
C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Front.fm
December 29, 2008 10:22 am

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
UniVerse
SQL Administration for
DBAs
Version 10.3
February, 2009

ii UniVerse SQL Adm

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Front.fm
December 29, 2008 10:22 am

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
IBM Corporation
555 Bailey Avenue
San Jose, CA 95141

Licensed Materials – Property of IBM

© Copyright International Business Machines Corporation 2008, 2009. All rights reserved.

AIX, DB2, DB2 Universal Database, Distributed Relational Database Architecture, NUMA-Q, OS/2, OS/390, and
OS/400, IBM Informix®, C-ISAM®, Foundation.2000 ™, IBM Informix® 4GL, IBM Informix® DataBlade® module,
Client SDK™, Cloudscape™, Cloudsync™, IBM Informix® Connect, IBM Informix® Driver for JDBC, Dynamic
Connect™, IBM Informix® Dynamic Scalable Architecture™ (DSA), IBM Informix® Dynamic Server™, IBM
Informix® Enterprise Gateway Manager (Enterprise Gateway Manager), IBM Informix® Extended Parallel Server™,
i.Financial Services™, J/Foundation™, MaxConnect™, Object Translator™, Red Brick® Decision Server™, IBM
Informix® SE, IBM Informix® SQL, InformiXML™, RedBack®, SystemBuilder™, U2™, UniData®, UniVerse®,
wIntegrate® are trademarks or registered trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company
Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of others.

This product includes cryptographic software written by Eric Young (eay@cryptosoft.com).

This product includes software written by Tim Hudson (tjh@cryptosoft.com).

Documentation Team: Claire Gustafson, Shelley Thompson, Anne Waite

US GOVERNMENT USERS RESTRICTED RIGHTS

Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
inistration for DBAs

Table of Contents

:\Prog
ecem

Table of
Contents

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Preface
Organization of This Manual x
UniVerse Documentation. xiii
Related Documentation xv
API Documentation xvi

Chapter 1 The UniVerse Environment
Main Features . 1-3

The UniVerse Command Processor 1-3
UniVerse SQL 1-4
Other UniVerse Utilities and Processors 1-4

The Operating System and UniVerse 1-5
UniVerse Tables 1-5
The VOC File. 1-6
UniVerse SQL Statements and Commands 1-6

UniVerse and SQL Databases 1-8
Database Concepts and Structures 1-8
Data Models 1-8
UniVerse Tables and Files 1-9

Using UniVerse Help 1-15
UniVerse Online Library 1-15
Windows Help 1-15
UniVerse Command Line Help 1-16

Review of Terms 1-17
The Sample Database 1-19

Chapter 2 Users, UniVerse Accounts, and Schemas
User Accounts . 2-3
UniVerse Accounts 2-4
Schemas . 2-5
ram Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\SqldbaTOC.fm (bookTOC.template)
ber 29 2008 10:44 am

iv UniV

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\SqldbaTOC.fm (bookTOC.template)
December 29, 2008 10:44 am

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Schema Structure 2-5
SQL Users . 2-6
Setting the SQL Environment for a Session 2-7

Chapter 3 The Command Processor and the VOC File
The Command Processor 3-3

Special Character Interpretation. 3-4
Called Procedures 3-4

The VOC File . 3-5
Some VOC Entry Types 3-6

UniVerse Sentence Stack 3-9

Chapter 4 Creating and Dropping Schemas
What Is a Schema? 4-3

The SQL Catalog 4-3
Creating a Schema 4-4
Dropping a Schema 4-5

Chapter 5 Creating, Modifying, and Dropping Tables
Creating a Table 5-4

Naming a Table 5-5
Defining the File Type 5-6
Defining a Column. 5-7
Associations and Multivalued Columns 5-18

Modifying a Table 5-23
Adding Columns, Table Constraints, and Associations 5-23
Removing Constraints, Associations, and Default Values 5-26
Changing a Column’s Default Value 5-26

Dropping a Table 5-28
Dropping a Table with a Dependent View 5-28
Dropping a Referenced Table 5-28

Indexes . 5-30
Dropping an Index 5-31

Using Triggers on a Table 5-32
Adding a Trigger 5-32
Enabling and Disabling Triggers 5-32
Dropping a Trigger. 5-33

Listing Information About a Table 5-34
Examining a Table’s Dictionary. 5-35
Examining a Table’s SICA 5-35
erse SQL Administration for DBAs

v UniV

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\SqldbaTOC.fm (bookTOC.template)
December 29, 2008 10:44 am

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Examining a Table’s SQL Catalog Information 5-36
Modifying Table Dictionaries 5-38

Adding I-Descriptors to the Table Definition 5-39
Changing the Default Set of Displayed Columns 5-40
Defining a Stable Unassociated Multivalued Column 5-41

Loading Data into a Table 5-43

Chapter 6 UniVerse Files and SQL
How File Dictionaries Affect SQL 6-4

Data Types of Fields 6-5
Singlevalued or Multivalued Fields 6-8
Multipart Record IDs 6-9
Association Definition 6-10
Association Behavior 6-13
Visible Fields (Stored and Computed) 6-15

Converting a UniVerse File to a Table 6-19
The CONVERT.SQL Command 6-19
Using CONVERT.SQL 6-21
CONVERT.SQL Example 6-24

Chapter 7 Ensuring Data Integrity
Data Integrity and UniVerse SQL 7-3
Entity Integrity 7-4

Unique Values and Primary Keys 7-4
Checking for Uniqueness (UNIQUE) 7-5
Checking for Unique Multivalues in Each Row (ROWUNIQUE) . . 7-6

Semantic or Domain Integrity 7-7
Testing for NOT NULL and NOT EMPTY 7-7
Data Types and Domains 7-8
Rules (CHECK) 7-9

Referential Constraints 7-11
Referential Integrity 7-12

Removing Integrity Constraints 7-21

Chapter 8 Maintaining Database Security
Controlling Access to Your Database 8-3

Users . 8-3
Database Objects 8-4
Privileges. 8-4

Granting Privileges 8-6
erse SQL Administration for DBAs

vi UniV

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\SqldbaTOC.fm (bookTOC.template)
December 29, 2008 10:44 am

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Granting Database Privileges 8-6
Granting Table Privileges. 8-7

Revoking Privileges 8-13
Revoking Database Privileges 8-13
Revoking Table Privileges 8-13
REVOKE and WITH GRANT OPTION 8-14
REVOKE and Overlapping GRANTs 8-15

Chapter 9 Transactions, Recovery, and Concurrent Access
Transaction Processing 9-4

Transaction Processing and UniVerse SQL 9-6
Database Recovery 9-7

File Backup 9-7
Transaction Logging 9-8
Media Recovery 9-9
Warmstart Recovery 9-10

Concurrent Access 9-11
Locks . 9-12
Isolation Levels 9-14

Chapter 10 Transferring Tables Across Schemas
Preparing to Export SQL Tables 10-4

Conversion File Formats 10-5
Physically Transferring Exported SQL Tables 10-7
Resolving Conflicts in the New Schema. 10-8
Importing Transferred SQL Tables 10-9

Errors in Importing. 10-9
Deleting Exported Tables from the Old Schema 10-10

Chapter 11 Creating an XML Document with UniVerse SQL
XML for IBM UniVerse. 11-2

Document Type Definitions 11-2
The Document Object Model (DOM) 11-3
Well-Formed and Valid XML Documents 11-3

Creating an XML Document from RetrieVe 11-4
Create the &XML& File 11-4
Mapping Modes 11-4
Creating a Mapping File 11-7
How Data is Mapped 11-12
Mapping Example 11-14
erse SQL Administration for DBAs

Creating an XML Document 11-15
Examples . 11-16

Creating an XML Document with UniVerse SQL 11-27
Create the &XML& File 11-27
Processing Rules for UniVerse SQL SELECT Statements 11-29
XML Limitations in UniVerse SQL 11-30
Examples . 11-30

Chapter 12 Receiving an XML Document with UniVerse SQL
Receiving an XML Document through UniVerse BASIC 12-2

Defining Extraction Rules 12-2
Defining the XPath 12-4
Extracting XML Data through UniVerse BASIC 12-12
Displaying an XML Document through RetrieVe. 12-17
Displaying an XML Document through UniVerse SQL 12-21
Table of Contents vii

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Preface
12/29/08
Preface
This manual is for database administrators who want to use the additional
functionality of SQL in their UniVerse applications, and who need to administer other
users of UniVerse SQL.

This document introduces the of creating and modifying schemas and tables. It also
discusses the use of primary keys, constraints, referential integrity, transaction
processing, and security. For a discussion of how to use SQL to query an existing
database and to modify its data, see UniVerse SQL User Guide.
ix UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Organization of This Manual
This manual is organized as follows:

Chapter 1, “The UniVerse Environment,” is an overview of the UniVerse
environment, including a discussion of the differences between standard UniVerse
and SQL.

Chapter 2, “Users, UniVerse Accounts, and Schemas,” discusses SQL users, user
login accounts, UniVerse accounts, and the differences among them.

Chapter 3, “The Command Processor and the VOC File,” discusses the UniVerse
command processor and the VOC file.

Chapter 4, “Creating and Dropping Schemas,” discusses how to create and drop
schemas.

Chapter 5, “Creating, Modifying, and Dropping Tables,” describes how to create and
modify tables, modify table dictionaries, use triggers for tables, list information about
a table, and load bulk data from tables in other databases to UniVerse tables.

Chapter 6, “UniVerse Files and SQL,” describes how file dictionaries affect SQL, the
advantages and limitations of using SQL tables versus UniVerse files, and how to
convert UniVerse files to tables.

Chapter 7, “Ensuring Data Integrity,” deals with establishing and maintaining
database integrity using column, table, and referential constraints.

Chapter 8, “Maintaining Database Security,” describes database security.

Chapter 9, “Transactions, Recovery, and Concurrent Access,” introduces the
concepts of transaction processing, database recovery, and concurrent access.

Chapter 10, “Transferring Tables Across Schemas,” describes how to transfer SQL
tables from one schema to another on the same system or from one system to another.
 x

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Preface
12/29/08
Documentation Conventions
This manual uses the following conventions:

Convention Usage

Bold In syntax, bold indicates commands, function names, and
options. In text, bold indicates keys to press, function names,
menu selections, and MS-DOS commands.

UPPERCASE In syntax, uppercase indicates UniVerse commands, keywords,
and options; UniVerse BASIC statements and functions; and
SQL statements and keywords. In text, uppercase also indicates
UniVerse identifiers such as file names, account names, schema
names, and Windows file names and paths.

Italic In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and paths.

Courier Courier indicates examples of source code and system output.

Courier Bold In examples, courier bold indicates characters that the user types
or keys the user presses (for example, <Enter>).

[] Brackets enclose optional items. Do not type the brackets unless
indicated.

{ } Braces enclose nonoptional items from which you must select at
least one. Do not type the braces.

itemA | itemB A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

... Three periods indicate that more of the same type of item can
optionally follow.

ä A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose
File ä Exit” means you should choose File from the menu bar,
then choose Exit from the File pull-down menu.

 I Item mark. For example, the item mark (I) in the following
string delimits elements 1 and 2, and elements 3 and 4:
1I2F3I4V5

Documentation Conventions
xi UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following conventions are also used:

Syntax definitions and examples are indented for ease in reading.

n All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.

n Syntax lines that do not fit on one line in this manual are continued on subse-
quent lines. The continuation lines are indented. When entering syntax, type
the entire syntax entry, including the continuation lines, on the same input
line.

 F Field mark. For example, the field mark (F) in the following
string delimits elements FLD1 and VAL1:
FLD1FVAL1VSUBV1SSUBV2

 V Value mark. For example, the value mark (V) in the following
string delimits elements VAL1 and SUBV1:
FLD1FVAL1VSUBV1SSUBV2

 S Subvalue mark. For example, the subvalue mark (S) in the
following string delimits elements SUBV1 and SUBV2:
FLD1FVAL1VSUBV1SSUBV2

 T Text mark. For example, the text mark (T) in the following string
delimits elements 4 and 5: 1F2S3V4T5

Convention Usage

Documentation Conventions (Continued)
 xii

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Preface
12/29/08
UniVerse Documentation
UniVerse documentation includes the following:

UniVerse Installation Guide: Contains instructions for installing UniVerse 10.3.

UniVerse New Features Version 10.3: Describes enhancements and changes made
in the UniVerse 10.3 release for all UniVerse products.

UniVerse BASIC: Contains comprehensive information about the UniVerse BASIC
language. It is for experienced programmers.

UniVerse BASIC Commands Reference: Provides syntax, descriptions, and
examples of all UniVerse BASIC commands and functions.

UniVerse BASIC Extensions: Describes the following extensions to UniVerse
BASIC: UniVerse BASIC Socket API, Using CallHTTP, and Using WebSphere MQ
with UniVerse.

UniVerse BASIC SQL Client Interface Guide: Describes how to use the BASIC
SQL Client Interface (BCI), an interface to UniVerse and non-UniVerse databases
from UniVerse BASIC. The BASIC SQL Client Interface uses ODBC-like function
calls to execute SQL statements on local or remote database servers such as
UniVerse, DB2, SYBASE, or INFORMIX. This book is for experienced SQL
programmers.

Administering UniVerse: Describes tasks performed by UniVerse administrators,
such as starting up and shutting down the system, system configuration and mainte-
nance, system security, maintaining and transferring UniVerse accounts, maintaining
peripherals, backing up and restoring files, and managing file and record locks, and
network services. This book includes descriptions of how to use the UniAdmin
program on a Windows client and how to use shell commands on UNIX systems to
administer UniVerse.

Using UniAdmin: Describes the UniAdmin tool, which enables you to configure
UniVerse, configure and manage servers and databases, and monitor UniVerse
performance and locks.

UniVerse Security Features: Describes security features in UniVerse, including
configuring SSL through UniAdmin, using SSL with the CallHttp and Socket
interfaces, using SSL with UniObjects for Java, and automatic data encryption.
xiii UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse Transaction Logging and Recovery: Describes the UniVerse transaction
logging subsystem, including both transaction and warmstart logging and recovery.
This book is for system administrators.

UniVerse System Description: Provides detailed and advanced information about
UniVerse features and capabilities for experienced users. This book describes how to
use UniVerse commands, work in a UniVerse environment, create a UniVerse
database, and maintain UniVerse files.

UniVerse User Reference: Contains reference pages for all UniVerse commands,
keywords, and user records, allowing experienced users to refer to syntax details
quickly.

Guide to RetrieVe: Describes RetrieVe, the UniVerse query language that lets users
select, sort, process, and display data in UniVerse files. This book is for users who
are familiar with UniVerse.

Guide to ProVerb: Describes ProVerb, a UniVerse processor used by application
developers to execute prestored procedures called procs. This book describes tasks
such as relational data testing, arithmetic processing, and transfers to subroutines. It
also includes reference pages for all ProVerb commands.

Guide to the UniVerse Editor: Describes in detail how to use the Editor, allowing
users to modify UniVerse files or programs. This book also includes reference pages
for all UniVerse Editor commands.

UniVerse NLS Guide: Describes how to use and manage UniVerse’s National
Language Support (NLS). This book is for users, programmers, and administrators.

UniVerse SQL Administration for DBAs: Describes administrative tasks typically
performed by DBAs, such as maintaining database integrity and security, and
creating and modifying databases. This book is for database administrators (DBAs)
who are familiar with UniVerse.

UniVerse SQL User Guide: Describes how to use SQL functionality in UniVerse
applications. This book is for application developers who are familiar with UniVerse.

UniVerse SQL Reference: Contains reference pages for all SQL statements and
keywords, allowing experienced SQL users to refer to syntax details quickly. It
includes the complete UniVerse SQL grammar in Backus Naur Form (BNF).
 xiv

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Preface
12/29/08
Related Documentation
The following documentation is also available:

UniVerse GCI Guide: Describes how to use the General Calling Interface (GCI) to
call subroutines written in C, C++, or FORTRAN from BASIC programs. This book
is for experienced programmers who are familiar with UniVerse.

UniVerse ODBC Guide: Describes how to install and configure a UniVerse ODBC
server on a UniVerse host system. It also describes how to use UniVerse ODBC
Config and how to install, configure, and use UniVerse ODBC drivers on client
systems. This book is for experienced UniVerse developers who are familiar with
SQL and ODBC.

