <when clause> in a subquery.
 A-28

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
For more information about <restriction criteria>, see “Predicates” on page 34 and
“Subqueries” on page 31.

GROUP BY Clause
<group by clause> ::=

GROUP BY <column specification> [{ , <column
 specification> } …]

Description and Rules

A <group by clause> partitions a table into subtables, or groups, so that the values of
the specified columns are the same in each group. Each group becomes one row in
the result table.

Each <column specification> in a <group by clause> is called a “grouping column”
and must be singlevalued.

When a SELECT statement includes a <group by clause>, the following rules apply
to <value expression>s in the <select clause>:

Any <column name> in a <value expression> must be a grouping column.
Any EVAL expression must have an AS <tempname> clause and
<tempname> must be a grouping column.
Any <set function specification> in the <select clause> is applied to each
group to produce the final results of the SELECT.

See also “Set Functions” on page 11.

HAVING Clause
<having clause> ::=

HAVING <group condition>

A <group condition> is one or more <group predicate>s, combined using AND, OR,
NOT, and parentheses, that, when evaluated, gives a logical result of true, false, or
unknown.
A-29 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<group predicate> ::=
<value expression> <comp op> <value expression>
| <value expression> [NOT] BETWEEN <value expression>
 AND
<value expression>
| <value expression> [NOT] IN (<value list>)
| <value expression> [NOT] { SAID | SPOKEN } <literal>
| <value expression> IS [NOT] NULL
| <value expression> [NOT] { LIKE | MATCHES |
 MATCHING }
<pattern> [ESCAPE <escape character>]
| <value expression> <comp op> <subquery>
| <value expression> <comp op> { ALL | { ANY | SOME } }
<subquery>
| <value expression> [NOT] IN <subquery>
| EXISTS <subquery>

Description and Rules

A <having clause> selects specific groups in a query. Usually a <having clause> is
preceded by a <group by clause>. If it is not, the whole table is considered to be a
group.

For more information about <group predicate>s, see “Predicates” on page 34 and
Subqueries (next section).

Subqueries
<subquery> ::=

(<query specification>)

Subqueries are used in four types of predicate, as described in the next sections. The
function of the subquery is somewhat different in each case. Generally speaking, a
subquery generates intermediate results that are used in the predicate.

A subquery has the form of a simplified SELECT statement, and must be enclosed in
parentheses. A subquery (except in an <exists predicate>) must return only one
column of values.
 A-30

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<comparison-to-subquery predicate>

<comparison-to-subquery predicate> ::=
<value expression> <comp op> <subquery>

<comp op> ::=
= | <> | # | < | > | <= | >=

In this case, the subquery must return a single cell (row-column intersection). The
cell can contain single-valued or multivalued data. The <value expression> is
compared against these values.

<in-subquery predicate>

<in-subquery predicate> ::=
<value expression> [NOT] IN <subquery>

In this case, the subquery must return an intermediate table comprising a single
column of data. If the returned data is multivalued, it is unnested into a set of single
values. The predicate (without NOT) is true if the specified expression equals any
row in this intermediate table.

“<value expression> NOT IN <subquery>” is equivalent to “NOT <value
expression> IN <subquery>”.

<quantified predicate>

<quantified predicate> ::=
<value expression> <comp op> { ALL | { ANY | SOME } }
<subquery>

<comp op> ::=
= | <> | # | < | > | <= | >=

In this case, the subquery must return an intermediate table comprising a single
column of data. If the returned data is multivalued, it is unnested into a set of single
values. The specified comparison is made against each row in this table. If the
keyword ALL is specified, the predicate is true if the comparison is true for every
row. With ANY or SOME, the predicate is true if the comparison is true for at least
one row.
A-31 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<exists predicate>

<exists predicate> ::=
EXISTS <subquery>

This subquery can return a table of any structure. The predicate is true unless the
returned table is empty (has no rows).

You cannot use an <exists predicate> in a WHEN subquery.
 A-32

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Predicates
Predicates are used in <check condition>s, <where condition>s, <when condition>s,
<group condition>s, and <join condition>s. A predicate is an expression that, when
evaluated, gives a logical result of true, false, or unknown. Most <where predicate>s
and <check condition>s also allow the EVERY keyword.

Predicates that do not involve subqueries are described in this section. Predicates
involving subqueries are described in “Subqueries” on page 31.

<comparison-to-value predicate>
<comparison-to-value predicate> ::=

<value expression> <comp op> <value expression>

<comp op> ::=
= | <> | # | < | > | <= | >=

The comparison operators <> and # mean “not equal”.

In programmatic SQL you cannot use parameter markers in place of both <value
expression>s.

<between predicate>
<between predicate> ::=

<value expression> [NOT] BETWEEN <value expression>
 AND
<value expression>

This predicate (without NOT) is true if the first expression is >= the second
expression and the first expression is <= the third expression. The second and third
expressions must be singlevalued.

In programmatic SQL you cannot use parameter markers in place of both the first
<value expression> and the second or third <value expression>.
A-33 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<in-value-list predicate>
<in-value-list predicate> ::=

<value expression> [NOT] IN (<value list>)

<value list> ::=
<literal> [{ , <literal> } …]

The predicate “<value expression> IN (value_1, value_2, …)” is equivalent to
“<value expression> = value_1 OR <value expression> = value_2 OR …”.

In programmatic SQL you cannot use parameter markers in place of both the <value
expression> and the first <literal> in the <value list>.

<soundex predicate>
<soundex predicate> ::=

<value expression> [NOT] { SAID | SPOKEN } <character
 string
literal>

This predicate (without NOT) is true if the expression (which must be a character
string) has the same “sound” as the literal (using the Soundex algorithm).

<null predicate>
<null predicate> ::=

<value expression> IS [NOT] NULL

This predicate (without NOT) is true if <value expression> is the null value. Note that
a <null predicate> is the only correct way to test for NULL. A <comparison
predicate> cannot be used to test for NULL.

<like predicate>
<like predicate> ::=

<value expression> [NOT] { LIKE | MATCHES | MATCHING }
<pattern> [ESCAPE <escape character>]
 A-34

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<pattern> is a character string literal, in which % (percent sign) means any string of
zero or more characters, and _ (underscore) means any string consisting of one
character. To use % or _ as a literal character in the search pattern, a user-defined
<escape character> must precede the % or _ . An <escape character> is a single-
character character string literal and cannot be a %, _ , . (period), ' (single quotation
mark), or " (double quotation mark).
A-35 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Data Manipulation
This section describes statements that add, change, or delete data from tables.

<SQL data manipulation statement> ::=
<delete statement>
| <insert statement>
| <select statement>
| <update statement>

DELETE Statement
<delete statement> ::=

DELETE FROM <DML table reference> [<where clause>]
[<processing qualifier list>]

For the <DML table reference> rule, see “Tables” on page 16. For the <where
clause> rule, see “WHERE Clause” on page 27. For the <processing qualifier list>
rule, see “Simple Query Specification” on page 18.

You cannot use the <processing qualifier>s SAMPLE or SAMPLED in a DELETE
statement.

INSERT Statement
<insert statement> ::=

INSERT INTO <DML table reference> [(<column list>)]
{VALUES (<attribute list>)
| <query specification>
| DEFAULT VALUES }
[<processing qualifier list>]

<column list> ::=
<column name> [{ , <column name> } …]

<attribute list> ::=
<attribute> [{ , <attribute> } …]

<attribute> ::=
<value expression>
| < <value expression> [{ , <value expression> } …] >
 A-36

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<value expression> ::=
<value expression> | NULL

For the <DML table reference> rule, see “Tables” on page 16. For the <value
expression> rule, see “Value Expressions” on page 9.

Angle brackets enclose an <attribute> comprising multiple <value expression>s. The
brackets are part of the syntax and must be typed. When you specify multivalues as
an <attribute>, the number and order of values must be the same as the number and
order of values in the corresponding association key. If the <DML table reference>
includes an <association name>, you cannot specify a multivalued <attribute>.

A <query specification> is a simple UniVerse SQL SELECT statement. For the
<query specification> rule, see “Simple Query Specification” on page 18.

UPDATE Statement
<update statement> ::=

UPDATE <DML table reference>
SET <set clause list>
[<where clause>] [<when clause> …]
[<processing qualifier list>]

<set clause list> ::=
<set clause> [{ , <set clause> } …]

<set clause> ::=
[<qualifier> .] <column name> = <update source>

<update source> ::=
<value expression>
| <<value expression> [{ , <value expression } …] >
| NULL
| DEFAULT

Angle brackets enclose an <update source> comprising multiple <value
expression>s. The brackets are part of the syntax and must be typed. When you
specify multivalues as the <update source>, the number of values must be the same
as the number of values in the rows to be updated. If the <DML table reference>
includes an <association name> or if the UPDATE statement includes a <when
clause>, you cannot specify multivalues as an <update source>.
A-37 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
For the <DML table reference> rule, see “Tables” on page 16. For the <where
clause> rule, see “WHERE Clause” on page 27. For the <when clause> rule, see
“WHEN Clause” on page 28. For the <value expression> rule, see “Value Expres-
sions” on page 9. For the <processing qualifier list> rule, see “Simple Query
Specification” on page 18.

You cannot use the <processing qualifier>s SAMPLE or SAMPLED in an UPDATE
statement.
 A-38

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Schema Definition Statements
This section describes statements that create schemas, tables, and views.

<SQL schema statement> ::=
<SQL schema definition statement>
| <SQL schema manipulation statement>

<SQL schema definition statement> ::=
<schema definition>
| <table definition>
| <view definition>
| <index definition>
| <trigger definition>
| <grant statement>

Schema Definition
<schema definition> ::=

CREATE SCHEMA <schema authorization clause> [HOME
<pathname>] [<schema element> …]

<schema authorization clause> ::=
<schema name>
| AUTHORIZATION <schema owner>
| <schema name> AUTHORIZATION <schema owner>

A <schema element> is a CREATE TABLE, CREATE VIEW, or GRANT <table
privileges> statement (described in later sections) without its terminating semicolon.

<schema element> ::=
<table definition>
| <view definition>
| <index definition>
| <trigger definition>
| <grant statement>
A-39 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Description and Rules

The CREATE SCHEMA statement creates a new schema (UniVerse account) in a
specified directory, or it catalogs an existing UniVerse account as an SQL schema.
The user must have RESOURCE privilege to create a schema for himself, and must
have DBA privilege to create a schema for another user.

The <schema name> must be a valid SQL identifier and must not duplicate another
schema name. If <schema name> is not specified, AUTHORIZATION <schema
owner> must be specified, and the schema name is set to <schema owner>.

AUTHORIZATION <schema owner> can be specified only if the user has DBA
privilege or if the user names himself as the schema owner. The <schema owner>
must be a user with CONNECT privilege and with the required operating system
permissions to write into the directory specified in the HOME clause. If AUTHORI-
ZATION <schema owner> is not specified, the schema owner is set to be the effective
user name of the user issuing the CREATE SCHEMA statement.

The HOME clause specifies the directory where the new schema will reside. This
directory must exist, and the user must have the required operating system permis-
sions to write into this directory. If there is no HOME clause, the UniVerse account
you are logged in to is made into a schema.