UV/Net II Guide: Describes UV/Net II, the UniVerse transparent database
networking facility that lets users access UniVerse files on remote systems. This book
is for experienced UniVerse administrators.

UniVerse Guide for Pick Users: Describes UniVerse for new UniVerse users familiar
with Pick-based systems.

Moving to UniVerse from PI/open: Describes how to prepare the PI/open
environment before converting PI/open applications to run under UniVerse. This
book includes step-by-step procedures for converting INFO/BASIC programs,
accounts, and files. This book is for experienced PI/open users and does not assume
detailed knowledge of UniVerse.
xv UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
API Documentation
The following books document application programming interfaces (APIs) used for
developing client applications that connect to UniVerse and UniData servers.

Administrative Supplement for Client APIs: Introduces IBM’s seven common APIs,
and provides important information that developers using any of the common APIs
will need. It includes information about the UniRPC, the UCI Config Editor, the
ud_database file, and device licensing.

UCI Developer’s Guide: Describes how to use UCI (Uni Call Interface), an interface
to UniVerse and UniData databases from C-based client programs. UCI uses ODBC-
like function calls to execute SQL statements on local or remote UniVerse and
UniData servers. This book is for experienced SQL programmers.

IBM JDBC Driver for UniData and UniVerse: Describes UniJDBC, an interface to
UniData and UniVerse databases from JDBC applications. This book is for experi-
enced programmers and application developers who are familiar with UniData and
UniVerse, Java, JDBC, and who want to write JDBC applications that access these
databases.

InterCall Developer’s Guide: Describes how to use the InterCall API to access data
on UniVerse and UniData systems from external programs. This book is for experi-
enced programmers who are familiar with UniVerse or UniData.

UniObjects Developer’s Guide: Describes UniObjects, an interface to UniVerse and
UniData systems from Visual Basic. This book is for experienced programmers and
application developers who are familiar with UniVerse or UniData, and with Visual
Basic, and who want to write Visual Basic programs that access these databases.

UniObjects for Java Developer’s Guide: Describes UniObjects for Java, an interface
to UniVerse and UniData systems from Java. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with Java, and who want to write Java programs that access these databases.

UniObjects for .NET Developer’s Guide: Describes UniObjects, an interface to
UniVerse and UniData systems from .NET. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with .NET, and who want to write .NET programs that access these databases.
 xvi

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Preface
12/29/08
Using UniOLEDB: Describes how to use UniOLEDB, an interface to UniVerse and
UniData systems for OLE DB consumers. This book is for experienced programmers
and application developers who are familiar with UniVerse or UniData, and with
OLE DB, and who want to write OLE DB programs that access these databases.
xvii UniVerse SQL Administration for DBAs

:\Prog
ecem
1Administering UniData on Windows NT or Windows 2000
0

1
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
The UniVerse Environment
Main Features. 1-3
 The UniVerse Command Processor 1-3
 UniVerse SQL 1-4
 Other UniVerse Utilities and Processors 1-4
The Operating System and UniVerse 1-5
 UniVerse Tables 1-5
 The VOC File 1-6
 UniVerse SQL Statements and Commands 1-7
UniVerse and SQL Databases 1-8
 Database Concepts and Structures 1-8
 Data Models 1-8
 UniVerse Tables and Files 1-9
Using UniVerse Help 1-15
 UniVerse Online Library 1-15
 Windows Help 1-15
 UniVerse Command Line Help 1-16
Review of Terms 1-17
The Sample Database 1-19
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
This chapter introduces the main components that make up the UniVerse system and
reviews different kinds of UniVerse databases.

Developers who prefer SQL can use UniVerse SQL to define, query, and control the
data in the database (UniVerse files as well as tables) without changing existing
UniVerse applications. UniVerse SQL conforms to the ANSI/ISO 1992 standard
established for SQL (Entry SQL plus extensions), enhanced to take advantage of the
extended relational database structure of UniVerse and seamlessly integrated into the
UniVerse environment. It is both a database language and a set of capabilities.

Because this book is written for SQL database administrators (DBAs), it uses SQL
terminology to discuss many UniVerse concepts. UniVerse SQL User Guide and
UniVerse SQL Reference both contain information useful for database administrators.

UniVerse tables and files are similar in many ways. Both contain a matrix of data and
typically comprise a data file and a file dictionary. An SQL schema is roughly equiv-
alent to a UniVerse account.
1-2 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Main Features
UniVerse is an integrated database management and application development system
that runs on the UNIX and Windows platforms. Some of the more powerful features
of UniVerse are the following:

Variable table sizes, row lengths, column sizes, and number of columns
Unlimited number of tables and files
Several table access methods for the most efficient data storage, access, and
retrieval
Database facilities that let you create associations among columns in a table
or file
A dictionary-driven, interactive data entry processor for editing data in
tables and files
Online help for any command in most of the command languages
SQL data definition and retrieval language
Facilities to save SQL statements and UniVerse commands for future use
and to create stored command sequences
A powerful programming language (UniVerse BASIC) with built-in
database management extensions, including the ODBC-based BASIC SQL
Client Interface (BCI)
Client/server access (UCI (Uni Call Interface), UniVerse ODBC, BASIC
SQL Client Interface (BCI), InterCall, UniObjects, UniObjects for Java, and
UniOLEDB)

The UniVerse Command Processor
The UniVerse command processor accepts statements and commands from the
terminal or other sources and either processes the command itself or calls another
UniVerse or system process. When you first enter the UniVerse environment, the
command processor is in control of the terminal.

The command processor interprets SQL statements and UniVerse commands,
performs certain substitutions on statement and command lines, and passes control to
the proper process or utility. Other UniVerse processors, such as the UniVerse Editor,
ProVerb, and ReVise, offer sets of commands tailored to their specific functions.
 1-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
UniVerse also supports a procedural language that allows you to write a program,
compile it, and then execute it. In addition to its own functions, UniVerse provides
easy access to the operating system.

UniVerse SQL
Using UniVerse SQL you can query and update data in UniVerse tables and files. You
can use UniVerse SQL interactively and in local and remote client programs.

UniVerse SQL provides the following enhancements to the UniVerse environment:

Subqueries that let you nest queries
Relational joins that let you work with data from more than one table or file
in a single statement
Added database security and integrity

UniVerse SQL conforms to the ANSI/ISO 1992 standard established for SQL,
enhanced to take advantage of the extended relational database structure of UniVerse.
In contrast to first-normal-form (1NF) databases, which can have only one value for
each row and column position (or cell), UniVerse is a nonfirst-normal-form (NF2)
database, which can hold multiple values in a cell. UniVerse also supports nested
tables called associations, which are made up of a group of related multivalued
columns in a table.

Other UniVerse Utilities and Processors
The language processors and the run machine call UniVerse utilities and processes to
create and delete UniVerse files, display the system status, locate rows in tables and
files, control concurrent access to columns or tables, check table size, and so on.
UniVerse also calls on system processes and utilities for certain tasks. These utilities
and processes are documented in UniVerse System Description and the UniVerse
User Reference.
1-4 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The Operating System and UniVerse
UniVerse is one group of programs that runs in the UNIX or Windows operating
system environment. However, because the operating system environment can be
invisible to the end user, UniVerse can be perceived as the operating environment.

UniVerse has its own command processor, with a command vocabulary that includes
some operating system commands and many data management commands that
cannot be accessed from the operating system. UniVerse also has its own login
procedure and account structure.

Although you can do almost everything from UniVerse, a good understanding of the
operating system enhances your use of UniVerse. UniVerse System Description
explains the processes, utilities, and commands that you use when working in the
UniVerse environment.

UniVerse Tables
Tables are implemented as UniVerse files. Every UniVerse table logically comprises
one data table and an associated table dictionary. Data tables contain columns that
store data values in cells. Each data table also contains an encrypted area called the
security and integrity constraints area (SICA) that stores the table’s column
definitions, integrity constraints, and access permissions. Table dictionaries contain
records that define the contents of data tables, as well as the way data is processed
and displayed.

The relationship between a data table and its associated dictionary is defined by an
entry in the VOC (vocabulary) file that defines the table. Table dictionary records do
the following:

Define columns in the associated data table
Define different descriptors for data stored in the same column
Process data stored in columns
Translate data from other tables
Define output specifications and report formats

Rows in UniVerse tables are of variable length; so are the columns that make up the
rows. The only limit to the number of rows that can be stored in a table is the size of
your hard disk. Each row is identified by a unique key called the record ID.
 1-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
UniVerse File Structure

UniVerse tables and files are implemented using operating system directories and
files. UniVerse provides several kinds of file organization. This variety of storage
methods simplifies application design and provides superior performance.

The following structures are available:

Type 1 and type 19 files (nonhashed)
Static hashed files
Dynamic files
B-tree files

A data table can be either nonhashed or hashed, depending on the kind of data you
want to store. Unless otherwise specified, tables are created as dynamic UniVerse
files. Table dictionaries are usually hashed.

The VOC File
Each UniVerse schema has a vocabulary file called the VOC file. The VOC file
contains entries that identify every command, keyword, table, and file that you can
use while you are in that schema. The command processor uses the VOC file to
determine what action to take when you enter a statement.

UniVerse contains an account called UV that is used for system administration. When
a schema or UniVerse account is created, the contents of a file called NEWACC in
the UV account are copied to the VOC file in the newly created schema or account.
This ensures that every new schema and account begins with a correct standard set of
commands, sentences, paragraphs, file names, keywords, and menus. You can tailor
the copied VOC file to the specified purposes of the schema by adding synonyms for
standard commands and keywords, or storing often-used statements. For more
information about the VOC file, see Chapter 3, “The Command Processor and the
VOC File.”

UniVerse SQL Statements and Commands
When you enter the UniVerse environment, the command processor displays
a prompt (>). You now can enter any SQL statement or UniVerse command.
1-6 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
For example, when you enter the following statement, the UniVerse command
processor looks up SELECT in the VOC file:

>SELECT * FROM ENGAGEMENTS.T;

Since SELECT * FROM is an SQL statement, control is passed to UniVerse SQL to
execute the sentence.

You can store any statement for future use by creating a stored sentence record in the
VOC file. You can also store a sequence of statements by creating a paragraph entry.
Stored sentences and paragraphs let you repeat a statement or a sequence of
statements often.
 1-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
UniVerse and SQL Databases
Comparing UniVerse with conventional SQL at the database level involves two
major areas: the concept and structure of the database itself, and the data model on
which it is based. The differences between UniVerse and SQL are summarized in the
following table, and then discussed in greater detail.

Database Concepts and Structures
UniVerse SQL associates a database with a schema, which is created using a
CREATE SCHEMA statement, and defines that database in the SQL catalog tables.
In UniVerse SQL, a database comprises one or more tables in a schema.

Data Models
UniVerse uses a three-dimensional file structure, commonly called a
nonfirst-normal-form (NF2) data model, to store multivalued fields. This enables a
single table to contain information that would otherwise be scattered among several
related tables. Related multivalued columns can be grouped together in an
association, which can be thought of as a “table within a table” or a nested table.

Traditional UniVerse Databases UniVerse SQL Databases

Located in: An account A schema

Created by: System administrator CREATE SCHEMA

Described in: VOC file SQL catalog

Contains: One or more UniVerse files One or more tables, UniVerse files,
or both

Data model: Nonfirst-normal form (extended
relational)

First normal form (relational) and
nonfirst-normal form (extended
relational)

Comparison of Traditional UniVerse Databases to SQL Databases
1-8 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Conventional SQL uses a two-dimensional table structure called a first normal form
(1NF). Instead of using multivalued columns, it tends to use smaller tables that are
related to one another by common key values. However, the UniVerse
implementation of SQL has added enhancements that allow you to store and process
multivalued columns.

The implications of these differences in data modeling and the relational design of
SQL are discussed further under “Table and File Structures” on page 11.

UniVerse Tables and Files
Tables are implemented as UniVerse files and can be accessed by UniVerse
commands as well as by SQL statements. UniVerse tables and files share the
following characteristics:

The CREATE TABLE statement is similar in function to the UniVerse
CREATE.FILE command.
Each UniVerse table or file actually comprises two files: a data file and a
dictionary.
The data structures of tables and files are comparable, although UniVerse
files are described as containing fields and records, and tables as containing
columns and rows. Under the UniVerse implementation of SQL, tables can
contain multivalued columns.
Both tables and files can be accessed using either SQL statements or
UniVerse commands and processes.
 1-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
There are also differences. The following table summarizes the relationship between
tables and UniVerse files.

Traditional UniVerse Files Tables

Created by: CREATE.FILE CREATE TABLE

Removed by: DELETE.FILE DROP TABLE

Components: Data file + file dictionary. Data table + table dictionary.
A security and integrity
constraints area (SICA) in the
data table allows establish-
ment and maintenance of data
structure, permissions, and
integrity constraints.

Structure: Fields and records. Columns and rows.

Accessed by: UniVerse processors
(RetrieVe, ReVise, and so
forth), UniVerse BASIC,
UniVerse Editor, SQL Client
Interface, UCI, and other
processes, and SQL
statements.

UniVerse processors
(RetrieVe, ReVise, and so
forth), UniVerse BASIC,
UniVerse Editor, SQL Client
Interface, UCI, and other
processes, and SQL
statements.

Security: Operating system
permissions (read/write)
granted and revoked by
owners/groups/others.

In addition to operating
system permissions, more
extensive privileges—
SELECT, INSERT, UPDATE,
DELETE, ALTER TABLE,
and REFERENCES Privi-
lege—can be granted on
tables.

Comparison of Traditional UniVerse Files to Tables
1-10 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Table and File Structures

UniVerse is a nonfirst-normal-form database that permits more than one value in a
cell (a row-and-column position that can hold more than one data value). Standard
SQL works with first-normal-form databases, which store only one value for every
row and column (singlevalued columns), but UniVerse SQL can store and process
multivalued columns also.

SQL is relationally oriented and allows you to access multiple tables by joining them
on common values or keys as if they were one table. For example, using SQL a
retailer can inquire about an inventory item (in an INVENTORY table) and its
supplier (in a DISTRIBUTOR table), provided that the INVENTORY table has a
distributor code column that can be used to join it to the DISTRIBUTOR table.

UniVerse without SQL is designed primarily for accessing one file at a time, although
you can use the TRANS function or the Tfile correlative to extract information from
a second file. But with UniVerse SQL you can use a SELECT statement to join
multiple tables and UniVerse files in any combination.

Data integrity: Checked during certain
conversions.

Integrity constraints can be
defined, which are enforced
for all attempted writes.

Primary keys: CREATE.FILE allows for
only single-column
record IDs.

CREATE TABLE allows for
both single- and multicolumn
primary keys.

Data types: Not native to UniVerse, but
certain output conversion
and formatting codes can be
included in a field
definition.

An essential part of column
definitions, and associated
with precise default
characteristics such as a
restricted character set, align-
ment, and so forth.

Traditional UniVerse Files Tables

Comparison of Traditional UniVerse Files to Tables (Continued)
 1-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
Security and Authorization

In addition to the operating system’s security provisions (controlling read/write
access to files), SQL allows you to grant or revoke privileges based on user, table,
and operation (retrieving or selecting data, and inserting, modifying, and deleting
rows).

SQL also provides three levels of database privilege. From the lowest to the highest,
they are as follows:

CONNECT lets you create your own tables and do whatever you want with
them (including granting your “owner” privilege to other users).
RESOURCE lets you create your own schemas plus do everything allowed
under CONNECT.
DBA (a sort of superuser level) lets you do everything, including reading or
writing to anyone else’s tables.

Data Integrity

In UniVerse, data integrity is provided by certain conversion operations (such as date
conversions) that flag illegal values by returning an error STATUS code. SQL has
many additional data integrity constraints, including referential integrity and checks
for null values, empty columns, nonunique values, and user-defined conditions such
as avalue ranges.

Primary Keys

The UniVerse file structure has a single-column primary key (record ID), whereas
SQL allows for either single-column or multicolumn primary keys.

Data Categories and Data Types

Unlike a field in a UniVerse file, a column in a table is defined as belonging to a
particular data type. A data type defines a column in terms of the valid set of data
characters that can be stored in the column, the alignment of the data, conversion
characteristics, and so on. The UniVerse SQL Reference discusses data types
extensively.
1-12 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Data types can be grouped into seven data categories. The following table
summarizes these data categories.

The next table summarizes data types

Data Category Description

Integer Positive or negative whole numbers such as 0, 5, +03, and
–6758948398458.

Scaled number Positive or negative numbers with fixed-length fractional parts,
such as 2.00, 1999.95, and –0.75. These are also known as exact
numbers.

Approximate number Arbitrary real numbers that can include fractional parts of
unknown length. These numbers may need to be rounded off to
fit the computer’s limits for storing significant digits. Examples
are Avogadro’s number (6.023E23) and pi (3.14159…).

Date Dates are stored internally as the number of days since
December 31, 1967. Dates are output in conventional date
formats such as 2-28-95 or 31 Jan 1990. A conversion code
converts the internal date to a conventional format.

Time Times are stored internally as a number of seconds, which can
represent either a time of day (number of seconds after midnight)
or a time interval. They are output in conventional time formats
such as 12:30 PM or 02:23:46. A conversion code converts the
internal time to a conventional format.

Character string Any mixture of numbers, letters, and special characters.

Bit string Any arbitrary bit string, without regard for characters.

UniVerse SQL Data Categories

Data Type Description

BIT Stores bit strings.

CHARACTER Stores character strings (any combination of numbers, letters,
and special characters).

DATE Stores dates.

UniVerse SQL Data Types
 1-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
DECIMAL Stores decimal fixed-scale (fixed-point) numbers (same as
NUMERIC).

DOUBLE PRECISION Stores high-precision floating-point numbers.

FLOAT Stores floating-point numbers.

INTEGER Stores whole decimal numbers.

NCHAR Stores national character strings.

NVARCHAR Stores variable-length character strings.

NUMERIC Same as DECIMAL.

REAL Stores floating-point (real) numbers.

SMALLINT Stores small whole decimal numbers.

TIME Stores times.

VARBIT Stores variable-length bit strings.

VARCHAR Stores variable-length character strings.

Data Type Description

UniVerse SQL Data Types (Continued)
1-14 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Using UniVerse Help
There are three kinds of UniVerse online help:

UniVerse Online Library
Windows Help
UniVerse command line help

UniVerse Online Library
UniVerse is shipped with a complete set of UniVerse documentation on CD-ROM.
To read the manuals, use the Adobe Acrobat Reader.

Windows Help
Windows Help is available for some client applications running on platforms. Help
is available for the following applications and APIs:

UniAdmin
InterCall
UCI
UniObjects

When you use Windows Help for any of these applications, you get the standard Help
features, such as the menu bar and buttons. The following table describes the function
of each Help button:

Use this button... To...

Contents View the Help Contents.

Index View the Help Index.

Search Find information about a help topic you specify.

Back Return to the previously displayed topic.

Print Print the currently displayed topic.

Windows Help Buttons
 1-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
UniVerse Command Line Help
Use the UniVerse HELP command to get help about any UniVerse command,
keyword, UniVerse BASIC statement, and so forth. For information about the HELP
command, enter HELP HELP at the UniVerse prompt. Enter HELP SQL to display a
list of entries, which are topics and commands about which you can get HELP
information:

> HELP SQL

Use the Up and Down Arrow keys to navigate through this list. Press ENTER to
choose an item and display explanatory text. Press ESC to exit the list.

Use the following syntax to display help about a specific SQL statement:

 HELP SQL statement

When you use the HELP command, explanatory text appears with menu choices at
the bottom of the screen. There are three choices:

Inside the HELP display screen, use the Left and Right Arrow keys to select a
choice. Press ENTER to choose your selection.

Options Display a list of Help options.

<< Move to the previous topic in the browse sequence.

>> Move to the next topic in the browse sequence.

See Also View a list of related topics.

Choice Action

More Shows the next page of HELP text.

List Commands Displays a list of entries.

End Help Exits HELP.

HELP Menu Choices

Use this button... To...

Windows Help Buttons (Continued)
1-16 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Review of Terms
This chapter introduced the main components that make up the UniVerse system.
Subsequent chapters describe these components in more detail. The following table
summarizes the more important terms used in this book:

Term Definition

column A logical subdivision of a row that can contain data values. Same
as field.

command processor The UniVerse processor that interprets SQL statements and
UniVerse commands and either executes them or passes them to
the appropriate UniVerse or system process or utility. When
other processing finishes, control usually returns to the
command processor.

data table A table, associated with a dictionary, containing rows that store
data values in columns.

dictionary A file that defines the contents and structure of the data table
with which it is associated. The dictionary of tablename is an
operating system file that is usually named D_tablename.

field A logical subdivision of a record that can contain data values.
Same as column.

keyword An element of an SQL statement that modifies the action of the
initial verb. For example, WHERE is a keyword that modifies
the verb SELECT. Arithmetic, relational, and logical operators
are also keywords.

phrase In UniVerse SQL, a record in a table dictionary that defines an
association of multivalued columns or specifies the default
columns to display or insert data in.

primary key The values in one or more columns that uniquely identify each
row in a table.

record A sequence of related data elements in a file. Same as row.

record ID In UniVerse files, the key used to gain access to a record in a file.
Each record ID must be unique in any file.

UniVerse Terms
 1-17

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch1.fm
12/29/08
row A collection of related data values stored as a record in a
UniVerse file. Every row has an explicit or implicit primary key.
The primary key can comprise one or more columns containing
data values. Same as record.

schema A group of related tables and files that are listed in the SQL
catalog. Schemas are roughly equivalent to UniVerse accounts.

SICA Security and integrity constraints area. An area of each table
where data structure, privileges, and integrity constraints are
defined and maintained.

SQL A language for defining, querying, modifying, and controlling
data in a relational database.

SQL catalog A set of tables that describe all SQL objects and users in the
system. The SQL catalog is located in the CATALOG schema.

table A matrix of rows and columns containing data. Tables are
roughly equivalent to UniVerse data files.

UniVerse account Working environment defined by a VOC file and all its related
tables and files. When users invoke the UniVerse environment,
they initiate a UniVerse session in the UniVerse account defined
by the VOC file in the current working directory.

UniVerse file A file that logically comprises a file dictionary and at least one
data file. The relationship between the dictionary and the data
file is defined by an entry in the VOC file.

VOC file The master file in a schema or UniVerse account. The VOC file
contains records that identify all commands, sentences,
paragraphs, files, keywords, procs, and menus that you can use
when you are logged on to the schema.

Term Definition

UniVerse Terms (Continued)
1-18 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The Sample Database
Later chapters use the sample database called Circus, introduced in UniVerse SQL
User Guide, to demonstrate some aspects of UniVerse SQL. The database comprises
10 tables. It is designed to demonstrate the use of industry-standard SQL access
within UniVerse, SQL extensions implemented for UniVerse’s multivalued column
associations, and nested tables.
 1-19

:\Prog
ecem
1Administering UniData on Windows NT or Windows 2000
0

2
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Users, UniVerse Accounts,
and Schemas
User Accounts 2-3
UniVerse Accounts 2-4
Schemas . 2-5
 Schema Structure 2-5
SQL Users . 2-6
Setting the SQL Environment for a Session 2-7
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch2TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes the following:

User accounts (login accounts), UniVerse accounts, schemas, and the
differences among them.
Different kinds of UniVerse and SQL users.
How to change certain UniVerse SQL environment variables.

In this manual, login accounts are called user accounts, accounts in the UniVerse
environment are called UniVerse accounts, and UniVerse SQL accounts are called
schemas.
 2-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch2.fm
12/29/08
User Accounts
Users typically log on first to the operating system. In order to log on to the operating
system, each user must have a user account defined for them on that system. Users
log on to the operating system by entering their user name and password.

At the operating system level, users generally have a home directory defined for them
under which they can create their own private files. User accounts are like personal
working environments that stay with users no matter where they are working on the
system.

Once users log on to the system, they have access to all directories and files on the
system, except those protected by permissions. Users can change their current
working directories without changing other aspects of their working environment.
Tables, files, and commands in other directories can be accessed by entering the path
identifying the location in the file system’s complete directory tree.
2-3 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse Accounts
UniVerse users work in the UniVerse environment, either in standard UniVerse
accounts or in special UniVerse accounts called schemas. Depending on how their
accounts are set up, users either log on first to the operating system by entering their
user name and password, then log on to a UniVerse account or schema. Or they log
on directly to a UniVerse account or schema, bypassing the operating system.

Schemas and UniVerse accounts are more self-contained than operating system user
accounts. The VOC file contained in each UniVerse schema and account defines all
the tables and files, and all the statements and commands, that are available to users
who are logged on to the schema.

Any UniVerse action or event, whether it is an interactive user session, a UniVerse
BASIC program, or a server activity invoked by a client user or program, always
involves one user who is attached to (or working in) one schema or UniVerse account.
 2-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch2.fm
12/29/08
Schemas
Schemas are UniVerse accounts with special properties:

They are registered in the SQL catalog.
SQL users can create tables in them.

A schema, like a UniVerse account, is located in a directory containing a VOC file
and other special UniVerse files.

Updating a Schema or UniVerse Account
The RELLEVEL entry in the VOC file of a schema contains the current release level
of UniVerse. Each time a user logs on to the schema, this entry is checked to make
sure the schema is up to date. If the schema is not current, the user can update it. To
display the RELLEVEL entry, enter .L RELLEVEL at the UniVerse prompt.

Use the UPDATE.ACCOUNT command to update a schema. This command works
only on changes made within the current release level of UniVerse.

Schema Structure
A UniVerse SQL database can comprise one or more schemas. A schema comprises
one or more tables and their dictionaries. Data tables and their dictionaries are
implemented using operating system files and directories. The path of each data
table and its dictionary are contained in the VOC file entry for that table.
2-5 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQL Users
Ordinary UniVerse users (that is, those not defined as SQL users) can use the four
SQL data manipulation language (DML) statements SELECT, INSERT, UPDATE,
and DELETE. These statements can be used by any UniVerse users on the tables and
files they have permission to access, in the schemas and UniVerse accounts to which
they have access.

SQL users are defined to the system as having CONNECT database privilege, which
allows them to do the following:

Create their own tables and views
Grant other users the right to access their tables and views
Access tables and views owned by other SQL users if they have the
necessary privileges
Modify or delete their own tables and views

In addition to these tasks, SQL users with RESOURCE database privilege can also
create and delete their own schemas.

SQL users with DBA database privilege have access to all schemas, tables, and views
on the system. They can register and unregister SQL users and can modify and delete
all schemas, tables, and views.
 2-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch2.fm
12/29/08
Setting the SQL Environment for a Session
Use the SET.SQL command to set SQL environment variables and other aspects of
the SQL environment dynamically at run time. SET.SQL can do the following:

Set the isolation level
Turn first-normal-form mode on or off
Turn empty-null mapping on or off
Specify how long the system waits on a lock before returning an error
Turn optimistic scanning on or off
Specify the size of the select list buffer
Specify the size of the join buffer
Turn caching of VOC file verbs and keywords on or off

The syntax is:

SET.SQL { options }
For complete details about the options, see the UniVerse User Reference.

ODBC applications can use the CALL statement to run SET.SQL to do the following:

Specify how long the system waits on a lock before returning an error
Turn optimistic scanning on or off
Specify the size of the select list buffer
Specify the size of the join buffer
Turn caching of VOC file verbs and keywords on or off
2-7 UniVerse SQL Administration for DBAs

:\Prog
ecem
2Administering UniData on Windows NT or Windows 2000
0

3
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
The Command Processor
and the VOC File
The Command Processor 3-3
 Special Character Interpretation. 3-4
 Called Procedures 3-4
The VOC File . 3-5
 Some VOC Entry Types 3-6
UniVerse Sentence Stack 3-9
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch3TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch3.fm
12/29/08
This chapter describes the UniVerse command processor and how it uses the VOC
file.
3-2 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The Command Processor
The command processor examines and processes every line entered at the system
prompt, including all SQL statements and other UniVerse commands, all statements
and commands from a stored command sequence, UniVerse BASIC programs, and
so on.

The command processor parses a command and searches for the verb (the first word
in the command line) in the VOC file. Depending on the verb, the command
processor either executes the command or calls the proper processor to complete the
execution. The actions taken by the command processor and other processors depend
on definitions in the VOC file.

The command processor also lets you store sentences and paragraphs (a sequence of
sentences) in the VOC file for execution later.

The command processor maintains a list of the most recent command lines entered at
the system prompt. This list is called the sentence stack. You can use the sentence
stack to recall, delete, change, or reexecute a previous command, or to save a
sentence or paragraph in the VOC file.

For detailed information about VOC file entries, see the UniVerse System
Description.
 3-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch3.fm
12/29/08
Special Character Interpretation
The UniVerse command processor recognizes special control characters that delimit
fields, values, and subvalues in stored data. The following table lists these control
characters.

For more information about special characters in UniVerse, see the UniVerse System
Description.

The SQL+ Prompt

When you enter an SQL statement at the UniVerse prompt (>), you terminate the
statement with a ; (semicolon). If the statement is too long to fit on a single line, you
can press ENTER to continue the statement on the next line. The command
processor recognizes ENTER as a line continuator and displays an SQL-specific
prompt (SQL+) until you terminate the multiline statement with a ; followed by
ENTER, at which point it executes the statement.

Called Procedures
SQL client programs can use the SQL CALL statement to invoke UniVerse
commands, paragraphs, stored sentences, and UniVerse BASIC programs and
subroutines on a server system. For information about called procedures, see the
UniVerse BASIC SQL Client Interface Guide and the UCI Developer’s Guide.

Control
Character Description Meaning Value

Ctrl-^ The Control key and the Caret (or
up-arrow) key

Field mark ^254

Ctrl-] The Control key and the right
bracket key

Value mark ^253

Ctrl-\ The Control key and the
Backslash key

Subvalue mark ^252

Ctrl-t The Control key and the t key Text mark ^251

Ctrl-n The Control key and the n key SQL NULL ^128

Control Characters
3-4 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The VOC File
Every schema has a VOC file containing a record for every verb, keyword, table
name, stored sentence, and paragraph that you can use while in the schema. Records
in the VOC file are also called VOC entries.

The VOC file is a UniVerse data file and has a dictionary associated with it. The
names of the verbs, tables, keywords, and other items defined in the VOC file are
unique IDs of records in the VOC file. For example, SELECT is the record ID for the
SQL statement SELECT, and an equal sign (=) is the record ID for the arithmetic
operator equals.

The VOC file contains entries for the following SQL statements:

The VOC file also contains the following UniVerse commands relevant to SQL users.
These commands are documented in the UniVerse User Reference:

ALTER TABLE CREATE VIEW DROP VIEW

CALL DELETE GRANT

CREATE INDEX DROP INDEX INSERT

CREATE SCHEMA DROP SCHEMA REVOKE

CREATE TABLE DROP TABLE SELECT

CREATE TRIGGER DROP TRIGGER UPDATE

Command Description

CONNECT Establishes a connection to a local or remote UniVerse server.

CONVERT.SQL Converts a UniVerse file to a table.

LIST.SICA Displays SICA1 information about a table.

1. Security and integrity constraints area

SET.SQL Defines certain attributes of the SQL environment.

VERIFY.SQL Verifies and fixes SQL catalog inconsistencies.

UniVerse Commands for SQL Users
 3-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch3.fm
12/29/08
Some VOC Entry Types
This section describes some of the VOC entry types that DBA administrators should
know about. For more information about VOC entries, see the UniVerse System
Description.

V: Verb

SQL statements are implemented as UniVerse verbs. A verb is a UniVerse command.
The VOC entry for a statement specifies the processor that the statement invokes, the
dispatch type, and the flags that the processor uses. The record ID of the VOC entry
is the statement or command itself (such as CREATE or SELECT). To display all
verbs in the VOC file, use the LISTV command.

S: Stored Sentence

A stored sentence is a complete SQL statement or UniVerse command. A sentence
can include a table name, column names, selection and sort expressions, and
keywords.

You can store sentences using the UniVerse sentence stack Save command (.S), the
UniVerse Editor, or an INSERT statement. If you use the Editor or an INSERT
statement, be sure to identify the VOC entry as a sentence by putting type code S in
field 1. To examine the currently stored UniVerse sentences in the VOC file, use the
LISTS command.