Tables, views, indexes, and triggers can be created and table privileges granted within
a CREATE SCHEMA statement, as indicated in the syntax definition. Once a schema
is created, users with CONNECT privilege and appropriate operating system permis-
sions can log in to this account and use data definition statements such as CREATE
TABLE, CREATE VIEW, GRANT <table privileges>, DROP TABLE, and DROP
VIEW.

Table Definition
<table definition ::=

CREATE TABLE <table name> [DATA <pathname>] [DICT
<pathname>] (<table element> [{ , <table element> } …])

<table element> ::=
<table description>
| <column definition>
| <association definition>
| <table constraint definition>
 A-40

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
This statement creates a new table (UniVerse file with SQL characteristics) in the
current schema. Both the data file and its dictionary are created.

The <table name> must not already exist within the schema. (<table name> must not
be in the VOC). <pathname> must be absolute. If you do not use the DATA or DICT
clauses, the table’s data file pathname is <current directory>/<table name>, and the
dictionary pathname is <current directory>/D_<table name>.

This statement cannot be used to create a UniVerse file with multiple data files.

The various <table element>s are described in the following sections.

Table Description

<table description> ::=
<type clause>
| MODULO <unsigned integer>
| SEPARATION <unsigned integer>
| <dynamic clause>

<type clause> ::=
TYPE <unsigned integer>
| DYNAMIC

<dynamic clause> ::=
{ GENERAL | SEQ NUM | SEQ.NUM }
| { GROUP SIZE | GROUP.SIZE } <unsigned integer>
| { MINIMUM MODULUS | MINIMUM.MODULUS }
 <unsigned
integer>
| { SPLIT LOAD | SPLIT.LOAD } <percent>
| { MERGE LOAD | MERGE.LOAD } <percent>
| { LARGE RECORD | LARGE.RECORD } <percent>
| { RECORD SIZE | RECORD.SIZE } <unsigned integer>
| { MINIMIZE SPACE | MINIMIZE.SPACE }

Description and Rules

The type of a file is specified either by the TYPE keyword followed by an integer
specifying one of 19 file types, or by using the DYNAMIC keyword for type 30 files.
The supported file types are 2 through 18, and 30. SQL tables cannot be type 1, 19,
25, or distributed files. If the type is not specified, the file is created as a type 30 file.
A-41 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
The modulo and separation of a hashed file are specified by the keywords MODULO
and SEPARATION, followed by an integer from 1 through 8,388,608.

If a table is specified as a type 30 file, the <dynamic clause> can be used to specify
various parameters for type 30 files. The keywords defined in the <dynamic clause>
work as defined in the CREATE.FILE documentation.

<percent> is an unsigned integer ranging from 0 through 100.

Column Definition

<column definition> ::=
<column name> <data type> [<column description> …]
| <column name> SYNONYM FOR <column name> [<report
format> …]

<column description> ::=
<default clause>
| { SINGLEVALUED | SINGLE.VALUE | MULTIVALUED
| MULTI.VALUE }
| <report format>
| <column constraint definition>

<default clause> ::=
DEFAULT <default option>

<default option> ::=
<literal>
| <signed integer>
| <signed realnum>
| NEXT AVAILABLE
| CURRENT_DATE
| CURRENT_TIME
| USER
| NULL

<report format> ::=
{ DISPLAYNAME | DISPLAY.NAME | COL.HDG } <character
 string
literal>
| { CONVERSION | CONV } <character string literal>
| { FORMAT | FMT } <character string literal>
 A-42

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Description and Rules

The <column definition> clause is for defining the actual data fields in a table, not
for defining virtual fields (I-descriptors) or phrases. All columns defined by <column
definition>s become entries in the file dictionary generated for this table.

A column can be specified as a SYNONYM FOR another column (which must also
be defined in this CREATE TABLE statement). The <report format> clause specifies
output formatting for a column. Synonyms can be defined with zero or more <report
format> specifications, allowing synonyms to have their own display names and
format masks. Synonym definitions go into the file dictionary generated for this
table, not into the SQL catalog.

The default <length> for the CHARACTER data type is 1. The default <precision>
for the FLOAT data type is 15. The default <precision> for DECIMAL or NUMERIC
data is 9, and the default <scale> for DECIMAL or NUMERIC data is 0. <length>,
<precision>, and <scale> are all unsigned integers.

If the <default option> is NEXT AVAILABLE, the <data type> must be INT,
NUMERIC, or DECIMAL. If the <default option> is CURRENT_DATE, the <data
type> must be DATE. If the <default option is CURRENT_TIME, the <data type>
must be TIME. If the <default option> is USER, the <data type> must be a character
string. If the <default option> is NULL, the <column constraint definition> cannot
be NOT NULL. If the <default option> is a <literal>, the <column constraint
definition> cannot be NOT EMPTY. If you omit the <default clause>, NULL is the
default.

All columns are singlevalued unless MULTIVALUED (or MULTI.VALUE) is
specified. The singlevalued attribute creates an implicit column constraint. Any
attempt to store multivalued data in the column fails.

<column constraint definition> is described in the next section.

Column Constraints

<column constraint definition> ::=
[CONSTRAINT <constraint name>] <column constraint>
A-43 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<column constraint> ::=
NOT NULL [UNIQUE | ROWUNIQUE]
[NOT NULL] PRIMARY KEY
| NOT EMPTY
| CHECK (<check condition>)
| REFERENCES [<schema name>.] <table name> [(<referenced
column>)] [ON UPDATE <referential action>] [ON DELETE
<referential action>]

<referential action> ::=
CASCADE
| SET NULL
| SET DEFAULT
| NO ACTION

Description and Rules

Constraints are rules that maintain the integrity of the data in the table. Any attempt
to modify the table that violates one of its constraints is prohibited.

You can give a column constraint a name by specifying CONSTRAINT <constraint
name> before the definition.

NOT NULL means that the column cannot take on a null value. If the column is
multivalued, no individual value can be null.

UNIQUE or ROWUNIQUE specified in a <column constraint> must be immediately
preceded by the keyword NOT NULL.

PRIMARY KEY can be specified only once for a table, either as a column constraint
or as a table constraint. If it is a column constraint, that column is the table’s primary
key, which cannot contain duplicate values. The primary key must also be
singlevalued.

A UNIQUE column constraint, for a singlevalued column, means that no two rows
can have the same value for that column. For a multivalued column, UNIQUE means
that no value within any row of the column can be duplicated in the same or another
row of that column.

ROWUNIQUE applies only to multivalued columns. It means that the values within
each row must be unique but can be duplicated in other rows.
 A-44

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
NOT EMPTY means that the empty string (' ') value cannot occur in any row of this
column (or any individual value within a row if this column is multivalued).

The CHECK constraint allows an arbitrary test to be made before putting a new value
into this column. See the next section.

The REFERENCES constraint means that a nonnull value is allowed in the refer-
encing column (or foreign key) only if the value also exists in the <referenced
column>. If no <referenced column> is specified, the value must exist as a primary
key in <table name>.

The foreign key column can be singlevalued or multivalued. The referenced column
can also be singlevalued or multivalued.

ON UPDATE and ON DELETE respectively define what actions to take when
executing an UPDATE or DELETE statement on the referenced table. CASCADE
means if a value in the referenced table is updated, the value in the corresponding row
of the referencing table is updated. If a row in the referenced table is deleted, the
corresponding row in the referencing table is deleted. SET NULL and SET
DEFAULT set the corresponding value in the referencing table to the null value or
the default value. NO ACTION causes no change to occur in the referencing table.

Check Conditions

A <check condition> is one or more <check predicate>s, combined using AND, OR,
NOT, and parentheses, that can be evaluated giving a logical result of true, false, or
unknown (using the SQL rules for three-valued logic).

<check predicate> ::=
[EVERY] <value expression> <comp op> <value expression>
| [EVERY] <value expression> [NOT] BETWEEN <value
expression> AND <value expression>
| [EVERY] <value expression> [NOT] IN (<value list>)
| [EVERY] <value expression> [NOT] { SAID | SPOKEN }
 <value
expression>
| [EVERY] <value expression> IS [NOT] NULL
| [EVERY] <value expression> [NOT] { LIKE | MATCHES
| MATCHING } <pattern> [ESCAPE <escape character>]

<comp op> ::=
= | <> | # | < | > | <= | >=
A-45 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
A <value expression> is one or more <primary>s, combined using the arithmetic
operators (+, −, *, /), the concatenation operator (||), and parentheses.

<primary> ::=
<column name>
| <literal>
| USER
| <cast specification>

If the <check condition> is defined in a <column constraint>, only that column’s
<column name> is permitted in any <primary>. If the <check condition> is defined
in a <table constraint>, only <column name>s belonging to this table are permitted
in any <primary>. In either case, the <column name>s must be defined in this
CREATE TABLE statement.

<pattern> and <escape character> are described in the section “<like predicate>” on
page 35.

Description and Rules

A table’s <check condition>s are tested each time there is an attempt to add or modify
data in the table. Only if the result is true will the write operation be allowed.

See “Predicates” on page 34 for more information about <check predicates>.

Association Definition

<association definition> ::=
{ ASSOCIATION | ASSOC } <association name> [<position> …] (

<column name> [KEY] [{ , <column name> [KEY] } …])

<position> ::=
{ INSERT LAST
| INSERT FIRST
| INSERT IN <column name> BY <sequence>
| INSERT PRESERVING }

<sequence> ::=
{ AL | AR | DL | DR }
 A-46

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Description and Rules

The columns named in an <association definition> must be defined in a <column
definition> in this CREATE TABLE statement (but not as a synonym), must be multi-
valued, and must not appear in any other <association definition> for this table.

Within an <association definition>, the keyword KEY identifies the columns that,
when combined with the base table’s primary key or @ID column, form the primary
key of this association’s virtual table. All association key columns must be declared
NOT NULL, just like primary key columns. If more than one association key column
are defined as association keys, and none of them are defined as ROWUNIQUE, they
are treated as jointly rowunique at run time.

If only one association key column is specified, that column automatically assumes
the ROWUNIQUE property (see “Column Constraints” on page 45).

The <position> determines where new association rows are added. INSERT LAST
puts a new association row after the last association row in the base table two. This
is the default if you do not specify <position>. INSERT FIRST puts a new association
row before the first association row. INSERT IN positions a new association row
among existing association rows according to the sequential position of the value in
<column name>. The sequence can be ascending left-justified (AL), ascending right-
justified (AR), descending left-justified (DL), or descending right-justified (DR).
Existing association rows are not sorted.

Table Constraints

<table constraint definition> ::=
[CONSTRAINT <constraint name>] <table constraint>

<table constraint> ::=
{ PRIMARY KEY [' <separator> '] | UNIQUE }
(<column name> [{ , <column name> } …])
| CHECK (<check condition>)
| FOREIGN KEY (<referencing column> [{ , <referencing
column> } …]) REFERENCES [<schema name>.] <table name>
[(<referenced column> [{ , <referenced column> } …])]
[ON UPDATE <referential action>] [ON DELETE <referential
action>]
A-47 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<referential action> ::=
CASCADE
| SET NULL
| SET DEFAULT
| NO ACTION

Description and Rules

A table constraint can be used to define a multicolumn PRIMARY KEY. All primary
key columns must be singlevalued. No two rows in the table can have the same values
in all primary key columns. That is, the columns must be jointly unique.