If you often use the same statement and want to avoid typing it each time, save the
statement as an entry in the VOC file. A stored sentence can be one of the following:

A complete SQL statement or UniVerse command
The name of another stored sentence
The name of a paragraph

PA: Paragraph

A paragraph is a series of SQL statements, other UniVerse commands, or both,
stored together under one name. Paragraphs let you execute several statements and
commands by entering the name of the paragraph at the system prompt or including
it in a CALL statement in your client program.
3-6 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The VOC paragraph entry contains the statements and commands that make up the
paragraph. The paragraph can also contain special control statements and inline
prompting to request input from a user when the paragraph is executed. The
record ID of the VOC entry is the paragraph name.

The command processor executes each SQL statement and command in order, just as
if each were entered at the keyboard. For more detailed information about
paragraphs, see the UniVerse System Description.

F: File Pointers

UniVerse uses two kinds of VOC entry to point to tables and files:
F-descriptors and Q-pointers. F-descriptors can point either to local tables and files
stored in the same schema or account as the VOC file, or to remote tables and files
stored in other schemas and accounts.

The VOC F-descriptor entry specifies the paths of the file dictionary and its
associated data file. The record ID of the entry is the table or file name.

The VOC file descriptor entry contains the following:

M in field 4 indicates that the table comprises multiple data files.

Line Field Contents

001: F [description]
002: O/S path of the data table (usually the same as the table name)

003: O/S path of the file dictionary (usually the same as the table name with the D_
prefix)

004: [M]
F-descriptor Fields
 3-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch3.fm
12/29/08
Q: Q-Pointer

A Q-pointer points to another file descriptor either in the local VOC file or in the
VOC file of another schema or UniVerse account. The VOC Q-pointer entry contains
the following:

account is the name of a remote schema or UniVerse account. If account is blank, the
file descriptor pointed to is assumed to be in the VOC file of the local schema or
account. tablename is the record ID of the table’s file descriptor in the VOC file of
account.

K: Keyword

A keyword defines an operation that is to occur in the statement or modifies the action
of a statement. Some examples of keywords in UniVerse are AS, UNION, and
FROM. The VOC file entry for a keyword specifies the internal operation number for
that keyword. The record ID of the VOC entry is the keyword itself.

Line Field Contents

001: Q [description]

002: [account]

003: tablename

Q-descriptor Fields
3-8 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse Sentence Stack
The command processor stores a copy of any SQL statement or UniVerse command
that you enter at the system prompt. By default, the sentence stack preserves up to 99
sentences from your current session (the size of the sentence stack is configurable by
the system administrator). Each sentence is numbered from 01 through 99. The most
recently entered sentence is 01, the oldest is 99.

You can use sentence stack commands to list, save, edit, and delete sentences, and to
recall, execute, and insert new sentences in the stack. The sentence stack commands
are documented in the UniVerse System Description.
 3-9

:\Prog
ecem
3Administering UniData on Windows NT or Windows 2000
0

4
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Creating and Dropping
Schemas
What Is a Schema? 4-3
 The SQL Catalog 4-3
Creating a Schema 4-5
Dropping a Schema 4-6
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch4TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes how to create and drop schemas.
 4-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch4.fm
12/29/08
What Is a Schema?
A schema is a special UniVerse account that is listed in the SQL catalog. A schema
is a collection of related tables and views. Once you have created a schema, you can
log on to it and begin creating tables and views. You can also create UniVerse files in
a schema.

A schema is part of a hierarchical structure: schemas in the catalog, and tables, views,
and files in schemas. From a practical viewpoint, one advantage to such a hierarchy
is the ability to qualify like-named objects by their next higher level and thus make
them unique. Tables and views in the same schema must have unique names, and the
same rule applies to schemas in the catalog, but beyond that the duplication of names
is common. Thus, if a table in the HEADQUARTERS schema and a table in the
REGION schema are both named EMPLOYEES, you can qualify their names by
their schema names, HEADQUARTERS.EMPLOYEES and
REGION.EMPLOYEES, to indicate which table you want.

The SQL Catalog
The SQL catalog is a schema named CATALOG containing six tables that describe
all SQL objects on the system (schemas, tables, views, columns, and associations),
as well as SQL users and the privileges they have. These tables are:

UV_ASSOC
UV_COLUMNS
UV_SCHEMA
UV_TABLES
UV_USERS
UV_VIEWS

You can retrieve data from these tables just as you can from the other tables in your
database, but you cannot add, change, or delete anything in them. DBAs can,
however, use the CONFIGURE.FILE and RESIZE commands on these files to
change their dynamic file parameters.

Every VOC file contains file pointers to the SQL catalog tables, so you can refer to
them without using a qualifier. For example, you can refer simply to UV_TABLES—
you need not enter CATALOG.UV_TABLES.
4-3 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Creating a Schema
You can define a schema in the UniVerse environment in two ways:

Convert an existing UniVerse account to an SQL schema
Create a new schema

Whichever method you use, any existing files in the schema directory are unaffected
by the creation of the schema.

To create a schema, issue a CREATE SCHEMA statement. If you are logged on to an
existing UniVerse account and you do not include the HOME clause (HOME path),
the UniVerse account you are currently logged on to is converted to a schema. If you
include the HOME clause, you can specify a UniVerse account other than the one you
are logged on to.

For example, to convert the current UniVerse account to a schema and assign it the
schema name CIRCUS, enter:

>CREATE SCHEMA CIRCUS;

To create a new schema, you must use the HOME clause to specify the directory
where you want the schema to reside. For example:

>CREATE SCHEMA CIRCUS HOME /usr/tom;

/usr/tom is the full path of an existing directory. This statement creates the schema
CIRCUS in an empty directory, tom, and then sets up a UniVerse account, complete
with a VOC and other necessary files.

You can include CREATE TABLE, CREATE VIEW, and GRANT statements as part
of the CREATE SCHEMA statement. To reduce possible confusion, it is better to add
those as separate steps later.

Note: You must have RESOURCE Privilege to create a schema for yourself, and you
must have DBA Privilege to create schemas for others.
 4-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch4.fm
12/29/08
Dropping a Schema
The owner of a schema or a DBA can drop a schema and all its tables and views by
issuing a DROP SCHEMA statement from a schema other than the one to be
dropped. To drop the CIRCUS schema, go to another schema (or any UniVerse
account) and enter:

>DROP SCHEMA CIRCUS CASCADE;
Deleting SCHEMA CIRCUS

If there are tables in the schema, you must include the CASCADE option. The alter-
native is to drop the tables before you issue the DROP SCHEMA statement.

If the schema is a converted UniVerse account, the schema reverts to a normal
UniVerse account and no UniVerse files are deleted.

If the UniVerse account was originally created by a CREATE SCHEMA statement,
DROP SCHEMA deletes any UniVerse files (such as &SAVEDLISTS&, VOC, and
VOCLIB) created by CREATE SCHEMA. If the account contains other UniVerse
files, such as UniVerse data files, they remain undisturbed.
4-5 UniVerse SQL Administration for DBAs

:\Prog
ecem
4Administering UniData on Windows NT or Windows 2000
0

5
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Creating, Modifying, and
Dropping Tables
Creating a Table 5-4
 Naming a Table 5-5
 Defining the File Type 5-6
 Defining a Column. 5-7
 Associations and Multivalued Columns 5-19
Modifying a Table 5-23
 Adding Columns, Table Constraints, and Associations 5-23
 Removing Constraints, Associations, and Default Values 5-26
 Changing a Column’s Default Value 5-27
Dropping a Table. 5-28
 Dropping a Table with a Dependent View 5-28
 Dropping a Referenced Table 5-28
Indexes . 5-30
 Dropping an Index 5-31
Using Triggers on a Table 5-32
 Adding a Trigger 5-32
 Enabling and Disabling Triggers 5-32
 Dropping a Trigger. 5-33
Listing Information About a Table 5-34
 Examining a Table’s Dictionary. 5-35
 Examining a Table’s SICA 5-35
 Examining a Table’s SQL Catalog Information 5-36
Modifying Table Dictionaries 5-38
 Adding I-Descriptors to the Table Definition 5-39
 Changing the Default Set of Displayed Columns 5-40
 Defining a Stable Unassociated Multivalued Column 5-41
Loading Data into a Table 5-43
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes how to define the following:

Tables
Columns in tables
Table indexes

It also discusses how to:

Modify tables
Create triggers for tables
Get information about UniVerse tables (SICA and the SQL catalog)
How to modify table dictionaries
Load bulk data from tables in other databases to UniVerse tables
 5-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Creating a Table
Once you have created a schema, the next step is to populate it with tables.

Like a UniVerse file, a table contains columns and rows, and comprises a data file and
a file dictionary. In addition, a CREATE TABLE statement defines data integrity
constraints, which are stored in a security and integrity constraints area (SICA) that
is part of the table’s header information.

The CREATE TABLE statement is powerful and complex. In its most basic form
CREATE TABLE names the table and includes a list of the columns and their charac-
teristics (including column names, data types, and any necessary formats and
conversions):

CREATE TABLE tablename (columnname1 description,
columnname2 description, …) ;

To use the CREATE TABLE statement to create the table OLD_ENGAGEMENTS.T
into which you copy all 1994 dates from the ENGAGEMENTS.T table, enter:

>CREATE TABLE OLD_ENGAGEMENTS.T
SQL+(LOCATION_CODE CHAR(7),
SQL+"DATE" DATE FORMAT '10L' CONV 'D2/',
SQL+GATE_REVENUE DECIMAL(9,2) FORMAT '12R' MULTIVALUED,
SQL+RIDE_REVENUE DECIMAL(9,2) FORMAT '12R' MULTIVALUED,
SQL+CONC_REVENUE DECIMAL(9,2) FORMAT '12R' MULTIVALUED,
SQL+PRIMARY KEY(LOCATION_CODE, DATE));
Creating Table "OLD_ENGAGEMENTS.T"
Adding Column LOCATION_CODE
Adding Column DATE
Adding Column GATE_REVENUE
Adding Column RIDE_REVENUE
Adding Column CONC_REVENUE

Note: You must enclose the column name DATE in double quotation marks, because
DATE is an SQL reserved word..

To use the CREATE TABLE statement to define a new table NEWTAB.T that uses
data from columns in the ENGAGEMENTS.T, ACTS.T, and PERSONNEL.T tables,
enter:

>CREATE TABLE NEWTAB.T
SQL+(ENG_ID CHAR(7),
SQL+ENG_DATE DATE FORMAT '10L' CONV 'D2/',
SQL+ACT_DESC VARCHAR FORMAT '6T',
SQL+EMP_ID INT FORMAT '5L',
SQL+EMP_NAME VARCHAR FORMAT '25T',
SQL+ACT_PAY DECIMAL(5,2) FORMAT '10L' MULTIVALUED,
5-4 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SQL+PRIMARY KEY(ENG_ID, ENG_DATE, ACT_DESC, EMP_ID));
Creating Table "NEWTAB.T"
Adding Column ENG_ID
Adding Column ENG_DATE
Adding Column ACT_DESC
Adding Column EMP_ID
Adding Column EMP_NAME
Adding Column ACT_PAY

Everything after tablename is enclosed in one set of parentheses, including file type,
column definitions, association definitions, and constraint definitions.

Naming a Table
Table names in UniVerse can contain any character except CHAR(0), including
spaces and control characters. However, when you use special characters, enclose the
table name in quotation marks. We recommend that table names contain only letters,
numbers, and underscores, and that they be no longer than 18 characters. For compat-
ibility with existing UniVerse file names, table names can contain periods. If the table
name contains only letters, numbers, _ (underscore) and . (period), quotation marks
are not needed to delimit the string.

For example, enter the following to name a table SALES.TRACKING:

>CREATE TABLE SALES.TRACKING

UniVerse usually uses the table name as the path of the data table, and the table name
prefixed with D_ as the path of the dictionary. The following section describes
instances where this may not be the case.

Spaces in a Table Name

If you use spaces in your table names, you must enclose the entire table name in quo-
tation marks to tell UniVerse that the space is part of the name. For example:

>SELECT AMOUNT FROM "SALES TODAY" SQL+WHERE AMOUNT >= 2000;

For detailed information about how to use special characters in table names, see the
UniVerse SQL Reference.
 5-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Length of a Table Name

You can enter up to 255 characters as a table name. However, there may be limitations
on the length of paths at your site. We recommend that you use table names no longer
than 18 characters.

On UNIX systems that allow only 14-character file names, UniVerse truncates the
file name to 9 characters and adds a 3-digit sequencer.

On Windows platforms, UniVerse is designed to run in the NT file system (NTFS).
But Windows platforms also support the DOS FAT file system, which limits file
names to 8 characters with a 3-character extension and has a further set of characters
that are not permitted in file names. UniVerse makes no special provision for these
file names or special characters. If you want to store tables in a DOS FAT file system,
you must follow the DOS conventions when you name tables.

On other systems the length of the table names is system-dependent. The UniVerse
table name is not affected; only the paths are transformations of the UniVerse table
name.

CREATE TABLE fails with table names greater than 255 characters. You see the
following error message:

Attempted WRITE with record ID larger than 255 characters.
*** Processing cannot continue. ***

Defining the File Type
UniVerse supports 21 different file types. A file type is specified by numbers 1
through 19, 25, or 30.

Type 1 and type 19 files are nonhashed files used to contain UniVerse
BASIC programs and other data organized into records that are loosely
structured. Tables cannot be type 1 or type 19 files.
Types 2 through 18 are static hashed files. Different hashing algorithms are
designed to distribute records evenly among the groups of a file. The
distribution is based on characters and their positions in the record IDs.
Type 25 is a B-tree file. Tables cannot be type 25 files.
Type 30 is a dynamic hashed file.
5-6 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Like the UniVerse CREATE.FILE command, CREATE TABLE lets you choose the
type of file format to be used. If you omit the file type, the default is dynamic (file
type 30).

For other than dynamic files, you can specify the modulo (number of groups in the
file) and the separation (the group buffer size in 512K blocks). The modulo and
separation that you specify with the CREATE TABLE statement allocate the disk
space for a hashed file. For complete details about the modulo and separation of
tables implemented as hashed files, see the UniVerse System Description.

To specify a dynamic file type for NEWTAB.T, enter the CREATE TABLE statement
as either of the following:

>CREATE TABLE NEWTAB.T (TYPE 30,...
>CREATE TABLE NEWTAB.T (DYNAMIC,...

For dynamic files, you can specify parameters as with CREATE.FILE. The UniVerse
parameter keywords have the following UniVerse SQL synonyms: SEQNUM,
GROUP SIZE, MINIMUM MODULUS, SPLIT LOAD, MERGE LOAD, LARGE
RECORD, RECORD SIZE, and MINIMUM SPACE.

You often can omit these entries and accept the defaults. For more information about
file types, see the UniVerse System Description.

Defining a Column
Column descriptions follow the file type definition, separated by commas. As a
minimum, a column description consists of a column name and column data type, as
illustrated by these examples from the Circus database:

ITEM_TYPE CHAR(1)...
NAME VARCHAR...
ADVANCE DECIMAL (9,2)...
LABOR INTEGER...

Optionally, you can specify a format (FMT), a conversion code (CONV), any of the
constraints discussed in Chapter 7, “Ensuring Data Integrity,” and a default value. An
overview of these elements follows.
 5-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Column Names

We recommend that column names, like table names, consist only of letters, numbers,
and underscores (_), and that they be no longer than 18 characters. For compatibility
with existing UniVerse field names, column names can also contain periods. As with
table names, you can include special characters in a column name by enclosing all
references to the column name in double quotation marks. For example:

>CREATE TABLE SALES ("PRIM$KEY" INT ...

Delimited Identifiers

Identifiers surrounded by double quotation marks are called delimited identifiers or
quoted identifiers. Thus you can use reserved SQL words (such as DATE and TIME)
and identifiers (such as the names of schemas, tables, views, columns, associations,
constraints, indexes, table aliases, column aliases, or user names) as delimited
identifiers.

The following characters are not allowed in a delimited identifier:

System delimiters in the range hex FB through FF
Text mark
Subvalue mark
Value mark
Field mark
Item mark

ASCII control characters in the range hex 00 through 1F
SQL NULL (hex 80) if the identifier is only one character long

A delimited column name cannot contain spaces. On Windows platforms, delimited
identifiers cannot contain the following:

“ (double quotation marks)
% (percent)
* (asterisk)
\ (backslash)
: (colon)
< (less than)
> (greater than)
5-8 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Data Types

The data type assigned to a column determines how its data is processed by a
UniVerse SQL query, including the arithmetic operations, comparisons, and set
functions that are used on it. There are 15 data types, as shown in the following table.

Data Type Description

BIT [(n)] Stores bit strings.

CHAR[ACTER] [(n)] Stores character strings, which are any
combination of numbers, letters, and special
characters. n is any integer from 1 to 254 and
specifies column length.

DATE Stores dates.

DEC[IMAL] [(precision [,scale])] Stores decimal fixed-scale (fixed-point) numbers.
precision is the number of significant digits; scale
is the number of digits to the right of the decimal
point (same as NUMERIC).

DOUBLE PRECISION Stores high-precision floating-point numbers.

FLOAT [(precision)] Stores floating-point numbers. precision is the
number of significant digits.

INT[EGER] Stores whole decimal numbers.

NCHAR [(n)] Stores national character strings.

NVARCHAR [(n)] Stores variable-length national character strings.

NUMERIC [(precision [,scale])] Same as DECIMAL.

REAL Stores floating-point (real) numbers.

SMALLINT Stores small whole decimal numbers.

TIME Stores times.

VARBIT [(n)] Stores variable-length bit strings.

VARCHAR [(n)] Stores variable-length character strings, which are
any combination of numbers, letters, and special
characters. n is any integer from 1 to 65535 and
specifies column length.

UniVerse SQL Data Types
 5-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Data types are closely associated with two output format specifications, FMT (or
FORMAT) and CONV (or CONVERSION). These format specifications are
discussed on the next several pages in terms of permanently specifying output
formatting and conversion for columns.

Data Types and Empty Strings

In UniVerse the term empty string refers to a string of zero length (no data). It is repre-
sented in a query by two successive quotation marks ('').

In some cases, UniVerse SQL treats empty strings differently from traditional, or
non-SQL, UniVerse.

When a WHEN Clause or WHERE Clause in an SQL SELECT query tests for an
empty string in a character-type column (a column defined as CHAR or
VARCHAR), it is treated in the same way as in traditional UniVerse—that is, as a
zero-length character string.

However, unlike non-SQL UniVerse, in UniVerse SQL an empty string and a 0 in a
numeric-type column are identical for all practical purposes. Thus, testing for 0 and
testing for an empty string select the same rows, and an empty string in arithmetic
expressions is treated as 0. So, to update TAX_LIFE in all rows where TAX_LIFE
contains the numeric equivalent of 0, enter either of the following statements:

>UPDATE EQUIPMENT.T SET TAX_LIFE = 5 WHERE TAX_LIFE = 0;
>UPDATE EQUIPMENT.T SET TAX_LIFE = 5 WHERE TAX_LIFE = '';

Defining a Column’s Data Structure and Form

In addition to data type, UniVerse SQL provides several other ways to define a
column’s data structure according to:

Whether the column contains a single value or multiple values (SINGL-
EVALUED or MULTIVALUED)
What column heading to use for the column on output displays and reports
(DISPLAYNAME 'text')
What format to use for displaying the column’s data in terms of number of
characters and justification (FMT)
What conversion processes to perform, both when putting data into the
column and when outputting data from the column (CONV)
5-10 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
SingleValued or Multivalued

A singlevalued column can contain only a single value per row; a multivalued
column can contain multiple values for each row. In the Circus database, multivalued
columns are used in several ways.

For example, for each item in the INVENTORY.T table, information about each
vendor from whom that item was ordered and the quantity ordered is stored in
multivalued columns:

VENDOR_CODE INTEGER FORMAT '5R' MULTIVALUED...,
ORDER_QTY INTEGER FORMAT '5R' MULTIVALUED,

SINGLEVALUED is the default; you do not need to specify it when defining
singlevalued columns.

Column Headers (DISPLAYNAME)

DISPLAYNAME (and its synonym COL.HDG) works the same way as when it is
used in a SELECT statement, specifying text to be used as the column heading in
place of the column name. However, by supplying these headings when creating the
table, they are used automatically with every SELECT statement unless overridden.
If you do not include the DISPLAYNAME keyword, the column name is used as the
column header.

For example, to use “Type of Shot” as the header for VAC_TYPE in the
LIVESTOCK.T table, define the column as:

VAC_TYPE CHAR(1) DISPLAYNAME 'Type of Shot' MULTIVALUED...

Formatting (FMT)

FMT (and its synonym FORMAT) also behaves in much the same manner as when
used in a SELECT statement; it can be used to determine the number of characters
and the justification of a column’s data for output. But again, by specifying
formatting when you create a table, it applies the formatting automatically to the
column for every SELECT statement unless otherwise overridden.
 5-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Because UniVerse uses a variable-length data structure, the physical storage of the
data may be of any length, but you usually should impose some limit when displaying
or printing the data. For example, a 25-character output column is allowed for vendor
company name and for each line of address in the VENDORS.T table:

COMPANY VARCHAR FMT '25T'
ADR1 VARCHAR FMT '25T'
ADR2 VARCHAR FMT '25T'
ADR3 VARCHAR FMT '25T'

You just as easily could have made it 15 characters:

COMPANY VARCHAR FMT '15L'
ADR1 VARCHAR FMT '15L'
ADR2 VARCHAR FMT '15L'
ADR3 VARCHAR FMT '15L'

Output of data in numeric columns usually is right-justified; data in alphanumeric
columns (CHAR) usually is left-justified. Use FORMAT to force either left-justifi-
cation of numeric data or right-justification of character data in the output:

COMPANY VARCHAR FMT '15R'

In the case of columns containing multiple-word text, the T code (text justification:
left-justify and break on space) is typical. This allows lines to break at the end of
words when displayed or printed.

Conversions (CONV)

CONV (and its synonym CONVERSION), like FMT, affects how data is output, but
its use has other implications. For example, it is the conversion code that—along with
the data type—determines the precise format of a column containing a date or time.

In the database, DATE has a D conversion code ‘D2/’. This causes its contents to be
converted to a date whose elements are separated by slashes: mm/dd/yy.

"DATE" DATE FMT '10L' CONV 'D2/' NOT NULL

The D identifies this as a date conversion, the 2 says you want a two-digit year (for
example, 94 rather than 1994), and the / denotes the separator to be used. For dashes
instead of slashes, and a four-digit year, use:

"DATE" DATE FMT '10L' CONV 'D4-' NOT NULL

For the European format (dd.mm.yy), use:

"DATE" DATE FMT '10L' CONV 'D2.E' NOT NULL
5-12 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Many formatting options exist for dates (D), character strings (MC), decimals (MD),
numerics (ML and MR), times (MT), and other kinds of data. Here are a few
examples:

A conversion code must agree with the column’s data type. In this context, think of
data types as being divided into five classes:

Class 1: DEC and NUM with a nonzero scale
Class 2: DATE
Class 3: TIME
Class 4: BIT and VARBIT
Class 5: Everything else

A conversion code used with class 1 must be MD, ML, or MR and must specify the
same scale as the data type definition. For example, the conversion code MD2$ is
consistent with the data type DECIMAL(9,2), because the scale is 2 in both cases.
However, a conversion code of MD4$ is incorrect and produces unpredictable
results.

The D conversion code must be used with class 2 (DATE). The MT conversion code
must be used with class 3 (TIME).

The BB (binary) and BX (hexadecimal) conversion codes can be used with class 4
(BIT and VARBIT).

Never use any of the following conversion codes with a data type of class 5:

Option Description

MD2,$CR Converts a stored numeric value to a dollar value, with two decimal
places (2) preceded by a dollar sign ($); inserts a comma (,) every three
digits to the left of the decimal point. Adds the suffix CR to negative
values.

D4MD[A,Z]L Converts a stored date for output as follows: the name of the month
(M[A]), retaining any lowercase letters (L), the day, with any leading
zero suppressed (D[Z]), and the four digits of the year (4). The brackets
are part of the conversion code.

MTHS: Converts a stored time for output as follows: the hour in 12-hour format
(H), minutes, and seconds (S), separated by a colon (:).

Formatting Examples
 5-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
MD, ML, or MR with a nonzero scale
D
MT

Although the system does not enforce these rules, violating them usually produces
strange results.

Data Categories

The combination of a column’s data type and conversion code designates a column’s
data category. For example, if a column is described with a DATE data type and a
valid date conversion code, it falls into the Date category. This means that when a
value is stored into that column, it is converted into an internal date format (the
number of days from December 31, 1967). When the column is printed or displayed,
its contents are converted to an appropriate date display format (for example, 3/12/95
or March 12, 1995) as requested by the conversion code.

UniVerse SQL recognizes seven data categories:

Integer
Scaled number
Approximate number
Date
Time
Character string
Bit and hex string

Data categories are important because they determine how a column is used in
practice and how the data in a column is treated in terms of input and output
formatting and converting. They also determine what kinds of operation you can
perform on them and the results.

For example, you can:

Add, subtract, multiply, or divide any pair of number (integer, scaled
number, approximate number) columns. The result will be an approximate
number (unless both columns are integer, in which case the result will also
be an integer).
Add integers to (or subtract integers from) dates and times.
5-14 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Add and subtract times, and subtract a date from a date (but you cannot add
a date to a date).
Compare integers, scaled numbers, and approximate numbers to each other,
dates to dates, times to times, and character strings to character strings.

Integer

Integers are positive or negative whole numbers, such as 0, 5, –735692, and +03.
Integers represent counts, quantities, and the like. You can store integers in any
column defined with a data type of INT or SMALLINT. The default FMT code is 10R
(10 positions, right-justified), and the default CONV code is MD0 (no decimal
positions). Examples of integer columns in the Circus database include:

ACRES INTEGER FORMAT '5R'
USE_LIFE INTEGER FORMAT '5R'
OPERATOR INTEGER FORMAT '5R' MULTIVALUED REFERENCES PERSONNEL.T

Scaled Number

Scaled numbers are positive or negative numbers with fixed-length fractional parts,
such as 2.00, 19958.255, or –0.7556. They are used to store values like money
amounts, percentages, and temperature and pressure readings. You can store scaled
number values in any column defined with a data type of DEC(p,s) or
NUMERIC(p,s,). Some examples from the database include:

GOV_RATE DECIMAL(3,3) FORMAT '7R' MULTIVALUED
COST DECIMAL(9,2) FORMAT '12R'
RIDE_REVENUE DECIMAL(9,2) FORMAT '12R' MULTIVALUED

Internally, scaled numbers are stored without the decimal point. The conversion code
is MDss, where ss is the scale.

Approximate Number

Approximate numbers are real numbers that can include fractional parts of unknown
length and may need to be rounded off to fit the computer’s limits for storing signif-
icant digits. Examples are Avogadro’s number (6.023E23) and pi (3.14159…).
Approximate number values can be stored in any column defined as REAL,
FLOAT(p), or DOUBLE PRECISION.
 5-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Date

Dates are stored as the number of days since December 31, 1967, and output in date
form, such as 2/6/95 or February 6, 1995, according to a conversion code. You can
define a column as a date by specifying the DATE data type. An example from the
Circus database is:

"DATE" DATE FORMAT '10L' CONV 'D2/' NOT NULL

For an international date format, use a conversion code like ‘D4.E’, which displays
February 6, 1995, as 6.2.1995.

You can also omit the CONV specification. If you do, a ‘D’ conversion is used as the
default.

Time

Times are stored as a number of seconds, representing either the time of day or a time
interval, and are output in time format, such as 2:30 p.m., 14:30:00, or 14h30,
depending on the conversion code. You can define a column as a time by specifying
the TIME data type. An example from the Circus database is:

"TIME" TIME FORMAT '10L' CONV 'MTH'

You can also omit the CONV specification. If you do, a ‘MTS’ conversion is used as
the default.

Character String

Character strings are any mixture of characters, numbers, and special characters.
They hold text, such as descriptions, names, addresses, or alphanumeric codes, and
can be stored in any column described as CHAR(n) or VARCHAR. Examples
include:

COMPANY VARCHAR FORMAT '25T'
ADR1 VARCHAR FORMAT '25T'
PHONE VARCHAR FORMAT '12L'
DEPRECIATION CHAR(1) FORMAT '1L'
5-16 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Bit and Hex String

Bit strings are any arbitrary sequence of bits. They can be input or displayed in binary
format as 0’s and 1’s enclosed in single quotation marks and preceded by the base
specifier B (for example, B'01111110'). They can also be input or displayed in
hexadecimal format as hexits (hexadecimal digits: 0 – 9, A – F, a – f) enclosed in
single quotation marks and preceded by the base specifier X (for example,
X'1F3A2'). Bit strings can be stored in any column described as BIT or VARBIT.

Column and Table Constraints

Constraints are mentioned here because they are an important part of column
definition. Column constraints are used to ensure data integrity and include
UNIQUE, ROWUNIQUE, NOT NULL, NOT EMPTY, CHECK, PRIMARY KEY,
FOREIGN KEY, and REFERENCES.

One constraint that deserves special mention is the PRIMARY KEY constraint. A
primary key is the values in one or more columns that together uniquely identify that
row in a table. Except for ENGAGEMENTS.T, every table in the Circus database has
a single column defined as PRIMARY KEY:

ACT_NO INTEGER FORMAT '5R' PRIMARY KEY
BADGE_NO INTEGER FORMAT '5R' PRIMARY KEY
ANIMAL_ID INTEGER FORMAT '5L' PRIMARY KEY

In UniVerse SQL you can define a multipart primary key, designating two or more
columns as the primary key. You use a PRIMARY KEY table constraint to specify
these columns.

The ENGAGEMENTS.T table is an example of a table with a multicolumn primary
key:

LOCATION_CODE CHAR(7) FORMAT '7L' NOT NULL
"DATE" DATE FORMAT '10L' CONV 'D2/'
.
.
.
CONSTRAINT ENGAGEMENT_KEY PRIMARY KEY (LOCATION_CODE, "DATE")
 5-17

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Default Values

Default values are another column definition option. Use the DEFAULT clause to
insert a value into a column whenever a value is not provided. Specify a literal value,
NULL (which is the “default” default), or USER (which sets the effective user name
of the current user as the default value).

To place the value “None currently” in the CONTACT column every time a row was
inserted in VENDORS.T and no contact name was supplied, enter:

CONTACT VARCHAR FORMAT '10T' DEFAULT 'None currently'

Column Synonyms

Column synonyms allow you to define more than one format or conversion
specification for a column. For example, to display or print the DATE in the
ENGAGEMENTS.T table in two different date formats, American and European:

"DATE" DATE FORMAT '10L' CONV 'D2/' NOT NULL,
DATE1 SYNONYM FOR "DATE" FORMAT '10L' CONV 'D4.E'...

Then, if you ask for DATE (and the value was 12/31/94), you see:

DATE
12/31/94

If you ask for DATE1, you see:

DATE1
31.12.1994

Associations and Multivalued Columns
When you have a group of multivalued columns in a table, it is likely that two or more
will be associated with one another. That is, the first value of one column is
associated with the first value of another column; the second value of one with the
second value of the other, and so on. Each row of associated values is called an
association row to distinguish it from a row of the base table.

An association’s definition controls the order in which new association rows are
positioned. For example, any new association row can be positioned before or after
any existing rows, or it can be assigned a stable position that will not change even
when preceding association rows are deleted or repositioned.
5-18 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The Circus database has several examples of associations. In the
ENGAGEMENTS.T table, there are three associations: one for the
gates/revenues/tickets, one for the concessions/revenues/tickets, and one for the
rides/revenues/tickets. These associations and their attributes are defined as part of
the ASSOCIATION clause of the CREATE TABLE statement:

ASSOCIATION GATE_ASSOC (GATE_NUMBER KEY, GATE_REVENUE,
GATE_TICKETS)

ASSOCIATION CONCS_ASSOC (CONC_ID KEY, CONC_REVENUE,
CONC_TICKETS)

ASSOCIATION RIDES_ASSOC (RIDE_ID KEY, RIDE_REVENUE,
RIDE_TICKETS)

ACT_NO, a single multivalued column, is not associated with any other multivalued
columns.