All primary key columns must be defined in this CREATE TABLE statement.
<separator> is a one-character literal specifying the character used in the @ID
column to separate the <column name>s of a multicolumn primary key. The default
is a text mark (CHAR(251)). Except for the text mark, <separator> must be a member
of the 7-bit character set. It cannot be ASCII NUL (CHAR(0)). If you specify
<separator>, the PRIMARY KEY clause must include at least two <column name>s.

You can give a table constraint a name by specifying CONSTRAINT <constraint
name> before the definition.

For the <check condition> rule, see “Check Conditions” on page 47.

The FOREIGN KEY constraint means that a nonnull value is allowed in the refer-
encing columns (or foreign key) only if the value also exists in the <referenced
column>s. If no <referenced column>s are specified, the values must exist as a
primary key in <table name>.

If you define only one column as a foreign key, whether it is singlevalued or multi-
valued, the referenced column can also be singlevalued or multivalued. If you define
several columns as a foreign key, they must be singlevalued and the corresponding
referenced columns must also be singlevalued. You cannot include a multivalued
column in a multicolumn foreign key.

ON UPDATE and ON DELETE respectively define what actions to take when
executing an UPDATE or DELETE statement on the referenced table. CASCADE
means if a value in the referenced table is updated, the value in the corresponding row
of the referencing table is updated. If a row in the referenced table is deleted, the
corresponding row in the referencing table is deleted. SET NULL and SET
DEFAULT set the corresponding value in the referencing table to the null value or
the default value. NO ACTION causes no change to occur in the referencing table.
 A-48

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
View Definition
<view definition> ::=

CREATE VIEW <table name> [(<column list>)] AS <query
specification> [WITH [<levels clause>] CHECK OPTION]

<column list> ::=
<column name> [{ , <column name> } …]

<levels clause> ::=
CASCADED
| LOCAL

Description and Rules

This statement creates a new view of a table in the current schema. A file dictionary
for the view is also created.

The <table name> must not already exist within the schema, and there must not be a
file whose file name is either <table name> or D_<table name> in the current account
directory. <table name> must not be in the VOC.

A <query specification> is a simple UniVerse SQL SELECT statement, except for
the following:

The <field qualifier>s DISPLAYLIKE, DISPLAYNAME, CONV, FMT,
and their synonyms are allowed
A <tempname> specified in an AS clause cannot be used in subsequent
clauses of the <query specification>.
The <from clause> cannot name a <table name> that is a UniVerse file.

If the view is updatable, the following additional <query specification> rules apply:

The <query specification> must not contain the UNION keyword.
The <select clause> must not contain the keyword DISTINCT.
The <from clause> must identify only one table.
The <from clause> cannot contain a JOIN clause or an UNNEST clause
The <table reference> must refer to a base table or an updatable view.
The <base table name> cannot include the _<association name>; that is, the
base table cannot be dynamically normalized.
A-49 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
The <where clause> cannot contain a <subquery> that references the same
table as the <from clause>.
The <when clause> is not allowed.
The <group by clause> is not allowed.
The <having clause> is not allowed.

For the <query specification> rule, see “Simple Query Specification” on page 18.

A <column list> is required if two columns in the SELECT clause have the same
name, or if any of the columns is the result of a <select expression>, or if the column
is the result of a <set function specification>. If all of these columns are given unique
names (using the AS field modifier), the <column list> is optional.

Two column names cannot have the same name in the <column list>. The number of
columns in the column list and the SELECT clause must be the same.

Index Definition
<index definition> ::=

CREATE [UNIQUE] INDEX <index name> ON <table name>
(<columnname> [ASC | DESC]
[{ , <columnname> [ASC | DESC] } …])

Description and Rules

Secondary indexes can be created only on base tables, but not on views, associations,
or UniVerse files. indexes can be created on up to 16 columns in a table. <index
name> cannot contain Space characters. An <index name> concatenated to its corre-
sponding <table name> with a period must be unique within a schema.

<table name> cannot contain Space characters or any of the following characters: ,
(comma), " (double quotation mark), or \ (backslash).

In a unique index, columns must be defined as NOT NULL, cannot be part of the
primary key or a unique constraint, and cannot be part of another unique index.

For information about character restrictions in <columnname>, see “Identifier” in
Chapter 6, “UniVerse SQL Statements.” All columns in a multicolumn index must be
singlevalued.
 A-50

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Trigger Definition
<trigger definition> ::=

CREATE TRIGGER <trigger name> <trigger action time>
<trigger event list> ON <table name> FOR EACH ROW
CALLING " <triggered BASIC program> "

<trigger action time> ::=
BEFORE
| AFTER

<trigger event list> ::= <trigger event> [OR <trigger event] …

<trigger event> ::= INSERT
| UPDATE
| DELETE

<trigger name> is an identifier unique in the set of trigger names associated with a
table. <table name> is the name of a table in the current schema. <triggered BASIC
program> is the name of a normally or globally cataloged BASIC program.

Only the owner of <table name>, or a user with ALTER privilege on <table name>,
or a DBA can use the CREATE TRIGGER statement.

Privilege Definition
<grant statement> ::=

GRANT <privileges> ON <table name> TO <grantee>
[{ , <grantee> } …] [WITH GRANT OPTION]

<privileges> ::=
ALL PRIVILEGES
| <action> [{ , <action> } …]

<action> ::=
SELECT
| INSERT
| DELETE
| UPDATE [(<column list>)]
| REFERENCES [(<column list>)]
| ALTER
A-51 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<column list> ::=
<column name> [{ , <column name> } …]

<grantee> ::=
PUBLIC
| <user name>

Description and Rules

When a table is created, its owner has all possible privileges for that table and no one
else has any (except, implicitly, DBAs). The owner can use the GRANT <table privi-
leges> statement to let other users read and/or write his table, and even to pass these
privileges to others. Any <grantee> other than PUBLIC must have CONNECT
privilege. PUBLIC means all users, including UniVerse users who are not registered
as UniVerse SQL users.
 A-52

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Schema Manipulation Statements
This section describes the ALTER TABLE statement and statements that delete
schemas, tables, views, indexes, and triggers.

<SQL schema manipulation statement> ::=
<drop schema statement>
| <alter table statement>
| <drop table statement>
| <drop view statement>
| <drop index statement>
| <drop trigger statement>
| <revoke statement>

DROP SCHEMA Statement
<drop schema statement> ::=

DROP SCHEMA <schema name> [CASCADE]

Description and Rules

DROP SCHEMA deletes the specified schema from the SQL catalog. The
CASCADE option deletes all SQL tables belonging to the specified schema. The
keyword CASCADE is required except when dropping a schema that contains no
SQL tables.

If the schema’s VOC file was created by a CREATE SCHEMA statement, the VOC
and other basic UniVerse files such as &SAVEDLISTS& are also deleted.

DROP SCHEMA must be issued from a schema other than the one being dropped.
The user must either be the <schema owner> of the specified schema or have DBA
privilege.

ALTER TABLE Statement
<alter table statement> ::=

ALTER TABLE <table name> <alter table action>
A-53 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
<alter table action> ::=
ADD [COLUMN] <column definition>
| ALTER [COLUMN] <column name> <alter column action>
| ADD <table constraint definition>
| ADD <association definition>
| { ENABLE | DISABLE } TRIGGER { <trigger name> | ALL }
| DROP CONSTRAINT <table constraint> [<drop behavior>]
| DROP { ASSOCIATION | ASSOC } <association name>

<column constraint> ::=
NOT NULL [ROWUNIQUE]
| NOT EMPTY
| CHECK (<check condition>)
| REFERENCES [<schema name>.] <table name> [(<referenced
column>)]

<table constraint> ::=
UNIQUE (<column name> [{ , <column name> } …])
| FOREIGN KEY (<referencing column> [{ , <referencing
column> } …]) REFERENCES [<schema name>.] <table name>
[(<referenced column> [{ , <referenced column> } …])]
| CHECK (<check condition>)

<drop behavior> ::=
RESTRICT | CASCADE

<alter column action> ::=
SET <default clause> | DROP DEFAULT

DROP TABLE Statement
<drop table statement> ::=

DROP TABLE <table name> [CASCADE]

Description and Rules

A table can be dropped only by the table’s owner or a DBA. All <table privileges>
are automatically revoked when the table is dropped.
 A-54

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
The CASCADE option deletes all SQL views that derive from the specified table.
The keyword CASCADE is required except when dropping a table that has no views
derived from it.

DROP TABLE deletes both the data file and its dictionary. The file must be an SQL
table.

DROP VIEW Statement
<drop view statement> ::=

DROP VIEW <table name> [CASCADE]

Description and Rules

A view can be dropped only by the view’s owner or a DBA. All <table privileges>
are automatically revoked when the view is dropped. The CASCADE option deletes
all views derived from the specified view. The keyword CASCADE is required
except when dropping a view that has no views derived from it.

DROP VIEW deletes the file dictionary associated with the view.

DROP INDEX Statement
<drop index statement> ::=

DROP INDEX <table name> . <index name>

Description and Rules

DROP INDEX can be used only against indexes created by the CREATE INDEX
statement.

DROP TRIGGER Statement
<drop trigger statement> ::=

DROP TRIGGER <table name> { <trigger name> | ALL }
A-55 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
REVOKE Statement
<revoke statement> ::=

REVOKE [GRANT OPTION FOR] <privileges> ON <table
 name>
FROM <grantee> [{ , <grantee> } …]

Description and Rules

Users can revoke only the privileges for which the users have the grant option, and
cannot revoke privileges from themselves.

For the <privileges> and <grantee> rules, see “Privilege Definition” on page 53.
 A-56

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
User Definition Statements
This section describes statements that grant and revoke database and table privileges.

<SQL user definition statement> ::=
<grant database privilege statement>
| <revoke database privilege statement>

Grant Database Privilege Statement
<grant database privilege statement> ::=

GRANT { CONNECT | RESOURCE | DBA } TO <user name>
[{ , <user name> } …]

Description and Rules

This statement registers UniVerse SQL users and specifies their database privilege
level. GRANT CONNECT registers new UniVerse SQL users. Users must have
CONNECT privilege before they can be granted RESOURCE or DBA privilege.

RESOURCE privilege grants permission to create new schemas (UniVerse
accounts).

DBA privilege is the SQL equivalent of a UNIX root user or Windows Administrator,
that is, such a user has permission to execute all SQL statements on all files as if this
user were the owner. A user with DBA privilege automatically has RESOURCE
privilege. When UniVerse is first installed on UNIX systems, there is only one regis-
tered user: either uvsql, root, or uvadm. When UniVerse is first installed on Windows
platforms, the first registered user is NT AUTHORITY\SYSTEM. On both systems
this user has DBA privilege.

Only a user with DBA privilege can issue the GRANT <user privileges> statement.

On UNIX systems, the <user name> must be a valid entry in the /etc/passwd file. On
Windows platforms, the <user name> must be defined as a valid Windows user.
A-57 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Revoke Database Privilege Statement
<revoke database privilege statement> ::=

REVOKE { CONNECT | RESOURCE | DBA } FROM <user
 name>
[{ , <user name> } …]

Description and Rules
Only a user with DBA privilege can issue the REVOKE <user privileges> statement.
A user cannot revoke his own authorities.

If users’ CONNECT privilege is revoked, all other privileges granted to them are
automatically revoked. Also, all schemas and tables they owned have their ownership
changed to the owner of the SQL catalog (on UNIX systems, uvsql, root, or uvadm;
on Windows platforms, NT AUTHORITY\SYSTEM).
 A-58

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppA
12/29/08

Beta
Calling Procedures
<call statement> ::=

CALL <routine invocation>

<routine invocation> ::=
<routine name> [<argument list>]

<argument list> ::=
(<positional arguments>)
| ()
| <UV argument list>

<positional arguments> ::=
<argument> [{ , <argument> } …]

<UV argument list> ::=
<argument> [<argument> …]

Description and Rules
The CALL statement has two syntaxes. The first follows the ODBC pattern, in which
a comma-separated list of arguments is enclosed in parentheses. The second follows
the UniVerse syntax pattern, in which a space-separated list of arguments not
enclosed in parentheses follows the <routine name>.

The CALL statement can be used to call a procedure only in the SQLExecDirect and
SQLPrepare function calls in the BASIC SQL Client Interface and UniVerse Call
Interface APIs.
A-59 UniVerse SQL Reference

:\Prog
2/29/0
B
Appendix

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Reserved Words
This appendix lists reserved words in UniVerse SQL. To use them as
identifiers in SQL statements, enclose them in double quotation marks.

SQL reserved words (statement names and all keywords) are case-
insensitive. You can type them in uppercase, lowercase, or mixed case
letters. In this book they are always shown in uppercase letters.

@NEW
@OLD
ACTION
ADD
AL
ALL
ALTER
AND
AR
AS
ASC
ASSOC
ASSOCIATED
ASSOCIATION
AUTHORIZATION
AVERAGE
AVG
BEFORE
BETWEEN
BIT
BOTH
BY
CALC
CASCADE
CASCADED
CAST
CHAR
ram Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppB
8 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppB
12/29/08 UniVerse SQL Reference

Beta
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK
COL.HDG
COL.SPACES
COL.SPCS
COL.SUP
COLUMN
COMPILED
CONNECT
CONSTRAINT
CONV
CONVERSION
COUNT
COUNT.SUP
CREATE
CROSS
CURRENT_DATE
CURRENT_TIME
DATA
DATE
DBA
DBL.SPC
DEC
DECIMAL
DEFAULT
DELETE
DESC
DET.SUP
DICT
DISPLAY.NAME
DISPLAYLIKE
DISPLAYNAME
DISTINCT
DL
DOUBLE
DR
DROP
DYNAMIC
E.EXIST
EMPTY
EQ
EQUAL
B-2 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppB
12/29/08 UniVerse SQL Reference

Beta
ESCAPE
EVAL
EVERY
EXISTING
EXISTS
EXPLAIN
EXPLICIT
FAILURE
FIRST
FLOAT
FMT
FOOTER
FOOTING
FOR
FOREIGN
FORMAT
FROM
FULL
GE
GENERAL
GRAND
GRAND.TOTAL
GRANT
GREATER
GROUP
GROUP.SIZE
GT
HAVING
HEADER
HEADING
HOME
IMPLICIT
IN
INDEX
INNER
INQUIRING
INSERT
INT
INTEGER
INTO
IS
JOIN
KEY
LARGE.RECORD
UniVerse SQL Reference B-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppB
12/29/08 UniVerse SQL Reference

Beta
LAST
LE
LEADING
LEFT
LESS
LIKE
LOCAL
LOWER
LPTR
MARGIN
MATCHES
MATCHING
MAX
MERGE.LOAD
MIN
MINIMIZE.SPACE
MINIMUM.MODULUS
MODULO
MULTI.VALUE
MULTIVALUED
NATIONAL
NCHAR
NE
NO
NO.INDEX
NO.OPTIMIZE
NO.PAGE
NOPAGE
NOT
NRKEY
NULL
NUMERIC
NVARCHAR
ON
OPTION
OR
ORDER
OUTER
PCT
PRECISION
PRESERVING
PRIMARY
PRIVILEGES
PUBLIC
B-4 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppB
12/29/08 UniVerse SQL Reference

Beta
REAL
RECORD.SIZE
REFERENCES
REPORTING
RESOURCE
RESTORE
RESTRICT
REVOKE
RIGHT
ROWUNIQUE
SAID
SAMPLE
SAMPLED
SCHEMA
SELECT
SEPARATION
SEQ.NUM
SET
SINGLE.VALUE
SINGLEVALUED
SLIST
SMALLINT
SOME
SPLIT.LOAD
SPOKEN
SUBSTRING
SUCCESS
SUM
SUPPRESS
SYNONYM
TABLE
TIME
TO
TOTAL
TRAILING
TRIM
TYPE
UNION
UNIQUE
UNNEST
UNORDERED
UPDATE
UPPER
USER
UniVerse SQL Reference B-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\AppB
12/29/08 UniVerse SQL Reference

Beta
USING
VALUES
VARBIT
VARCHAR
VARYING
VERT
VERTICALLY
VIEW
WHEN
WHERE
WITH
B-6 UniVerse SQL Reference

Glossary

:\Prog
2/29/0

Beta BetaBeta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
Glossary
1NF See first normal form.

account User accounts are defined at the operating system level. Each user
account has a user name, a user ID number, and a home directory.

UniVerse accounts are defined in the UV.ACCOUNT file of the UV
account. Each UniVerse account has a name and resides in a directory
that contains special UniVerse files such as the VOC,
&SAVEDLISTS&, and so on. See also schema.

aggregate
functions

See set functions.

alias A name assigned to a table, column, or value expression that lasts for
the duration of the statement. See also correlation name.

ANSI American National Standards Institute. A U.S. organization charged
with developing American national standards.

association A group of related multivalued columns in a table. The first value in any
association column corresponds to the first value of every other column
in the association, the second value corresponds to the second value,
and so on. An association can be thought of as a nested table.

association depth For any base table row, the number of values in the association key col-
umns determines the association depth. If an association does not have
keys, the column with the most association rows determines the associ-
ation depth.

association key The values in one or more columns of an association that uniquely iden-
tify each row in the association. If an association does not have keys,
the @ASSOC_ROW keyword can generate unique association row
identifiers.
ram Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Glossary
8 Using SQL in UniVerse

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Glossary
12/29/08 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
association row A sequence of related data values in an association. A row in a nested table.

authority See database privilege.

BASIC SQL
Client Interface

The UniVerse BASIC application programming interface (API) that lets application
programmers write client programs using SQL function calls to access data in SQL
server databases.

BNF Backus Naur Form. A notation format using a series of symbols and production rules
that successively break down statements into their components. Appendix A shows
UniVerse SQL syntax in BNF.

Boolean See logical values, three-valued logic.

Cartesian product All possible combinations of rows from specified tables.

CATALOG
schema

The schema that contains the SQL catalog.

cell The intersection of a row and a column in a table. In UniVerse SQL, cells can contain
more than one value. Such values are often called multivalues. See also multivalued
column.

character string A set of zero or more alphabetic, numeric, and special characters. Character strings
must be enclosed in single quotation marks.

check constraint A condition that data to be inserted in a row must meet before it can be written to a
table.

client A computer system or program that uses the resources and services of another system
or program (called a server).

column A set of values occurring in all rows of a table and representing the same kind of
information, such as names or phone numbers. A field in a table. See also multival-
ued column, row, cell, table.

comparison
operator

See relational operator.

concurrency
control

Methods, such as locking, that prevent two or more users from changing the same
data at the same time.

CONNECT The database privilege that grants users access to UniVerse SQL. Users with CON-
NECT privilege are registered in the SQL catalog. See also registered users.
2 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Glossary
12/29/08 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
connecting
columns

Columns in one or more tables that contain similar values. In a join, the connecting
column enables a table to link to another table or to itself.

constant A data value that does not change. See also literal.

constraint See integrity constraint.

correlated
subquery

A subquery that depends on the value produced by an outer query for its results.

correlation name A name assigned to a table, column, or value expression, that can be used in a state-
ment as a qualifier or as the name of an unnamed column.

DBA Database administrator. DBA is the highest-level database privilege. Like superuser,
a user with DBA privilege has complete access to all SQL objects in the database.

DBMS Database management system.

DDL Data definition language.

DML Data manipulation language.

database privilege Permission to access SQL database objects. See also CONNECT, RESOURCE,
DBA, privilege.

default value The value inserted into a column when no value is specified.

depth See association depth.

dynamic
normalization

A mechanism for letting DML statements access an association of multivalued col-
umns or an unassociated multivalued column as a virtual first-normal-form table.

effective user
name

In a BASIC program, the user specified in an AUTHORIZATION statement; other-
wise, the user who is logged in as running the program.

empty string A character string of zero length. This is not the same as the null value.

expression See value expression.

field See column.

first normal form The name of a kind of relational database that can have only one value for each row
and column position (or cell). Its abbreviation is 1NF.

foreign key The value in one or more columns that references a primary key or unique column in
the same or in another table. Only values in the referenced column can be included
in the foreign key column. See also referential constraint.
Glossary 3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Glossary
12/29/08 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
identifier The name of a user or an SQL object such as a schema, table, or column.

inclusive range The range specified with the BETWEEN keyword that includes the upper and lower
limits of the range.

integrity
constraint

A condition that data to be inserted in a row must meet before it can be written to a
table.

isolation level A mechanism for separating a transaction from other transactions running concur-
rently, so that no transaction affects any of the others. There are five isolation levels,
numbered 0 through 4.

join Combining data from more than one table.

join column A column used to specify join conditions.

key A data value used to locate a row.

keyword A word, such as SELECT, FROM, or TO, that has special meaning in UniVerse SQL
statements.

literal A constant value. UniVerse SQL has four kinds of literal: character strings, numbers,
dates, and times.

logical values Value expressions can have any of the following logical values: true (1), false (0), or
unknown (NULL).

multivalued
column

A column that can contain more than one value for each row in a table. See also cell,
association.

NF2 See nonfirst-normal form.

nested query See subquery.

nested sort A sort within a sort.

nested table See association.

nonfirst-normal
form

The name of a kind of relational database that can have more than one value for a row
and column position (or cell). Its abbreviation is NF2. Thus, the UniVerse nonfirst-
normal-form database can be thought of as an extended relational database.

NT
AUTHORITY
\SYSTEM

On Windows platforms, the user name of the database administrator (DBA) who
owns the SQL catalog.
4 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Glossary
12/29/08 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
null value A special value representing an unknown value. This is not the same as 0 (zero), a
blank, or an empty string.