Likewise, the PERSONNEL.T table has four associations: one for the columns
containing dependent data, one for the columns containing the equipment experience
data, one for the columns containing the acts experience data, and one for the
columns containing the rides experience data:

ASSOCIATION DEP_ASSOC (DEP_NAME KEY, DEP_DOB, DEP_RELATION)
ASSOCIATION EQUIP_ASSOC (EQUIP_CODE KEY, EQUIP_PAY)
ASSOCIATION ACTS_ASSOC (ACT_NO KEY, ACT_PAY)
ASSOCIATION RIDES_ASSOC (RIDE_ID KEY, RIDE_PAY)

Association Keys

You can specify one or more of the columns of an association as the association key.
You can think of association keys as being to associations what primary keys are to
tables. Therefore they are subject to the same constraints. This means that a column
used as an association key must be declared NOT NULL.

Related UniVerse Associations

In addition to the associations of multivalued columns you can define for a table,
UniVerse has two other kinds of association. And an unassociated multivalued
column behaves in certain ways as if it were an association comprising one
multivalued column.

Thus, UniVerse SQL can manipulate four kinds of multivalued data structures:

Associations in tables
Associations in UniVerse files that are not tables
 5-19

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Unassociated multivalued columns in tables and UniVerse files
Pick-controlling and dependent fields

For UniVerse SQL to access UniVerse file associations and unassociated multivalued
columns and Pick associations, you need to know how to use the following:

The @ASSOC_ROW keyword
The @ASSOC_KEY.mvname X-descriptor

@ASSOC_ROW

When you select from a dynamically normalized association that has no key, the
system generates a virtual column called @ASSOC_ROW containing unique values.
By combining the values of @ASSOC_ROW with a base table’s primary keys, you
get a set of jointly unique association row keys that function as the primary keys of
the dynamically normalized association.

@ASSOC_KEY.mvname

For a standard table you define an association of multivalued columns using the
ASSOC clause in the CREATE TABLE or ALTER TABLE statement. The ASSOC
clause defines the name and composition of the association as well as its attributes
(association keys and positioning of association rows).

For UniVerse SQL to make full use of associations in UniVerse files, you need to add
an X-descriptor called @ASSOC_KEY.mvname to the file dictionary. mvname is one
of the following:

For UniVerse files, the name of the phrase that defines the association
For an unassociated multivalued field in a UniVerse file, the name of the
field
For a Pick association of controlling and dependent fields, @DCn, where n
is the location of the controlling field

The content of this X-descriptor is as follows:

@ASSOC_KEY.mvname
0001 X
0002{ STABLE | UNSTABLE | KEY field [field] … }

Field 2 defines one of two different association attributes:
5-20 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
A definition of the association’s key—one or more columns that uniquely
identify association rows in each base table row
Whether the position of association rows is stable or unstable (if no
association key can be defined)

One or more KEY field specifications define a subset of the associated fields as
association keys. This specification is equivalent to the KEY clause of the ASSOC
clause in the CREATE TABLE and ALTER TABLE statements. If the association has
no keys, you can define the positioning of the association rows in the association as
STABLE. This ensures the following:

Newly inserted association rows do not displace existing association rows.
If they are inserted in positions more than one row higher than the existing
rows, empty rows are inserted.
Deleted association rows are replaced with empty association rows, which
prevents subsequent association rows from being renumbered.
Updated association rows can be repositioned only to empty row positions,
by using an UPDATE statement to change the value of @ASSOC_ROW. If
they are repositioned more than one row higher than the existing rows,
empty rows are inserted.

UNSTABLE is the default if you do not use an @ASSOC_KEY.mvname entry in the
dictionary. This means that higher-numbered association rows are renumbered when
lower-numbered rows are deleted, inserted, or repositioned by the SET clause of an
UPDATE statement. Empty association rows are not inserted when new rows are
inserted or repositioned at the end of existing rows, and deleted association rows are
not replaced with empty association rows.

Pick Associations

Pick associations, like other associations, are defined in the file dictionary, but they
are defined differently from associations in standard tables and UniVerse files. Each
Pick association has one controlling field and one or more dependent fields. The
dictionary definition of a controlling field has the following code in field 4:

C ; field# [; field#] …
field# is the location of a dependent field.

The dictionary definition of a dependent field has the following code in field 4:

D ; control.field#
 5-21

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
control.field# is the location of the controlling field.

To use the @ASSOC_KEY.mvname X-descriptor with Pick associations, use @DCn
as mvname (where n is the field number of the controlling field).
5-22 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Modifying a Table
Use the ALTER TABLE statement to:

Add columns, column synonyms, table constraints, associations
Remove table constraints, associations, and default values
Change a column’s default value
Enable or disable a table’s triggers

Consequently, the statement includes an ADD clause, a DROP clause, an ALTER
clause, and a TRIGGER clause. Note that you cannot use ALTER TABLE to delete
existing columns, add column constraints, or change the definition of existing
columns in ways other than just described. If a column is no longer required, use an
UPDATE statement to clear that column’s data.

Adding Columns, Table Constraints, and Associations
Sometimes you need to add new columns, synonyms, constraints, or associations to
a table, either because you forgot to do so when you created the table, or because
changes to the application make such additions necessary. Use the ADD clause of the
ALTER TABLE statement, with the syntax of the actual definition itself identical to
the syntax you would use in a CREATE TABLE statement.

Adding a New Column

Adding a column to an existing table is a simple matter of issuing an ALTER TABLE
statement with an ADD Clause: Column that includes a column definition identical
to the column definition you would use in a CREATE TABLE statement. For
example, to add a new column called AGENT to the ACTS.T table, use the following
statement:

>ALTER TABLE ACTS.T ADD COLUMN AGENT VARCHAR FORMAT '10L';
Adding Column AGENT
 5-23

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Adding a Column Synonym

Adding a column synonym is equally straightforward. Taking the example of using a
column synonym to define an alternative date format for the DATE column in the
ENGAGEMENTS.T table, you could add the same alternate format to VAC_DATE
in the LIVESTOCK.T table:

>ALTER TABLE LIVESTOCK.T
SQL+ADD DATE1 SYNONYM FOR VAC_DATE CONV 'D2.E';
Adding Synonym DATE1

Adding a Table Constraint

To add a table constraint (CHECK, UNIQUE, or FOREIGN KEY) to a table, use an
ALTER TABLE statement with the ADD CONSTRAINT syntax. For example, to
add a table constraint, called LIFECHK, that ensures that a tax life (TAX_LIFE)
value is 5, 10, or 25, use the following statement:

>ALTER TABLE EQUIPMENT.T
SQL+ADD CONSTRAINT LIFECHK CHECK (TAX_LIFE IN (5, 10, 25));
Adding Constraint LIFECHK

Remember that if you try to add a constraint to an existing table, but values already
in the table violate that constraint, ALTER TABLE is rejected.

Adding a New Association

To define a new association of multivalued columns, use the ADD ASSOCIATION
option of ALTER TABLE. Associations group related multivalued columns together.
In each row, the first value in one multivalued column of an association has a one-to-
one relationship to the first values in all the other associated columns, the second
value has a one-to-one relationship to the second values in the other associated
columns, and so on. An association, therefore, is an array of columns containing
related multivalues and, in effect, can be thought of as a nested table or a table within
a table.

For example, if the four vaccination-related multivalued columns in
LIVE-STOCK.T were not already defined as an association, you could associate
them by entering:

>ALTER TABLE LIVESTOCK.T
SQL+ADD ASSOC VAC_ASSOC (VAC_TYPE KEY, VAC_DATE, VAC_NEXT,
SQL+VAC_CERT);
Adding Association VAC_ASSOC
5-24 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The ADD ASSOC clause of ALTER TABLE also can specify the order in which new
rows are to be added to the association. INSERT FIRST adds new rows to the
beginning of existing association rows, INSERT LAST (the default) adds new rows
to the end of existing rows, and INSERT IN columnname BY sequence orders new
rows according to the value in the named column of the association. For example, to
add new rows to VAC_ASSOC before existing rows, enter the previous definition as:

>ALTER TABLE LIVESTOCK.T
SQL+ADD ASSOC VAC_ASSOC INSERT FIRST
SQL+(VAC_TYPE KEY, VAC_DATE, VAC_NEXT, VAC_CERT);
Adding Association VAC_ASSOC

Many associations are generated specifying a key (but a key is not required). An
association key can be thought of as the primary key of the “table within a table” that
the association represents.

Associations usually comprise two or more columns. For example, the CREATE
TABLE statement for the ENGAGEMENTS.T table includes association definitions
for gates, concessions, and rides. You can also define associations that have only one
multivalued column.

Single-column associations are useful when applying dynamic normalization to a
file. Dynamic normalization explodes multivalued columns (associated or unasso-
ciated) so that they appear as singlevalued. In other words, dynamic normalization
allows you to process a nonfirst-normal-form (NF2) table as if it were a first-normal-
form (1NF) table.

Use dynamic normalization on ACT_NO to do such things as insert a new act for an
upcoming engagement. For example, if you look at the acts scheduled for East
Atlanta for February 15, 1996, you see that only one act is booked:

>SELECT ACT_NO FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE = 'EATL001' AND "DATE" = '02/15/96';
ACT_NO

 4

1 records listed.
 5-25

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
To add act 2 to the roster of acts, enter:

>INSERT INTO ENGAGEMENTS.T_ACTS_ASSOC
SQL+VALUES ('EATL001', '02/15/96', 2);
UniVerse/SQL: 1 record inserted.

>SELECT ACT_NO FROM ENGAGEMENTS.T
SQL+WHERE LOCATION_CODE = 'EATL001' AND "DATE" = '02/15/96';
ACT_NO

 4
 2

1 records listed.

Removing Constraints, Associations, and Default Values
Just as you can add table and column constraints, associations, and default values to
an existing table, you can remove them using the DROP clause of the ALTER
TABLE statement. To remove the previously added LIFECHK constraint,
EP_PERFS association, and the default value for QOH, the following statements
suffice:

>ALTER TABLE EQUIPMENT.T DROP CONSTRAINT LIFECHK;
Dropping Constraint LIFECHK
>ALTER TABLE ENGAGEMENTS.T DROP ASSOC EP_PERFS;
Dropping Association EP_PERFS
>ALTER TABLE INVENTORY.T ALTER QOH DROP DEFAULT;
Dropping DEFAULT on column QOH

When using the DROP Clause: Integrity Constraint to remove a UNIQUE constraint,
there are two options: RESTRICT and CASCADE. RESTRICT, the default, prevents
the removal of a UNIQUE constraint if the column is referenced by a foreign key
column. CASCADE removes the UNIQUE constraint and removes any referential
constraints from any foreign key columns that are dependent on it.

Changing a Column’s Default Value
Besides column constraints, the only other element you can change in a column
definition is its default value. The default value may be “no default value,” in which
case the implied default value is NULL. You can change a column’s default value
through the SET DEFAULT clause of the ALTER TABLE statement.
5-26 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
To add a default value of 12/31/99 to the DATE column, perhaps to indicate a tenta-
tively booked engagement for which a date has not yet been determined, enter:

>ALTER TABLE ENGAGEMENTS.T ALTER "DATE" SET DEFAULT '12/31/99';
Setting DEFAULT on column DATE

This also ensures that DATE is never NULL (the implicit default value), which would
cause the rejection of an entry because the column is part of the PRIMARY KEY.
Primary key columns cannot contain null values.
 5-27

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Dropping a Table
Removing a table from your database can be as simple as issuing a DROP TABLE
statement. To be consistent with the previous examples, assume that the table to be
deleted is RIDES.T:

>DROP TABLE RIDES.T;
Dropping Table RIDES.T

DROP TABLE removes the table and deletes the UniVerse data file, the file
dictionary, and any indexes. It also revokes all privileges on the table.

Dropping a Table with a Dependent View
If the table has views dependent on it, you must add the keyword CASCADE to drop
the views as well. Otherwise, an error results because you cannot remove a table
without removing the views associated with the table at the same time. Views are
fully discussed in the UniVerse SQL User Guide.

Dropping a Referenced Table
Sometimes a table you want to drop is a referenced table (a table containing one or
more columns that are referenced by other tables, as is the case when some table
contains a foreign key that references a column in the table being dropped). In such
cases, resolve these references before dropping the table.

Take an example in which you have two tables, TABLE1 and TABLE2, with
TABLE2’s ID referenced by a foreign key in TABLE1:

>CREATE TABLE TABLE1 (TID_1 INT PRIMARY KEY,
SQL+FORKEY_2 INT, DESC_1 CHAR (10));
>CREATE TABLE TABLE2 (TID_2 INT PRIMARY KEY,
SQL+DESC_2 CHAR (10));
>ALTER TABLE TABLE1 ADD CONSTRAINT F1 FOREIGN KEY (FORKEY_2)
SQL+REFERENCES TABLE2 (TID_2);

If you later attempt to drop TABLE2, the following error message appears:

Dropping Table TABLE2
UniVerse SQL: TABLE2 is a referenced table. DROP the referencing
tables or constraints first.
5-28 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
One solution is to drop TABLE1 first:

>DROP TABLE TABLE1;
Dropping Table TABLE1
>DROP TABLE TABLE2;
Dropping Table TABLE2

However, if you want to keep TABLE1, the solution is to drop the foreign key table
constraint (F1) from TABLE1 and then drop TABLE2:

>ALTER TABLE TABLE1 DROP CONSTRAINT F1;
Dropping table constraint F1
>DROP TABLE TABLE2;
Dropping Table TABLE2

Remember that a constraint must be named in order to drop it, so it is a good idea to
assign names to all constraints when you define them.
 5-29

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Indexes
An index is a sorted list of the values in a column. Indexes work like B-tree files in
that they provide optimum processing speed when columns other than the primary
key are used as the key column in WHERE, WHEN, and ORDER BY clauses. Take
as an example the following statement:

>SELECT COL2 FROM TABLE
SQL+WHERE COL2 < 100;

Without indexing, every row in the table named TABLE is examined for rows with
the value of column 2 less than 100. If column 2 has an index, however, each item in
the index is examined in increasing order until an item is found that is greater than or
equal to 100. All other items are assumed not to match and the search is ended.

If all the rows in the table have a value less than 100 in column 2, the search time is
the same as without an index, but if only a few items have a value less than 100, the
search time is greatly reduced.

Once you have created an index, it contains a sorted list of the values in the indexed
column—the keys of the index—along with the IDs of the records in the indexed
table. Each unique value in the indexed column is stored as the record ID of a record
in the index. Each index record comprises one or more fields containing the keys to
the rows in the indexed table.

For example, the indexed table can contain the following columns:

PRIMARY KEYS... LNAME......

111-888-3333 SMITH
222-555-6666 JONES
888-444-9999 SMITH

An index on the column LNAME is organized as follows:

PRIMARY KEYS... COL1......................

JONES 222-555-6666
SMITH 111-888-3333 F888-444-9999

The F represents a field mark.

When an index is first created, it contains no values. As new values are added to the
indexed table, corresponding values are also added to the index. If the indexed table
contains data at the time the index is created, the data is indexed immediately.
5-30 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Creating an Index

Use the CREATE INDEX statement to create an index on one or more columns of a
table. The CREATE INDEX statement creates one index on one column or a set of
columns. The syntax of the CREATE INDEX statement is as follows:

CREATE [UNIQUE] INDEX indexname ON tablename
(columnname [ASC | DESC] [, columnname [ASC | DESC]] …) ;

Dropping an Index
Use the DROP INDEX statement to delete an index from a table. The syntax of the
DROP INDEX statement is as follows:

DROP INDEX tablename . indexname ;
 5-31

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Using Triggers on a Table
You can augment and regulate the modification of data in tables by creating a trigger
for the table. A trigger specifies actions to perform before or after the execution of
certain events that change the database. You can define up to six triggers for a table.
The names of all triggers and their corresponding UniVerse BASIC programs are
stored in the table’s SICA. For more information about using Triggers, see the
UniVerse SQL Reference.

Adding a Trigger
You write trigger programs in UniVerse BASIC. Use the CREATE TRIGGER
statement to create a trigger for a table, calling the trigger program that you want to
execute. You must be the table’s owner or have ALTER Privilege on the table, or you
must be a DBA to create a trigger.

You can set a trigger to fire (execute) before an INSERT, UPDATE, or DELETE
event can change data. A BEFORE trigger can examine the new data and determine
whether to allow the INSERT, UPDATE, or DELETE event to proceed; if the trigger
rejects a data change, UniVerse rolls back the entire transaction. The trigger is
evaluated for each row to be modified.