ODBC Open Database Connectivity. A programming language interface for connecting to
databases.

outer query A query whose value determines the value of a correlated subquery.

outer table The first table specified in an outer join expression.

owner The creator of a database object such as a schema or table. The owner has all privi-
leges on the object.

parameter marker In a programmatic SQL statement, a single ? (question mark) used in place of a con-
stant. Each time the program executes the statement, a value is used in place of the
marker.

permissions See privilege.

precision The number of significant digits in a number. See also scale.

primary key The value in one or more columns that uniquely identifies each row in a table.

primary key
constraint

A column or table constraint that defines the values in specified columns as the
table’s primary keys. Primary keys cannot be null values and must also be unique. If
a table has no primary key, the @ID column functions as an implicit primary key.

privilege Permission to access, use, and change database objects. See also database privilege,
table privilege.

programmatic
SQL

A dialect of the UniVerse SQL language used in client programs that access SQL
server databases. Programmatic SQL differs from interactive SQL in that certain key-
words and clauses used for report formatting are not supported.

qualifier An identifier prefixed to the name of a column, table, or alias to distinguish names
that would otherwise be identical.

query A request for data from the database.

record See row.

referenced
column

A column referenced by a foreign key column. See also referential constraint.

referencing
column

A foreign key column that references another column. See also referential con-
straint.
Glossary 5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Glossary
12/29/08 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
referential
constraint

A column or table constraint that defines a dependent relationship between two col-
umns. Only values contained in the referenced column can be inserted into the refer-
encing column. See also foreign key.

reflexive join A join that joins a table to itself. Both join columns are in the same table.

registered users Users with CONNECT privilege, whose names are listed in the SQL catalog. Regis-
tered UniVerse SQL users can create and drop tables, grant and revoke privileges on
tables on which they have privileges, and so on.

relational
operator

An operator used to compare one expression to another in a WHERE, WHEN, or
HAVING clause, or in a check constraint. Relational operators include = (equal to),
> (greater than), < (less than), >= (greater than or equal to), <= (less than or equal to),
and <> (not equal to).

RESOURCE Second-highest level database privilege. A user with RESOURCE privilege can cre-
ate schemas.

root On UNIX systems, the user name of the database administrator (DBA) who owns the
SQL catalog if uvsql or uvadm is not the owner.

row A sequence of related data elements in a table; a record. See also column, cell, table.

rowunique
constraint

A column or table constraint requiring that values in the cells of specified multival-
ued columns must be unique in each cell. Values need not be unique throughout each
column, but only in each row of each column.

scale The number of places to the right of the decimal point in a number. See also preci-
sion.

schema A group of related tables and files contained in a UniVerse account directory and
listed in the SQL catalog.

security
constraint

A condition that users must meet before they can perform a specified action on a
table.

server A computer system or program that provides resources and services to other systems
or programs (called clients).

set functions Arithmetic functions that produce a single value from a group of values in a specific
column. Set functions include AVG, COUNT, COUNT(*), MAX, MIN, and SUM.
Set functions can be used only in the SELECT and HAVING clauses of the SELECT
statement.
6 UniVerse SQL Reference

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Glossary
12/29/08 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
SICA Security and integrity constraints area. This is an area of each table where data struc-
ture, privileges, and integrity constraints are defined and maintained.

SQL A language for defining, querying, modifying, and controlling data in a relational
database.

SQL catalog A set of tables that describe all SQL objects, privileges, and users in the system:
UV_ASSOC, UV_COLUMNS, UV_SCHEMA, UV_TABLES, UV_USERS, and
UV_VIEWS. The SQL catalog is located in the CATALOG schema.

SQL Client
Interface

See BASIC SQL Client Interface.

statement An SQL command that defines, manipulates, or administers data.

string See character string.

subquery A SELECT statement that nests within a WHERE, WHEN, or HAVING clause.

table A matrix of rows and columns containing data. See also column, row, cell.

table privilege Permission to read or write to a table. These include SELECT, INSERT, UPDATE,
DELETE, ALTER, and REFERENCES. See also privilege.

temporary name See alias.

three-valued logic An extension of Boolean logic that includes a third value, unknown (NULL), in addi-
tion to the Boolean values true (1) and false (0). See also logical values.

transaction A strategy that treats a group of database operations as one unit. The database
remains consistent because either all or none of the operations are completed.

transaction
management

A strategy that either completes or cancels transactions so that the database is never
inconsistent.

trigger A BASIC program associated with a table, executed (“fired”) when some action
changes the table’s data.

UCI Uni Call Interface. A C-language application programming interface (API) that lets
application programmers write client programs using SQL function calls to access
data in UniVerse databases.

unique constraint A column or table constraint requiring that values in specified columns must contain
unique values.
Glossary 7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqlref\Glossary
12/29/08 Using SQL in UniVerse

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta Beta Beta Beta Beta
unnested table The result of unnesting, or exploding, an association of multivalued columns to pro-
duce a separate row for each set of associated multivalues. Unnested data is treated
as singlevalued.

user privilege See database privilege.

uvadm On UNIX systems, the user name of the database administrator (DBA). uvadm is the
owner of the SQL catalog if uvsql or root is not the owner.

uvsql On UNIX systems, the user name of the database administrator (DBA). uvsql is the
owner of the SQL catalog if root or uvadm is not the owner.

value expression One or more literals, column specifications, and set functions, combined with arith-
metic operators and parentheses, that produce a value when evaluated.

view A derived table created by a SELECT statement that is part of the view’s definition.

wildcard Either of two characters used in pattern matches. The _ (underscore) represents any
single character. The % (percent sign) represents any number of characters.
8 UniVerse SQL Reference

@

:\Program Files\Adobe\Fram
ecember 29 2008 12:51 pm

Index

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
accounts

converting to schemas 6-20
definition Gl-1
on server 4-3

ADD clause 6-8 to 6-11
adding

associations 6-10
columns 6-8
table constraints 6-11

administrator, see DBA
AFTER triggers 6-50
aliases

column 6-99, 6-158, A-10
definition Gl-1

ALL keyword 6-96, 6-179, 6-180
ALL PRIVILEGES keyword 6-78, 6-

91
ALTER

clause 6-13 to 6-14
privilege 6-7, 6-79, 6-92, A-54

ALTER TABLE statement 6-7 to 6-
14, A-55

ADD clause 6-8 to 6-11
ALTER clause 6-13 to 6-14
DROP clause 6-11 to 6-12

alternate file dictionaries 6-185, A-27
AND keyword 6-114

in conditions 6-160
angle brackets (< >) 6-86, 6-152, A-

38, A-39
ANSI (American National Standards

Institute)
definition Gl-1
SQL standard 1-2

ANY keyword 6-180

approximate number data category 3-
3, 3-15

arithmetic operators 6-166, A-9
AS keyword 4-7, 6-98, 6-102, 6-129,

A-16
in FROM clause 6-108

ASC keyword 6-132
ASSOC

clause 6-41
keyword 4-7, 6-10, 6-41, 6-98, 6-103

ASSOCIATED keyword 4-7, 6-98, 6-
103

association keys 6-10, 6-41, 6-84, 6-
185

definition Gl-2
and views 6-54

ASSOCIATION keyword 6-41, A-
48 to A-49

association rows
definition Gl-2
deleting 6-61
inserting 6-42, 6-81, 6-84
positioning 6-42
selecting 6-124
updating 6-148, 6-154

associations
adding 6-10
defining 6-41, A-48 to A-49
definition Gl-1
and programmatic SQL 4-3
STABLE 6-42, 6-62, 6-84
in table expressions 6-183
and views 6-54

audit files 5-19
authority, see database privileges
AUTHORIZATION keyword 6-21, A-

41
eMaker8\UniVerse 10.3\sqlref\SqlrefIX.doc

@

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
AUX.PORT keyword 6-141
AVG keyword 4-6, 6-98, 6-100, 6-178

B
BASIC

DELETE statement 5-3
SUBROUTINE statement 5-8
WRITE statement 5-3, 5-10

BASIC SQL Client Interface 4-2
definition Gl-2

BEFORE triggers 6-50
BETWEEN keyword

in conditions 6-162, A-34
in WHEN clause 6-126
in WHERE clause 6-116

BIT data type 3-15, 6-165
bit strings 6-175, A-6

data category 3-3, 3-15
BIT VARYING data type, see

VARBIT data type
BNF (Backus Naur Form)

conventions A-2
definition Gl-2

Boolean
see also three-valued logic
definition Gl-2

BREAK ON keyword 4-6, 6-98, 6-100
BREAK SUPPRESS keyword 4-6, 6-

98, 6-101
buffers, see group buffers
business rules 5-2

C
CALC keyword 4-6, 6-98, 6-101
CALL statement 6-15, A-61
Cartesian product A-28

definition Gl-2
CASCADE keyword 6-12, 6-38, 6-47,

6-68, 6-70, 6-73
case-sensitivity 4-5, A-4
CAST

function 6-99, 6-106, 6-167
keyword 6-167

cast expressions 6-167
CATALOG schema 2-3

definition Gl-2

owner 6-76
catalog, see SQL catalog
categories of data, see data categories
cell, definition Gl-2
CHAR data type 3-7, 3-15, 6-165
CHAR VARYING data type, see

VARCHAR data type
CHARACTER data type, see CHAR

data type
character strings 6-175

data category 3-3, 3-15
definition Gl-2
empty string A-6
literals A-6

character value expressions A-11
CHARACTER VARYING data type,

see VARCHAR data type
characters

escape 6-163
separator 6-43
wildcard 6-163, A-36

definition Gl-8
CHARACTER_LENGTH function,

see CHAR_LENGTH function
CHAR_LENGTH function A-13
check constraints 6-36, 6-45, A-

47 to A-48
definition Gl-2

CHECK keyword 6-11, 6-34, 6-36, 6-
43, 6-45, A-46

Circus database 1-4
ClearDiagnostics function 5-12
client

definition Gl-2
programs 4-2, 4-3

Client Interface, see BASIC SQL Client
Interface

column constraints 6-8, 6-30
CHECK 6-36, A-47 to A-48
defining 6-33 to 6-40, A-45 to A-46
MULTIVALUED 6-40
NOT EMPTY 6-34
NOT NULL 6-34
PRIMARY KEY 6-34
REFERENCES 6-37
referential 6-37
ROWUNIQUE 6-35
SINGLEVALUED 6-40
UNIQUE 6-35

COLUMN keyword 6-8, 6-9
COLUMN SPACES keyword 4-7
column specifications 6-96, 6-132, A-

9
columns

adding 6-8
alias 6-99, 6-158, A-10
connecting

definition Gl-3
defining 6-25, 6-29 to 6-40, A-

43 to A-45
definition Gl-2
multivalued 4-3

definition Gl-4
unassociated A-17

naming in views 6-56
referenced 6-38, 6-47

definition Gl-6
referencing 6-38, 6-47

definition Gl-6
synonym 6-7, 6-9, 6-40, 6-158, A-44
syntax 6-157 to 6-158
in views 6-56

COL.HDG keyword 6-32
COL.SPACES keyword 6-139
COL.SPCS keyword 6-139
COL.SUP keyword 6-137
comments

in programmatic SQL 4-5
in SQL statements A-4

common variables 5-10
comparison operators, see relational

operators
concatenation operator 6-166, A-9
concurrency control, definition Gl-2
conditions

HAVING 6-130, A-30 to A-31
join 6-121 to 6-123
syntax 6-160 to 6-164
WHEN 6-124, A-28 to A-30
WHERE 6-114, A-27 to A-28

CONNECT
keyword 6-75, 6-88
privilege 6-77, 6-89, A-59

definition Gl-3
connecting columns, definition Gl-3
constants

see also literals
definition Gl-3
2 UniVerse SQL Reference

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
CONSTRAINT keyword A-46, A-50
constraints, see column constraints,

table constraints
CONV keyword 4-7, 4-8, 6-8, 6-30, 6-

32, 6-98, 6-102
conventions

BNF A-2
SQL syntax 1-3

conversion codes and data types 3-16
CONVERSION keyword, see CONV

keyword
converting data types 6-167
CONVERT.SQL command 1-4
correlated subqueries, definition Gl-3
correlation name A-17

definition Gl-3
COUNT keyword 6-178
COUNT.SUP keyword 4-7, 6-138
CREATE INDEX statement 6-17, A-

52
CREATE SCHEMA statement 6-

20 to 6-23, A-40 to A-41
CREATE TABLE statement 6-

24 to 6-48, A-41 to A-50
CREATE TRIGGER statement 6-49,

A-53
CREATE VIEW statement 6-52 to 6-

60, A-51 to A-52
creating

indexes 6-17
schemas 6-20 to 6-23, A-40 to A-41
tables 6-24 to 6-48, A-41 to A-50
triggers 5-5, 6-49, A-53
views 6-52 to 6-60, A-51 to A-52

CURRENT_DATE keyword 6-85, 6-
176, A-5, A-9

CURRENT_TIME keyword 6-85, 6-
176, A-5, A-9

CUSTOMERS table 1-4

D
data categories 3-3 to 3-4, 3-15

approximate number 3-3, 3-15
bit string 3-3, 3-15
character string 3-3, 3-15
date 3-3, 3-15
integer 3-3, 3-15

scaled number 3-3, 3-15
time 3-3, 3-15

data definition language, see DDL
data definition statements 4-4, A-

40 to A-58
data files, see files
DATA keyword 4-6, 6-184
data manipulation language, see DML
data manipulation statements 4-4, A-

18 to A-39
data types 3-15

BIT 6-165
BIT VARYING 6-165
CHAR 3-7, 6-165
CHAR VARYING 3-13, 6-165
CHARACTER 3-5, 6-165
CHARACTER VARYING 3-6, 3-

13, 6-165
and conversion codes 3-16
converting 6-167
DATE 6-165, 6-167
DEC 3-7, 6-165
DECIMAL 3-5, 6-165
defining 6-25
DOUBLE PRECISION 3-8, 6-165
FLOAT 3-8, 6-165
INT 3-9, 6-165
INTEGER 3-5, 6-165
NATIONAL CHAR 6-165
NATIONAL CHAR VARYING 6-

165
NATIONAL CHARACTER 6-165
NATIONAL CHARACTER

VARYING 6-165
NCHAR 3-10, 6-165
NCHAR VARYING 6-165
NUMERIC 3-10, 6-165
NVARCHAR 3-11, 6-165
REAL 3-12, 6-165
SMALLINT 3-12, 6-165
syntax 6-165
TIME 6-165, 6-167
VARBIT 6-165
VARCHAR 3-13, 6-165

database administrator, see DBA
database privileges

CONNECT 6-77, 6-89, A-59
definition Gl-3

DBA 6-78, 6-90, A-59

definition Gl-3
defining 6-75 to 6-80, A-59 to A-60
definition Gl-3
RESOURCE 6-77, 6-90, A-59

definition Gl-6
revoking 6-88 to 6-93, A-59 to A-60

databases
Circus 1-4
first-normal-form 1-2

definition Gl-4
nonfirst-normal-form 1-2
nonfirst-normal-form, definition Gl-

5
postrelational 1-2
UniVerse demonstration 1-4

date
data category 3-3, 3-15
delimiters 6-176, A-7
literal 6-176, A-7

DATE data type 3-15, 6-165, 6-167
DBA 6-76

keyword 6-75, 6-88
privilege 6-78, 6-90, A-59

definition Gl-3
DBL.SPC keyword 6-139
DBMS, definition Gl-3
DDL (data definition language)

see also data definition statements
definition Gl-3

DEC data type 3-7, 3-15, 6-165
DECIMAL data type, see DEC data

type
DEFAULT

clause 6-8, 6-30
keyword 6-30, 6-151

default values
defining 6-8, 6-30
definition Gl-3
dropping 6-13
inserting 6-86
modifying 6-14
updating with 6-151

DEFAULT VALUES keyword 6-86,
6-152

defining
associations 6-41, A-48 to A-49
check constraints 6-36, 6-45, A-

47 to A-48
Index 3

@

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
column constraints 6-33 to 6-40, A-
45 to A-46

columns 6-25, 6-29 to 6-40, A-
43 to A-45

data types 6-25
database privileges 6-75 to 6-80, A-

59 to A-60
default values 6-8, 6-30
file format 6-25, A-42 to A-43
output format 6-31 to 6-33
referential constraints 6-37 to 6-48
table constraints 6-43 to 6-48, A-

49 to A-50
table privileges 6-75 to 6-80, A-

53 to A-54
DELETE

privilege 6-79, 6-92, A-54
statement 5-3, 6-61 to 6-66, A-37

deleting
see also dropping
association rows 6-61
rows 6-61 to 6-66

delimited identifiers, see identifiers
delimiters A-3, A-4

in dates 6-176, A-7
in times 6-176, A-7

demonstration database 1-4
DESC keyword 6-132
DET.SUP keyword 6-138
diagnostics area 5-11
DICT keyword 4-6, 6-183
dictionaries, alternate 6-185, A-27
disabling triggers 5-5
DISPLAYLIKE keyword 4-7, 4-8, 6-

98, 6-102
DISPLAYNAME keyword 4-7, 4-8, 6-

8, 6-30, 6-32, 6-98, 6-102
DISPLAY.NAME keyword 6-32
DISTINCT keyword 6-96, 6-178

and ORDER BY clause 6-132
DML (data manipulation language)

see also data manipulation statements
definition Gl-3

DOUBLE PRECISION data type 3-8,
3-15, 6-165

DOUBLE SPACE keyword 4-7
DROP clause 6-11 to 6-12
DROP DEFAULT keyword 6-14
DROP INDEX statement 6-67, A-57

DROP SCHEMA statement 6-68 to 6-
69, A-55

DROP TABLE statement 6-70, A-56
DROP TRIGGER statement 6-72, A-

57
DROP VIEW statement 6-73, A-57
dropping

default values 6-13
indexes 6-67, A-57
referential constraints 6-12
schemas 6-68 to 6-69, A-55
table constraints 6-12
tables 6-70, A-56
triggers 5-5, 6-72, A-57
views 6-73, A-57

dynamic hashed files 6-25
parameters 6-27

DYNAMIC keyword 6-26
dynamic normalization 6-84

definition Gl-3
and primary keys 6-185
and triggers 5-4

E
editors, UniVerse Editor 5-3
effective user name 6-31

definition Gl-3
empty strings A-6

definition Gl-3
enabling triggers 5-5
environment, user 4-3
errors in trigger programs 5-11
escape characters 6-163
ESCAPE keyword 6-163
EVAL expressions 6-158, A-10
EVALUATE keyword 6-158
EVERY keyword 6-160, 6-181
EXISTS keyword 6-180
EXPLAIN keyword 4-7, 6-61, 6-64, 6-

82, 6-142, 6-146, 6-149, 6-150, A-
19, A-20

expressions 6-166
cast 6-167
converting data type 6-167
I-descriptor 6-158, A-10
query A-18 to A-36
select 6-99

table 6-183 to 6-185, A-25
value A-9 to A-14

definition Gl-8

F
field modifiers 4-6, 6-98, A-22

in INSERT statement 6-86
field qualifiers 4-7, 4-8, 6-98, A-22

in INSERT statement 6-86
fields, definition Gl-3
files

audit 5-19
dynamic hashed 6-25

parameters 6-27
format, defining 6-25, A-42 to A-43
hashed 6-25
multiple data 6-184
opening in trigger programs 5-10
&SAVEDLISTS& 6-97

first normal form
databases 1-2
definition Gl-4
mode 4-3

fixed-point numbers 6-176, A-5
FLOAT data type 3-8, 3-15, 6-165
floating-point numbers 6-176, A-5
FMT keyword 4-7, 4-8, 6-8, 6-30, 6-

32, 6-98, 6-102
FOOTER keyword 6-136
FOOTING keyword 4-7, 6-136
FOREIGN KEY keyword 6-11, 6-43,

6-45, A-50
foreign keys 6-38, 6-47

definition Gl-4
FORMAT keyword, see FMT keyword
format, output 6-8, 6-30, 6-31 to 6-33
FROM

clause 6-107, A-25
keyword 6-107

functions
CAST 6-99, 6-106, 6-167
ClearDiagnostics 5-12
GetDiagnostics 5-12
SetDiagnostics 5-11
set, see set functions
SQLColAttributes 4-8
SQLConnect 5-9
4 UniVerse SQL Reference

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
SQLError 5-12
SQLExecDirect 5-9
SQLExecute 5-9
SQLFetch 4-6
SQLPrepare A-61

F-WRITE command 5-3

G
GENERAL keyword 6-26, 6-27
GetDiagnostics function 5-12
GRAND TOTAL keyword 4-7, 6-137
GRAND.TOTAL keyword 6-137
GRANT OPTION FOR keyword 6-89
GRANT statement 6-75 to 6-80, A-

53 to A-54
group buffers 6-26
GROUP BY

clause 6-129, A-30
keyword 6-129

GROUP SIZE keyword 6-26, 6-27
groups A-11

in a file 6-26

H
hashed files 6-25
HAVING

clause 6-130, A-30 to A-31
keyword 6-130

HEADER keyword 6-136
HEADING DEFAULT keyword 6-

136, A-25
HEADING keyword 4-7, 6-135, A-25
hex strings 6-175, A-6
HOME keyword 6-21, A-41

I
identifiers 4-5, 6-171 to 6-174, A-3, A-

7 to A-8
definition Gl-4

I-descriptor expressions 6-158, A-10
IN keyword

in conditions 6-162, A-35
in WHERE clause 6-116

inclusive range, definition Gl-4

indexes
creating 6-17
dropping 6-67, A-57

INITIALIZE.DEMO command 1-4
INNER keyword 6-113, A-25
INQUIRING keyword 4-6, 6-184, A-

16, A-17, A-27
in CREATE VIEW statement 6-55

INSERT
privilege 6-79, 6-81, 6-91, A-54
statement 5-3, 6-81 to 6-87, A-

37 to A-38
INSERT FIRST keyword 6-42, A-48
INSERT IN clause 6-42, A-48
INSERT LAST keyword 6-42, A-48
INSERT PRESERVING keyword 6-

42, A-48
inserting

association rows 6-42, 6-81, 6-84
default values 6-86
multivalues 6-86, 6-87, 6-152
null values 6-85
rows 6-81 to 6-87, A-37 to A-38
values, see inserting: rows

INT data type 3-9, 3-15, 6-165
integer data category 3-3, 3-15
INTEGER data type, see INT data type
integrity constraints

see also column constraints, table
constraints

definition Gl-4
interactive query specifications A-

21 to A-22
interactive report statements A-

23 to A-25
INTO keyword 6-81
INVENTORY table 1-4
IS NULL keyword

in conditions 6-164
in WHERE clause 6-118

isolation levels 6-144
definition Gl-4

J
join column, definition Gl-4
JOIN keyword 6-112, A-25
joins 6-121 to 6-123, A-25

definition Gl-4
reflexive, definition Gl-6

K
KEY keyword 6-10, 6-41
keys

association 6-10, 6-41, 6-84, 6-185
definition Gl-2

definition Gl-4
foreign 6-38, 6-47

definition Gl-4
keywords A-4

definition Gl-4
reserved B-1 to B-6

L
LARGE RECORD keyword 6-26, 6-

28
LEFT keyword 6-113, A-25
LIKE keyword

in conditions 6-163
in WHERE clause 6-117

lists, see select lists
LIST.SICA command

and triggers 5-6
literals 4-9, 6-175 to 6-176, A-5

character string A-6
date 6-176, A-7
definition Gl-4
number 6-176, A-5
time 6-176, A-7

locks 6-82, 6-143, 6-149
and triggers 5-9

logical values, definition Gl-4
loops in trigger programs 5-15
LOWER function A-12
LPTR keyword 4-7, 6-141