You can also set triggers to fire after an INSERT, UPDATE, or DELETE event, for
example, to change related rows, audit database activity, and print or send messages.

Enabling and Disabling Triggers
In order to fire a table’s trigger, it must be enabled. When you create a trigger, it is
enabled by default. You can use the ALTER TABLE statement to disable and
reenable a table’s triggers. To disable a trigger associated with a table, use the
DISABLE TRIGGER clause:

>ALTER TABLE EMPLOYEES DISABLE TRIGGER AUDIT_EMPLOYEES;
Disabling trigger "AUDIT_EMPLOYEES"

To reenable the same trigger, use the ENABLE TRIGGER clause:

>ALTER TABLE EMPLOYEES ENABLE TRIGGER AUDIT_EMPLOYEES;
Enabling trigger "AUDIT_EMPLOYEES"
5-32 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can use ALL instead of the trigger name to enable or disable all of a table’s trig-
gers:

>ALTER TABLE EMPLOYEES DISABLE TRIGGER ALL;
Disabling all triggers

Dropping a Trigger
Use the DROP TRIGGER statement to drop a trigger created by the CREATE
TRIGGER statement. You must be the table’s owner or have ALTER privilege on it,
or you must be a DBA to drop a table’s triggers.

When you drop a trigger, its name is removed from the table’s SICA, but the
corresponding UniVerse BASIC program is not deleted.
 5-33

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Listing Information About a Table
A table comprises:

A data file
A table dictionary
A SICA (security and integrity constraints area)

You can examine all of these as sources of information about the table.

Examining a Table’s Data File
To see the contents of a table’s data file, use the UniVerse SQL SELECT statement.
You can ask to see the data in the following ways:

All of the rows and all of the columns:
>SELECT * FROM ENGAGEMENTS.T;
All of the columns and selected rows:
>SELECT * FROM ENGAGEMENTS.T
SQL+WHERE "DATE" < '12/31/95';
Selected columns and all of the rows:
>SELECT LOCATION_CODE, "DATE", "TIME"
SQL+FROM ENGAGEMENTS.T
SQL+ORDER BY LOCATION_CODE, "DATE";
Selected columns and selected rows:
>SELECT LOCATION_CODE, "DATE", "TIME"
SQL+FROM ENGAGEMENTS.T
SQL+WHERE "DATE" < '12/31/95'
SQL+ORDER BY LOCATION_CODE, "DATE";

Alternatively, use the RetrieVe LIST command, which features much of the
functionality of SELECT.
5-34 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Examining a Table’s Dictionary
To see the contents of a table’s dictionary, use the SELECT statement with the DICT
keyword:

>SELECT * FROM DICT ENGAGEMENTS.T ORDER BY CODE, LOC;

 Type &
Field....... Field. Field.......Conversion..Column......Output Depth &
Name........ Number Definition..Code........Heading.....Format Assoc..

@ID D 0 ENGAGEMENTS 7L S
TIME D 1 MTH 10L S
ADVANCE D 2 MD22 12R S
GATE_NUMBER D 3 MD0 5R M GATES_ASSOC
GATE_REVENUE D 4 MD22 12R M GATES_ASSOC
GATE_TICKETS D 5 MD0 5R M GATES_ASSOC
ACT_NO D 6 MD0 5R M
RIDE_ID D 7 MD0 3R M RIDES_ASSOC
RIDE_REVENUE D 8 MD22 12R M RIDES_ASSOC
RIDE_TICKETS D 9 MD0 5R M RIDES_ASSOC
CONC_ID D 10 MD0 5R M CONCS_ASSOC
Press any key to continue...

For each column in the table, you see the column’s name, type, column number,
definition, conversion code, optional column headings, output format, and depth and
association. You also could have used:

>LIST DICT ENGAGEMENTS.T

If you want to print the dictionary, use the following statement to send a report listing
the contents of a dictionary to the printer:

>SELECT * FROM DICT ENGAGEMENTS.T LPTR;

Or, again, you could have entered the PRINT.DICT command:

>PRINT.DICT ENGAGEMENTS.T

Examining a Table’s SICA
A special list command, LIST.SICA, is available for viewing the information in the
SICA, which is stored in the file header and is exclusive to tables. The SICA contains
much of the same information found in the file dictionary, but it also includes
information relevant only to tables (in particular, constraints and permissions).
 5-35

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
To examine the SICA for the EQUIPMENT.T table, enter:

>LIST.SICA EQUIPMENT.T

LIST.SICA EQUIPMENT.T 09:52:31AM 02 May 1995 Page 1
==
Sica Region for Table "EQUIPMENT.T"

 Schema: CIRCUS
 Revision: 2
 Checksum is: 27767
 Should Be: 27767
 Size: 920
 Creator: 719
 Total Col Count: 10
 Key Columns: 1
 Data Columns: 9
 Check Count: 0
 Permission Count:0
 References Count:1
 Referenced Count:5
 History Count: 0

 Data for Column "EQUIP_CODE"

 Position: 0
 Key Position: 1
 Multivalued: No
 Not Null: constraint UVCON_0 Yes
 Not Empty: No
 Unique: No
 Row Unique: No
 Primary Key: Yes
 Default Type: None
 Data Type: INTEGER
 Conversion: MD0
 Format: 5R
Press any key to continue...

Examining a Table’s SQL Catalog Information
The SQL catalog, comprising six tables in the CATALOG schema, contains infor-
mation about all schemas, tables, columns, associations, views, and users on the
system. For information about What Is the SQL Catalog?, see the UniVerse SQL
Reference.
5-36 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can use the SELECT command to read from the SQL catalog tables, but you
cannot use the INSERT, UPDATE, or DELETE commands to modify them. For
example, to see the UV_TABLES information for the table ENGAGEMENTS.T in
schema DEMO_glenn, enter:

>SELECT * FROM UV_TABLES
SQL+WHERE TABLE_SCHEMA = 'DEMO_glenn'
SQL+AND TABLE_NAME = 'ENGAGEMENTS.T';
Schema.......DEMO_glenn
Table........ENGAGEMENTS.T
Owner........210
Table Type...BASE TABLE
Base Table...
Columns...... LOCATION_CODE
 . DATE
 . TIME
 . ADVANCE
 . GATE NUMBER
 . GATE_REVENUE
 . GATE_TICKETS
 . ACT_NO
 . RIDE_ID
 . RIDE_REVENUE
 . RIDE_TICKETS
 . CONC_ID
 . CONC_REVENUE
 . CONC_TICKETS
 . LABOR
 . PAY
Views........
Path........./rd2/glenn/Sql/ENGAGEMENTS.T
Dict Path..../rd2/glenn/Sql/D_ENGAGEMENTS.T
Associations.CONC_ASSOC
 . GATES_ASSOC
 . RIDES_ASSOC
Remarks......

1 records listed.
 5-37

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Modifying Table Dictionaries
Warning: This section discusses tables only, not regular UniVerse files.With a few
exceptions, you should not modify a table’s dictionary, since this may result in
inconsistencies between the contents of the dictionary and the contents of the table’s
SICA and the SQL catalog.

Among the cases in which you can safely modify a table’s dictionary are:

To add I-descriptors (virtual columns) to the table definition
To change the set of columns to be displayed by a SELECT * FROM table
statement
To declare that an unassociated multivalued column has a stable key

The following sections discuss these cases in detail, with examples. For these
examples, assume that you have defined a table called SALES96:

>CREATE TABLE SALES96
SQL+(REGION VARCHAR PRIMARY KEY,
SQL+QBONUS DEC(9,2) CONV 'MD2$' MULTIVALUED,
SQL+SALE_CODE INT NOT NULL MULTIVALUED,
SQL+SALESREP VARCHAR MULTIVALUED,
SQL+AMOUNT DEC (7,2) CONV 'MD2$' MULTIVALUED,
SQL+ASSOC DETAIL (SALE_CODE KEY,SALESREP,AMOUNT));

This table contains one row for each sales region. In each row there is a four-valued
column called QBONUS showing the region’s bonus amount for each quarter of the
year, and there is a multivalued association called DETAIL containing detailed
information about each 1996 sale in the region. Suppose the initial contents of table
SALES96 are:

>SELECT * FROM SALES96;

REGION.... QBONUS.... SALE_CODE. SALESREP.. AMOUNT..

EAST $2200.00 9611 SMITH $2500.00
 $500.00 9624 GARCIA $1250.87
 $4000.00 9617 SMITH $985.00
 $975.00
5-38 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Adding I-Descriptors to the Table Definition
I-descriptors define virtual (calculated) columns in a table. They have names,
formatting characteristics, and data types just like real (stored) columns. I-type
expressions are written in a subset of the UniVerse BASIC language and are stored
in the table’s dictionary. When an I-descriptor is used as a column specification in a
SELECT clause, its value is calculated by executing the I-descriptor’s compiled
UniVerse BASIC object code.

Consider the SALES96 table again. Suppose you want to define a virtual column for
the commission paid for each sale. Suppose the commission rate for each sales
representative is stored in a table called COMM96:

>SELECT * FROM COMM96;

SALESREP.. COMM......

GARCIA 0.25
SMITH 0.15

2 records listed.

You can use the UniVerse BASIC TRANS function to determine each commission
rate and multiply it by the amount of the sale. This is done by inserting an I-descriptor
(called COMMISSION) into the dictionary of SALES96:

>INSERT INTO DICT SALES96
SQL+(@ID,CODE,EXP,SM,ASSOC,DATATYPE,FORMAT,CONV)
SQL+VALUES ('COMMISSION','I',
SQL+'TRANS(COMM96,SALESREP,1,"X");@ * AMOUNT',
SQL+'M','DETAIL','DEC,7,2','10R','MD2$');

After adding an I-descriptor to a dictionary, you should compile the I-descriptor
immediately to be sure the UniVerse BASIC code is correct:

 >CD SALES96
 Compiling "COMMISSION".
 TRANS (COMM96 , SALESREP , 1 , X) ; @ * AMOUNT

If you do not compile the I-descriptor, it is compiled the first time you use it.
 5-39

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Since COMMISSION is a multivalued column whose values are calculated for each
individual sale, COMMISSION is made part of the DETAIL association. Since the
DETAIL association is also represented by a phrase in the dictionary called DETAIL,
that phrase should be augmented to contain the name of the new virtual column
COMMISSION. Use the following UPDATE statement to do this (note that the literal
constant being concatenated at the end of the DETAIL phrase starts with a blank
character to separate the word COMMISSION from the existing phrase):

>UPDATE DICT SALES96 SET EXP = EXP ||' COMMISSION' WHERE @ID =
'DETAIL';

Now each sales commission can be displayed as a column in the SALES96 table:

>SELECT REGION,SALE_CODE,SALESREP,AMOUNT,COMMISSION FROM SALES96;
 REGION.... SALE_CODE. SALESREP.. AMOUNT..
COMMISSION

 EAST 9611 SMITH $2500.00
$375.00
 9624 GARCIA $1250.87
$312.72
 9617 SMITH $985.00
$147.75

Changing the Default Set of Displayed Columns
Now observe what is displayed by SELECT * FROM SALES96:

>SELECT * FROM SALES96;
REGION.... QBONUS.... SALE_CODE. SALESREP.. AMOUNT..

EAST $2200.00 9611 SMITH $2500.00
 $500.00 9624 GARCIA $1250.87
 $4000.00 9617 SMITH $985.00
 $975.00
5-40 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
After adding the COMMISSION I-descriptor, you may want to display the
commission when you execute SELECT * FROM SALES96. Perhaps you also want
to hide the region’s quarterly bonus by removing it from the set of column values that
are displayed by SELECT * FROM SALES96. And you may want to display the
SALESNAME synonym instead of the SALESREP column. You can do all this by
adding a special phrase called @SELECT to the table dictionary. @SELECT defines
all of the columns to be displayed by SELECT * FROM SALES96:

>INSERT INTO DICT SALES96 (@ID,CODE,EXP)
SQL+VALUES ('@SELECT','PH',
SQL+'REGION SALE_CODE SALESNAME AMOUNT COMMISSION');

>SELECT * FROM SALES96;
REGION.... SALE_CODE. SALESNAME. AMOUNT.. COMMISSION

EAST 9611 Smith $2500.00 $375.00
 9624 Garcia $1250.87 $312.72
 9617 Smith $985.00 $147.75

Defining a Stable Unassociated Multivalued Column
Sometimes a multivalued column contains a fixed number of values, where the
position of each value is meaningful. An example is the QBONUS column in the
SALES96 table. QBONUS is not just an unsorted set of numbers, it contains each
region’s bonus amounts for the four quarters of the year in chronological order. But
suppose the vice president of Sales chooses to delete the East region’s bonus for the
third quarter after some customer cancels an anticipated sale? You need a way to
force each quarterly bonus amount into the correct sequential position in this
four-valued column. You can do this by writing a UniVerse BASIC program to
update the table, but you can also do it with SQL statements by properly defining the
ordering property of the unassociated column QBONUS.

First consider what happens if you delete the third value in QBONUS before
modifying the dictionary:

>DELETE FROM SALES96_QBONUS WHERE QBONUS = 4000;
UniVerse/SQL: 1 record deleted.

>SELECT REGION,QBONUS FROM SALES96;

REGION.... QBONUS
EAST $2200.00
 $500.00
 $975.00
 5-41

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
What had been the fourth-quarter bonus now appears to be the third-quarter bonus,
which is not what you intended. Now restore the previous data in QBONUS:

>UPDATE SALES96 SET QBONUS = <2200,500,4000,975> WHERE REGION =
'EAST';
UniVerse/SQL: 1 record updated.
>SELECT REGION,QBONUS FROM SALES96;
REGION.... QBONUS....

EAST $2200.00
 $500.00
 $4000.00
 $975.00

To get the behavior you want, add an X-descriptor to SALES96’s dictionary which
declares QBONUS to be STABLE (which is equivalent to the INSERT
PRESERVING property of an association):

>INSERT INTO DICT SALES96 (@ID,CODE,EXP)
SQL+VALUES ('@ASSOC_KEY.QBONUS','X','STABLE');

Now you can delete the third-quarter bonus without affecting the fourth quarter:

 >DELETE FROM SALES96_QBONUS WHERE QBONUS = 4000;
 UniVerse/SQL: 1 record deleted.
 >SELECT REGION,QBONUS FROM SALES96;
 REGION.... QBONUS....

 EAST $2200.00
 $500.00
 $0.00
 $975.00

What happens here is that the synthetic column @ASSOC_ROW is preserved in the
dynamically normalized table SALES96_QBONUS. When the third association row
(@ASSOC_ROW = 3) is deleted, it is actually filled with an empty value, thus
preserving the fourth association row’s position as the fourth-quarter bonus.
5-42 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Loading Data into a Table
At times you may want to load data en masse into UniVerse from another database,
such as ORACLE. UniVerse SQL provides a way to do this in a few short steps; you
need not reenter the data row by row into the new database.

Note: The data-loading process handles data from first-normal-form tables only. It
does not support nonfirst-normal-form data—that is, it does not support the
importing of multivalued data.

The basic steps for using the data loader are:

1. Copy the data from the original source to an operating system file on your
system.

2. Write a configuration file specifying the location and format of the exported
data. The data loader collects information about the format of input data
from this single configuration file.

3. In UniVerse, create a table in UniVerse SQL compatible with the format of
the exported data.

4. Run the data loader to load the data in bulk from one or more input files to
the UniVerse table.

The following table describes the content of the configuration file, including possible
content of specified data.

Configuration File Element Description

File number Repeated for each file defined as
input.

Location Path of the input file, relative to the
current working directory.

Row separator characters A number indicating the decimal
ASCII value of the row separator
character, or the character itself.

Column separator characters A number indicating the decimal
ASCII value of the column separator
character, or the character itself.

Content of the Data Loader Configuration File
 5-43

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Quote character A decimal ASCII value or the
character itself that can be used in the
input file to signify that enclosed
characters are taken literally (that is, it
does not contain a row or column
separator).

Alternate quote character A decimal ASCII value or the
character itself that can enclose a
quote character to indicate that it
should be treated as a literal.

Escape character A character signifying that the next
character should not be interpreted as
a row or column separator, quote
character, or alternate quote character.

Column number The column number in the source file.
Only the columns being used need to
be described.