M
MARGIN keyword 4-7
MATCHES keyword

in conditions 6-163
in WHERE clause 6-117

MATCHING keyword
Index 5

@

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
in conditions 6-163
in WHERE clause 6-117

matching, see pattern matching
MAX keyword 6-178
MERGE LOAD keyword 6-26, 6-27
MIN keyword 6-178
MINIMIZE SPACE keyword 6-26, 6-

28
MINIMUM MODULUS keyword 6-

26, 6-27
modifying 6-151

default values 6-14
tables 6-7 to 6-14, A-55
triggers 5-5
values 6-148 to ??

modulo 6-25
MODULO keyword 6-26
multiple data files 6-184
multivalued columns 4-3

definition Gl-4
unassociated A-17
updating 6-152

MULTIVALUED keyword 4-7, 6-34,
6-40, 6-98, 6-103

multivalues
inserting 6-86, 6-87, 6-152
and programmatic SQL 4-3

N
names

correlation A-17
definition Gl-3

user 4-3, 6-13, 6-21, 6-31, 6-76, 6-
89, 6-167, A-8

NATIONAL CHARACTER data type,
see NCHAR data type

NATIONAL CHARACTER
VARYING data type, see
NVARCHAR data type

NCHAR data type 3-10, 3-15, 6-165
nested queries, see subqueries
nested sort, definition Gl-4
nested tables 1-2

definition Gl-4
nested triggers 5-13
NEXT AVAILABLE keyword 6-31
NO ACTION keyword 6-38, 6-47

nonfirst-normal form
databases 1-2
definition Gl-5

NOPAGE keyword 4-7, 6-141
NOT EMPTY keyword 6-34, A-46
NOT keyword 6-115

in conditions 6-160
NOT NULL

constraint 6-34, 6-85
keyword 6-34, A-46

NOWAIT keyword 4-7, 6-62, 6-82, 6-
143, 6-146, 6-149, A-19

NO.INDEX keyword 4-6, 6-185, A-
16, A-17

NO.OPTIMIZE keyword 4-7, 6-62, 6-
82, 6-143, 6-146, 6-149, A-19

NO.PAGE keyword 6-141
NT AUTHORITY\SYSTEM user 2-3,

6-76, 6-89
definition Gl-5

NULL keyword 6-13, 6-31, 6-85, 6-
151

null value
definition Gl-5
inserting 6-85
testing for 6-118
updating with 6-151

numbers
fixed-point 6-176, A-5
floating-point 6-176, A-5
literals 6-176, A-5

NUMERIC data type 3-10, 3-15, 6-165
numeric value expressions A-13
NVARCHAR data type 3-11, 3-15, 6-

165

O
ODBC 4-2

definition Gl-5
ON DELETE clause 6-37, 6-45, 6-63,

A-47, A-50
ON keyword 6-76, 6-111
ON UPDATE clause 6-37, 6-45, 6-

155, A-47, A-50
Open Database Connectivity, see

ODBC
operators

arithmetic 6-166, A-9
concatenation 6-166, A-9
relational 6-161, 6-177

definition Gl-6
OR keyword 6-114

in conditions 6-160
ORDER BY clause 6-131, A-23
ORDERS table 1-4
outer queries, definition Gl-5
output format 6-8, 6-30

defining 6-31 to 6-33
owner

of CATALOG schema 2-3, 6-76
definition Gl-5

P
parameter markers 4-8

definition Gl-5
pattern matching 6-117, 6-163, A-36
PCT keyword 4-6, 6-98, 6-100
percent sign (%) 6-163, A-36
permissions, see database privileges,

table privileges
phrases, @SELECT 6-132
positioning association rows 6-42
postrelational database 1-2
precision 3-7, 3-9, 3-10, 3-16

definition Gl-5
predicates A-34 to A-36
PRIMARY KEY keyword 6-8, 6-12,

6-34, 6-43, A-46, A-50
primary keys

constraint 6-43
definition Gl-5

in CREATE VIEW statement 6-55
and dynamic normalization 6-185
in programmatic SQL 4-6
in SELECT clause 6-184
separator character 6-43
and views 6-53, 6-54

privileges, see database privileges,
table privileges

procedures 4-5, 6-15, A-61
programmatic SQL 1-2, 4-2 to 4-9

and associations 4-3
and comments 4-5
definition Gl-5
6 UniVerse SQL Reference

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
and multivalues 4-3
parameter markers 4-8
SELECT statement 4-6
syntax 4-5 to 4-8

programs 4-2, 4-3
trigger 5-8, 6-50
variables 4-6

PUBLIC keyword 6-76, 6-89

Q
qualifiers 6-158, 6-183, A-10

definition Gl-5
queries

definition Gl-6
nested, see subqueries
outer, definition Gl-5

query expressions A-18 to A-36
and views 6-54

query specifications A-18 to A-20
in CREATE VIEW statement 6-54,

A-51
in INSERT statement 6-86, A-38
interactive A-21 to A-22

R
range, see inclusive range
REAL data type 3-12, 3-15, 6-165
RECORD SIZE keyword 6-26, 6-28
records, definition Gl-6
record IDs, see primary keys
recursive triggers 5-13
referenced columns 6-38, 6-47

definition Gl-6
REFERENCES

keyword 6-34, 6-37, A-46
privilege 6-79, 6-92, A-54

referencing columns 6-38, 6-47
definition Gl-6

referential constraints 5-16, 5-17, 6-37,
6-45

defining 6-37 to 6-48
definition Gl-6
dropping 6-12
FOREIGN KEY 6-45
REFERENCES 6-37

referential integrity 5-2

reflexive joins, definition Gl-6
registered users, definition Gl-6
relational operators 6-161, 6-177

definition Gl-6
report qualifiers 4-7, 6-135 to 6-147,

A-24
in INSERT statement 6-86

REPORTING keyword 4-7, 6-62, 6-
82, 6-149, A-19

reserved words B-1 to B-6
RESOURCE

keyword 6-75, 6-88
privilege 6-77, 6-90, A-59

definition Gl-6
RESTRICT keyword 6-12
ReVise 5-3
REVOKE statement 6-88 to 6-93, A-

58, A-60
revoking

database privileges 6-88 to 6-93, A-
59 to A-60

table privileges 6-88 to 6-93, A-58
root 2-3, 6-76

definition Gl-6
rows

association
definition Gl-2
deleting 6-61
inserting 6-42, 6-81, 6-84
positioning 6-42
selecting 6-124
updating 6-148, 6-154

definition Gl-6
deleting 6-61 to 6-66
inserting 6-81 to 6-87, A-37 to A-38
selecting 6-184

ROWUNIQUE
constraint 6-35

definition Gl-6
keyword 6-34, 6-35, 6-41, A-46

S
SAID keyword

in conditions 6-163
in WHERE clause 6-117

SAMPLE keyword 4-7, 6-144, A-19,
A-20

SAMPLED keyword 4-7, 6-144, A-19,
A-20

scale 3-8, 3-10, 3-16
definition Gl-6

scaled number data category 3-3, 3-15
schemas

CATALOG 2-3
definition Gl-2
owner 6-76

creating 6-20 to 6-23, A-40 to A-41
definition Gl-6
dropping 6-68 to 6-69, A-55

security and integrity constraints area,
see SICA

security constraints, definition Gl-6
SELECT

clause 6-95 to 6-107
privilege 6-78, 6-91, A-54
statement 6-94 to 6-147

in programmatic SQL 4-6
select expressions 6-99

in CREATE VIEW statement 6-56
in set functions 6-179

select lists 6-95, 6-97, 6-103, 6-185
semicolon (;) 4-5, A-4
separation 6-25
SEPARATION keyword 6-26
separator character 6-43
SEQ NUM keyword 6-26, 6-27
servers

definition Gl-7
UniVerse 4-3

SET DEFAULT keyword 6-13, 6-38,
6-47

set functions 6-178, A-11
in CREATE VIEW statement 6-56
definition Gl-7
syntax 6-178

SET keyword 6-151
SET NULL keyword 6-38, 6-47
SetDiagnostics function 5-11
SICA (security and integrity constraints

area), definition Gl-7
single-value constraint 6-40
SINGLEVALUED keyword 4-7, 6-34,

6-40, 6-98, 6-103
SLIST keyword 4-6, 6-95, 6-103, 6-

185, A-16, A-27
in CREATE VIEW statement 6-55
Index 7

@

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
and ORDER BY clause 6-132
SMALLINT data type 3-12, 3-15, 3-

16, 6-165
SOME keyword 6-180
sort, nested, see nested sort
SPLIT LOAD keyword 6-26, 6-27
SPOKEN keyword

in conditions 6-163
in WHERE clause 6-117

SQL
ANSI standard 1-2
definition Gl-7
programmatic 1-2, 4-2 to 4-9

definition Gl-5
statements, see statements
syntax conventions 1-3

SQL catalog 2-2 to 2-17, 6-22
definition Gl-7
inconsistencies 2-15
owner 2-3

SQL Client Interface, see BASIC SQL
Client Interface

SQL diagnostics area 5-11
SQLColAttributes function 4-8
SQLConnect function 5-9
SQLError function 5-12
SQLExecDirect A-61
SQLExecDirect function 5-9, A-61
SQLExecute function 5-9
SQLFetch function 4-6
SQLPrepare function A-61
SQL.COLUMN.CONVERSION

column attribute 4-8
SQL.COLUMN.DISPLAY.SIZE

column attribute 4-8
SQL.COLUMN.FORMAT column

attribute 4-8
SQL.COLUMN.LABEL column

attribute 4-8
SQL_COLUMN_CONVERSION

column attribute 4-8
SQL_COLUMN_DISPLAY_SIZE

column attribute 4-8
SQL_COLUMN_FORMAT column

attribute 4-8
SQL_COLUMN_LABEL column

attribute 4-8
STABLE associations 6-42, 6-62, 6-84
statements

comments in A-4
data definition 4-4, A-40 to A-58
data manipulation 4-4, A-18 to A-39
definition Gl-7
in transactions 4-5

static hashed files 6-25
stored procedures, see procedures
strings

bit 6-175, A-6
character 6-175, A-6
empty A-6

definition Gl-3
hex 6-175, A-6

subqueries
correlated, definition Gl-3
definition Gl-7
syntax 6-180, A-31 to A-33
in WHEN clause 6-127
in WHERE clause 6-118

SUBROUTINE statement 5-8
SUBSTRING function A-12
SUM keyword 6-178
SUPPRESS COLUMN HEADER

keyword 6-137
SUPPRESS COLUMN HEADING

keyword 4-7, 6-137
SUPPRESS DETAIL keyword 4-7, 6-

138
SYNONYM FOR keyword 6-9, 6-40
synonym, column 6-7, 6-9, 6-40, 6-

158, A-44
syntax

programmatic SQL 4-5 to 4-8
SQL conventions 1-3

T
table constraints

adding 6-11
CHECK 6-45
defining 6-43 to 6-48, A-49 to A-50
dropping 6-12
FOREIGN KEY 6-45, A-50
PRIMARY KEY 6-43
referential 6-45
UNIQUE 6-44

table expressions 6-183 to 6-185, A-25
table privileges

ALTER 6-7, 6-79, 6-92, A-54
defining 6-75 to 6-80, A-53 to A-54
definition Gl-7
DELETE 6-79, 6-92, A-54
INSERT 6-79, 6-81, 6-91, A-54
REFERENCES 6-79, 6-92, A-54
revoking 6-88 to 6-93, A-58
SELECT 6-78, 6-91, A-54
trigger 6-50
UPDATE 6-79, 6-91, A-54

table references, see table
specifications

table specifications A-16 to A-17
tables

creating 6-24 to 6-48, A-41 to A-50
CUSTOMERS 1-4
definition Gl-7
dropping 6-70, A-56
INVENTORY 1-4
joined A-25
modifying 6-7 to 6-14, A-55
nested 1-2

definition Gl-4
ORDERS 1-4
unnested, definition Gl-8
UV_ASSOC 2-5 to 2-6
UV_COLUMNS 2-7 to 2-9
UV_SCHEMA 2-10, 6-22
UV_TABLES 2-11 to 2-12
UV_USERS 2-13
UV_VIEWS 2-14

temporary name, see aliases
text marks 6-43
three-valued logic, definition Gl-7
time

data category 3-3, 3-15
delimiters 6-176, A-7
literal 6-176, A-7

TIME data type 3-15, 6-165, 6-167
TO keyword 6-76
TO SLIST keyword 4-6
token A-3
TOTAL keyword 4-6, 6-98, 6-100
transaction management,

definition Gl-8
transactions

definition Gl-7
SQL statements in 4-5
and triggers 5-9
8 UniVerse SQL Reference

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
trigger programs 5-8, 6-50
loops 5-15
opening files 5-10

triggers 5-1 to 5-19
AFTER 6-50
BEFORE 6-50
creating 5-5, 6-49, A-53
definition Gl-8
dropping 5-5, 6-72, A-57
and dynamic normalization 5-4
enabling and disabling 5-5
examples 5-16 to 5-19
handling errors 5-11
and LIST.SICA 5-6
and locks 5-9
modifying 5-5
nested 5-13
privileges 6-50
recursive 5-13
and transactions 5-9

TRIM function A-12
TYPE keyword 6-26
types, data, see data types

U
UCI 4-2

definition Gl-8
unassociated multivalued columns A-

17
underscore (_) 6-163, A-36
UNION operator 6-145, A-18
unique constraint 6-35, 6-44

definition Gl-8
UNIQUE keyword 6-8, 6-11, 6-12, 6-

34, 6-35, 6-43, 6-44, A-46
UniVerse accounts, see accounts
UniVerse Editor, see editors
UniVerse servers 4-3
UNNEST

clause 4-6, 6-111, A-16
keyword 6-111, A-26

unnested tables, definition Gl-8
updatable views 5-4, 6-53
UPDATE

privilege 6-79, 6-91, A-54
statement 5-3, 6-148 to ??, A-38

updating

association rows 6-148, 6-154
with default values 6-151
multivalued columns 6-152
with null values 6-151
values 6-151

UPPER function A-12
user environment 4-3
USER keyword 6-13, 6-31, 6-85, 6-

167, A-5, A-9
user name 4-3, 6-13, 6-21, 6-31, 6-76,

6-89, 6-167, A-8
user privileges, see database privileges
users, registered, definition Gl-6
USING DICT keyword 4-6, A-16
USING keyword 6-185
UV account directory 2-3
uvadm

definition Gl-8
uvsql 2-3, 6-76

definition Gl-8
UV_ASSOC table 2-5 to 2-6
UV_COLUMNS table 2-7 to 2-9
UV_SCHEMA table 2-10, 6-22
UV_TABLES table 2-11 to 2-12
UV_USERS table 2-13
UV_VIEWS table 2-14

V
value expressions A-9 to A-14

character A-11
definition Gl-8
numeric A-13

values 6-151
default 6-8, 6-14, 6-30

definition Gl-3
inserting 6-85 to 6-86
logical, definition Gl-4
modifying 6-148 to ??
null, definition Gl-5
updating 6-151

VALUES keyword 6-85
VARBIT data type 3-15, 6-165
VARCHAR data type 3-6, 3-13, 3-15,

6-165
variables

common 5-10
in programs 4-6

@HSTMT 5-10
@NEW 5-11
@OLD 5-11

VERIFY.SQL command ?? to 2-17
VERT keyword 6-140
VERTICALLY keyword 4-7, 6-140
views

and associations 6-54
and association keys 6-54
columns 6-56
creating 6-52 to 6-60, A-51 to A-52
definition Gl-8
dropping 6-73, A-57
and primary keys 6-53, 6-54
query expression 6-54
updatable 5-4, 6-53

W
WHEN

clause 6-124 to 6-128, A-28 to A-30
in UPDATE statement 6-154

condition 6-124, A-28 to A-30
keyword 6-124

WHERE
clause 6-114 to 6-123, A-27 to A-28

in DELETE statement 6-61
in UPDATE statement 6-153

condition 6-114, A-27 to A-28
keyword 6-114

wildcard characters 6-163, A-36
definition Gl-8

WITH CHECK OPTION keyword 6-
53, A-51

WITH GRANT OPTION keyword 6-
76

WRITE statement 5-3, 5-10

Symbols
operator 6-177
% (percent sign) 6-163, A-36
&SAVEDLISTS& file 6-97
; (semicolon) 4-5, A-4
< operator 6-177
< > (angle brackets) 6-86, 6-152, A-

38, A-39
<= operator 6-177
Index 9

@

g q q
December 29, 2008 12:51 pm

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
<> operator 6-177
= operator 6-177
> operator 6-177
>= operator 6-177
@ASSOC_ROW keyword 6-42, 6-81,

6-84, 6-98, 6-158, 6-186
@HSTMT variable 5-10
@INSERT phrase 6-84
@NEW variable 5-11
@OLD variable 5-11
@SELECT phrase 6-96, 6-132, A-20
_ (underscore) 6-163, A-36
10 UniVerse SQL Reference

	Online Guide

	Table of Contents

	Preface
	Organization of This Manual
	Documentation Conventions
	UniVerse Documentation
	Related Documentation
	API Documentation

	Introduction
	UniVerse SQL Syntax Conventions
	Examples Used in This Book
	The UniVerse Demonstration Database
	The Circus Database

	The SQL Catalog
	What Is the SQL Catalog?
	Structure of the SQL Catalog
	UV_ASSOC
	UV_COLUMNS
	UV_SCHEMA
	UV_TABLES
	UV_USERS
	UV_VIEWS
	Using the SQL Catalog
	Finding SQL Catalog Inconsistencies
	Fixing SQL Catalog Inconsistencies

	Data Types
	UniVerse SQL Data Categories
	SQL Data Types
	BIT
	CHAR
	DATE
	DEC
	DOUBLE PRECISION
	FLOAT
	INT
	NCHAR
	NUMERIC
	NVARCHAR
	REAL
	SMALLINT
	TIME
	VARBIT
	VARCHAR

	Data Types and Data Categories
	Data Types and Conversion Codes

	UniVerse SQL in Client Programs
	Programming with ODBC
	Multivalued Columns and Associations

	Using SQL Statements in Programs
	SQL Syntax in Programs
	SELECT Statements in Programmatic SQL
	Using Parameter Markers in DML Statements

	Triggers
	Applying Business Rules
	Using Triggers
	When Does a Trigger Fire?
	What Events Fire a Trigger?

	Creating Triggers
	Modifying Triggers

	Listing Information About Triggers
	Trigger Programs
	Transactions
	Opening Files
	Handling Errors
	Handling Record and File Locks
	Order of Operations
	Nested Triggers and Trigger Recursion

	Some Examples
	Extending Referential Integrity
	Preventing Deletions
	Validating Data
	Changing a Record Before Writing It
	Auditing Changes

	UniVerse SQL Statements
	Statement Page Layout
	ALTER TABLE
	ADD Clause: Column
	ADD Clause: Column Synonym
	ADD Clause: Association
	ADD Clause: Table Constraint
	DROP Clause: Association
	DROP Clause: Integrity Constraint
	ALTER Clause: SET DEFAULT
	ALTER Clause: DROP DEFAULT
	TRIGGER Clause

	CALL
	CREATE INDEX
	CREATE SCHEMA
	CREATE TABLE
	Column Definition
	ASSOC Clause
	Table Constraints

	CREATE TRIGGER
	CREATE VIEW
	DELETE
	DROP INDEX
	DROP SCHEMA
	DROP TABLE
	DROP TRIGGER
	DROP VIEW
	GRANT
	Database Privileges
	Table Privileges

	INSERT
	Specifying Columns
	Specifying Values
	VALUES Clause
	Query Specification

	REVOKE
	Database Privileges
	Table Privileges

	SELECT
	SELECT Clause
	WHERE Clause
	WHEN Clause
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause
	FOR UPDATE Clause
	Report Qualifiers
	Processing Qualifiers
	UNION Operator

	UPDATE
	Set Expressions
	WHERE Clause
	WHEN Clause
	Referential Integrity Actions

	Column
	EVAL Expressions

	Condition
	Comparing Values
	Specifying a Range: BETWEEN
	Phonetic Matching: SAID
	Pattern Matching: LIKE
	Testing for the Null Value: IS NULL

	Data Type
	Expression
	Concatenation Operator
	CAST Function
	Function Expressions

	Identifier
	Delimited Identifiers

	Literal
	Character Strings
	Bit Strings
	Hex Strings
	Numbers
	Dates
	Times

	Relational Operator
	Set Function
	Subquery
	Table

	UniVerse SQL Grammar
	BNF Conventions
	Common Syntax Elements
	Tokens, Characters, and Symbols
	Keywords
	Delimiters
	Literals
	Identifiers and Names

	Value Expressions
	Primaries
	Column Specifications
	Set Functions
	Character Value Expressions
	Numeric Value Expressions

	Data Types
	Tables
	Query Expressions
	Simple Query Specification
	Interactive Query Specification
	Interactive Report Statement
	Table Expression
	FROM Clause
	WHERE Clause
	WHEN Clause
	GROUP BY Clause
	HAVING Clause
	Subqueries

	Predicates
	<comparison-to-value predicate>
	<between predicate>
	<in-value-list predicate>
	<soundex predicate>
	<null predicate>
	<like predicate>

	Data Manipulation
	DELETE Statement
	INSERT Statement
	UPDATE Statement

	Schema Definition Statements
	Schema Definition
	Table Definition
	View Definition
	Index Definition
	Trigger Definition
	Privilege Definition

	Schema Manipulation Statements
	DROP SCHEMA Statement
	ALTER TABLE Statement
	DROP TABLE Statement
	DROP VIEW Statement
	DROP INDEX Statement
	DROP TRIGGER Statement
	REVOKE Statement

	User Definition Statements
	Grant Database Privilege Statement
	Revoke Database Privilege Statement

	Calling Procedures
	Description and Rules

	Reserved Words
	Glossary
	Index