Source format INTEGER (32 bit), SMALLINT (16
bit), FLOAT (IEEE format only),
DOUBLE (64 bit), BYTEINT (8 bit),
DECIMAL (packed decimal),
CURRENCY (possible leading or
trailing $ or £, or comma separators)
or RAW. RAW is optional.

Width Specifies a fixed column width.
(Optional)

Next separator characters Specifies a column separator that is
different from the file’s column
separator. (Optional)

Configuration File Element Description

Content of the Data Loader Configuration File (Continued)
5-44 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Destination file Specifies the start of the information
about the output file.

Location Either a file name in the VOC of the
account where the program is run, a
Q-pointer (account and file), a path
specifying the path of the data file to
which to write, or a UV/Net file
pointer (host!path).

Create file Yes/No or True/False, case-insen-
sitive. Indicates that the
CREATE.FILE command will be
used to create the file.

Create table Yes/No or True/False, case-insen-
sitive. Indicates that the CREATE
TABLE statement will be used to
create the table.

Parameters Indicates parameters to be passed to
the CREATE.FILE command or
CREATE TABLE statement.

Autosize Yes/No or True/False, case-insen-
sitive. Indicates whether the first
autosize rows will be examined to
determine table sizing parameters.

Autosize rows If not specified, defaults to 10.

Key columns Specifies the column names of the key
columns in the destination file.

Column number Indicates which field in the output
record will contain the data described
by source file number and source
column number, or it can be 0 or KEY
to specify that the data being
described will act only as a key.

Column name Indicates a name that may or may not
correspond with a specified key
column.

Configuration File Element Description

Content of the Data Loader Configuration File (Continued)
 5-45

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
Only one of the following can be specified as True:

Create file
Create table
Autosize

If none are specified as True, the file specified by location is assumed to exist.

Column name and column number must be repeated for each column in the output
file.

When the configuration file is complete, enter the following command at the
UniVerse prompt:

DATALOAD pathname

pathname is the location of the configuration file. The data loader application does
the rest.

The following is an example of a data file:

tomr:"Tom" '"'Thomas Rand^29:77:240:"blond"green:Kevin
lisam:Lisa Michaels^28:66:130:"brown"brown:Troy
kellyv:Kelly Verock^37:72:180:"black"brown:none
paulv:Paul Vander^33:63:110:"brown"brown:Trisha
andyu:Andy Andrews^28:74:250:"blond"blue:none
ken:Ken Thompson^35:73:170:"grayy"blue:Peter
tim:Tim Tarks^35:75:180:"black"brown:none
steve:Steve Gough^35:68:180:"black"green:Nancy
ellen:Ellen Peters^33:75:220:"black"brown:Michael
derek:Derek Starks^34:66:120:"brown"brown:Karissa

Source file numbers

Source column numbers

Conversion type Indicates the type of conversion
applied to the imported data before it
is written to the output file, either I
(ICONV), O (OCONV), or B
(BASIC).

Conversion code I, O, or B, specifying the conversion
type.

Configuration File Element Description

Content of the Data Loader Configuration File (Continued)
5-46 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following example shows the corresponding configuration file:

FILE NUMBER: 1
LOCATION: ../dataloader/names2.data
Row Separator CHARACTER(S): 10
COLUMN SEPARATOR CHARACTER(S): :
QUOTE CHARACTER: "
ALTERNATE QUOTE CHARACTER: '

COLUMN NUMBER: 1
SOURCE FORMAT: RAW
COLUMN NUMBER: 2
SOURCE FORMAT: RAW
NEXT SEPARATOR CHARACTER(S): ^
COLUMN NUMBER: 3
SOURCE FORMAT: RAW
COLUMN NUMBER: 4
SOURCE FORMAT: RAW
COLUMN NUMBER: 5
SOURCE FORMAT: RAW
COLUMN NUMBER: 6
SOURCE FORMAT: RAW
WIDTH: 7
COLUMN NUMBER: 7
SOURCE FORMAT: RAW
COLUMN NUMBER: 8
SOURCE FORMAT: RAW

DESTINATION FILE:

LOCATION: TMP5950
AUTOSIZE: n
AUTOSIZE ROWS:
CREATE FILE: N
PARAMETER(S):
KEY COLUMN(S): KEY1

COLUMN NUMBER: KEY
COLUMN NAME: KEY1
SOURCE FILE NUMBER(S): 1
SOURCE COLUMN NUMBER(S): 1
COLUMN NUMBER: 1
COLUMN NAME: COL1
SOURCE FILE NUMBER(S): 1
SOURCE COLUMN NUMBER(S): 1
COLUMN NUMBER: KEY
COLUMN NAME: KEY2
SOURCE FILE NUMBER(S): 1
SOURCE COLUMN NUMBER(S): 2
COLUMN NUMBER: 2
COLUMN NAME: COL2
SOURCE FILE NUMBER(S): 1
SOURCE COLUMN NUMBER(S): 2
COLUMN NUMBER: KEY
COLUMN NAME: KEY3
SOURCE FILE NUMBER(S): 1
SOURCE COLUMN NUMBER(S): 3
 5-47

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch5.fm
12/29/08
COLUMN NUMBER: 3
COLUMN NAME: COL3
SOURCE FILE NUMBER(S): 1
SOURCE COLUMN NUMBER(S): 3
COLUMN NUMBER: 4
COLUMN NAME: COL4
SOURCE FILE NUMBER(S): 1
SOURCE COLUMN NUMBER(S): 4
CONVERSION TYPE: O
CONVERSION CODE: MD2
COLUMN NUMBER: 5
COLUMN NAME: COL5
SOURCE FILE NUMBER(S): 1
SOURCE COLUMN NUMBER(S): 8

To load the data into a table, first create the table TMP5950:

>CREATE TABLE TMP5950 3 1 1

Then run the data loader, specifying the configuration filename 5950.CONFIG:

>DATALOAD 5950.CONFIG
5-48 UniVerse SQL Administration for DBAs

:\Prog
ecem
5Administering UniData on Windows NT or Windows 2000
0

6
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
UniVerse Files and SQL
How File Dictionaries Affect SQL 6-4
 Data Types of Fields 6-5
 Singlevalued or Multivalued Fields 6-8
 Multipart Record IDs 6-10
 Association Definition 6-11
 Association Behavior 6-14
 Visible Fields (Stored and Computed) 6-16
Converting a UniVerse File to a Table 6-21
 The CONVERT.SQL Command 6-21
 Using CONVERT.SQL 6-23
 CONVERT.SQL Example 6-27
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This chapter describes how file dictionaries affect SQL, the advantages and
limitations of using SQL tables versus UniVerse files, and how to convert UniVerse
files to tables.
 6-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
How File Dictionaries Affect SQL
This section applies only to UniVerse files that are not tables.

You can issue SQL DML (data manipulation language) statements against traditional
UniVerse files as well as tables. The behavior of these SQL statements (SELECT,
INSERT, UPDATE, and DELETE) is affected by the contents of the file dictionaries
involved.

UniVerse ODBC and UniJDBC applications use SQL statements exclusively when
accessing the UniVerse database; they do not directly use RetrieVe or UniVerse
BASIC. Thus it is important for users of UniVerse ODBC and UniJDBC to under-
stand how their file dictionaries can affect the operation of SQL statements. Of
course, users can also issue SQL statements from the UniVerse prompt and from
within UniVerse BASIC programs (using BCI) and C programs (using UCI).

The following table shows the nine characteristics of a file or a field that are
determined by the dictionary when UniVerse processes SQL statements. These
characteristics are discussed individually, along with guidelines for setting up your
dictionaries to control these characteristics explicitly.

Characteristic Controlled by Dictonary Component

Data type SQLTYPE field (8 for D- and I-descriptors; 6 for A- and
S-descriptors)

Singlevalued or
multivalued

SM field (6 for D- and I-descriptors; 5 for A- and S-descriptors)

Multipart record ID @KEY phrase and @KEY_SEPARATOR X-descriptor

Association definition ASSOC field (7 for D- and I-descriptors; 4 for A- and
S-descriptors) and association phrase

Association behavior @ASSOC_KEY.mvname X-descriptor

Visible fields All D-, I-, A-, and S-descriptors are visible to SQL, but
I-descriptors and fields defined by correlatives are read-only

SQL Characteristics Controlled by the Dictionary
6-4 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Data Types of Fields
The data type of a field affects such things as:

What type of literal or other value can be inserted into this field
What type of literal or data in another field can be compared to data in this
field (WHERE clause)
What type of SQL expression this field can participate in

UniVerse determines a data category for each field referenced in an SQL statement.
These categories are:

Character
Bit
Integer
Scaled number
Approximate number
Date
Time

Consider the following examples.

>INSERT INTO FILEX (FIELD1, FIELD2) VALUES (345, 'ABC');

This INSERT works correctly if FIELD1 has a numeric data category (integer, scaled
number, or approximate number) and FIELD2 is a character field. The INSERT
statement is rejected if FIELD1 is nonnumeric (character, date, or time) or if FIELD2
is noncharacter (integer, scaled or approximate number, date, or time).

>SELECT...FROM FILEX WHERE FIELD1 = '01/01/97'
SQL+OR FIELD2 = '12:30';

Default selected fields @SELECT phrase

Default inserted fields @INSERT phrase

Empty-null mapping @EMPTY.NULL X-descriptor

Characteristic Controlled by Dictonary Component

SQL Characteristics Controlled by the Dictionary (Continued)
 6-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
This SELECT statement works correctly if FIELD1 is either a date or character field
and FIELD2 is either a time or character field; it will be rejected otherwise.

>SELECT FIELD1+5, SUBSTRING(FIELD2 FROM 1 FOR 4) FROM
FILEX;

This SELECT statement works correctly if FIELD1 is any category except character
and if FIELD2 is character. This is because you can add an integer (5) to any number,
date or time, but you can only extract a substring from a character field.

When executing an SQL statement, UniVerse determines a field’s data category from
information in the field’s dictionary definition. You can control this explicitly by
setting the SQLTYPE field (field 8 for D- and I-descriptors, field 6 for A- and
S-descriptors). To set the data category for D- and I-descriptors, use the following
UPDATE syntax:

UPDATE DICT filename 'fieldname' SET F8 = 'datatype';

To set the data category for D- and S-descriptors, use the following syntax:

UPDATE DICT filename 'fieldname' SET F6= 'datatype';

The values of datatype to use in the UPDATE statement are described in the
following table.

DATATYPE SQL Data Type Category

INT[EGER] Integer

SMALLINT Integer

DEC[IMAL] [, n [, s]] Integer if s = 0, otherwise scaled number

NUMERIC [, n [, s]] Integer if s = 0, otherwise scaled number

REAL Approximate number

FLOAT [, n] Approximate number

DOUBLE Approximate number

CHAR[ACTER] [, n] Character

VARCHAR [, n] Character

NCHAR[ACTER] [, n] National character

SQL Data Types in the Dictionary
6-6 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
For example, assuming that FIELD3 is defined by a D-descriptor, to make FIELD3
of FILEX a scaled number field with a scale factor of 2, enter:

>UPDATE DICT FILEX 'FIELD3' SET F8 = 'DEC,9,2';

The next example shows how to make field SB_DESC (an A-descriptor) of file
SDCONS a character field with data up to 350 characters wide:

>UPDATE DICT SDCONS 'SB_DESC' SET F6 = 'VARCHAR,350';

If the SQLTYPE field in the dictionary is empty, the conversion and format (justifi-
cation) are used to determine the data type, as follows:

A field with a D conversion is assumed to be a date.
A field with an MT conversion is assumed to be a time.
For a field with an MD, ML, or MR conversion, the conversion’s scale
factor is examined. If the scale factor is not zero, the data category is
assumed to be scaled number using the scale factor from the conversion,
whereas if the scale factor is zero, the data category is assumed to be integer.
A field with a Q conversion is assumed to be an approximate number.
A field with an MB, MO, MX, or NR conversion is assumed to be an integer.
A field with a BB conversion is assumed to be for bit strings. A field with a
BX conversion is assumed to be for hex strings.
A field with any other conversion (except empty) is assumed to belong to
the character data category.
For a field whose conversion is empty, the format (justification) is
examined. If the justification is R, the field is assumed to be an integer, if it
is Q the field is assumed to be an approximate number; otherwise the field
is assumed to be a character field.

NVARCHAR [, n] National character

DATE Date

TIME Time

BIT [, n] Bit

VARBIT [, n] Bit

DATATYPE SQL Data Type Category

SQL Data Types in the Dictionary (Continued)
 6-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
Singlevalued or Multivalued Fields
Whether a field is singlevalued or multivalued affects such things as:

Whether multivalued data can be inserted into the field using the <x,y,z>
syntax
How comparisons of this field to a literal or another field are performed
Whether values in the field can be dynamically normalized by referring to a
virtual table called filename_fieldname

Consider the following examples.

>INSERT INTO FILEX (NMBR1, NMBR2) VALUES (<77,88>, 99);

This INSERT works correctly if NMBR1 is multivalued but not if NMBR1 is
singlevalued, because <77,88> denotes a multiset consisting of the two values 77 and
88. NMBR2, on the other hand, can be either singlevalued or multivalued, because
99 denotes just one value which is acceptable in either case.

>SELECT...FROM FILEX WHERE NMBR1 = NMBR2;

Suppose, in some record of FILEX, field NMBR1 contains the multiset <77,88> and
NMBR2 contains the single value 88. This record will be selected by the previous
query if NMBR1 is defined as multivalued, since a comparison between a
multivalued field and a single quantity is considered to be true if it is true for any
value in the multiset.

If, on the other hand, NMBR1 is defined as a singlevalued field then the record in
question would not be selected by the previous SELECT statement.

>SELECT @ID, NMBR1, NMBR1+7 FROM FILEX_NMBR1;

FILEX_NMBR1 is a special notation in UniVerse SQL that refers to a dynamically
normalized table, which is the virtual table created by exploding each record of
FILEX into a number of rows equal to the number of rows in the field NMBR1. This
SELECT statement will not work unless NMBR1 is defined as a multivalued field
(and NMBR1 must not belong to an association; see “Association Definition” on
page 11). UniVerse ODBC and UniJDBC applications must use dynamic normal-
ization to read or write multivalued data in a UniVerse file; such applications cannot
use the <x,y,z> syntax.
6-8 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
When processing SQL statements, UniVerse uses the SM field (field 6 for
D- and I-descriptors, field 5 for A- and S-descriptors) to determine if a field is
multivalued or singlevalued, where a value of M means multivalued and anything
else means singlevalued.

Note: An A- or S-descriptor which defines the record ID is always treated as being
singlevalued, and an A- or S-descriptor that is part of an association (field 4 = C;x
or D;x) is always treated as being multivalued, regardless of the contents of field 5.

Multipart Record IDs
UniVerse SQL assumes that the record ID for a file has just one logical part
(equivalent to one column in SQL terms) unless there is special information in the
dictionary, stored in an @KEY phrase and an @KEY_SEPARATOR
X-descriptor. Unless this information is present, you cannot use SQL INSERT or
UPDATE statements to write or replace the individual parts of the record ID.

The @KEY phrase names the computed fields (I-descriptor or a field defined by a
correlative) that extract the individual parts of a multipart record ID. The
@KEY_SEPARATOR X-descriptor specifies the character used in the record ID to
separate the key parts (if @KEY_SEPARATOR is omitted, the separator is assumed
to be a text mark).

Suppose the record ID of FILEX consists of a customer number and a date, separated
by an asterisk. These fields are defined in the dictionary as I-descriptors with
appropriate conversions and formats (note that ORDDATE is stored in internal date
format):

CUSTNO I FIELD(@ID,'*',1) 10R
ORDDATE I FIELD(@ID,'*',2) D2- 10R

Without any special dictionary entries these fields can be read successfully by SQL.
For example:

>SELECT DISTINCT CUSTNO FROM FILEX;

However, I-descriptors and fields defined by correlatives are ordinarily treated as
read-only fields by SQL and you cannot write to them. Suppose you want to use SQL
to insert a new order into FILEX. Since you are not allowed to write directly to
ORDDATE, you must write the entire record ID using a statement such as:

>INSERT INTO FILEX (@ID, ITEM,...) VALUES ('123*xxx', 'BOLT',...);
 6-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
xxx represents the internal form of the date. This is obviously inconvenient since you
would have to compute the internal form of the order’s date. In order to allow full use
by SQL of the I-descriptors CUSTNO and ORDDATE, you should add the following
entries to the dictionary:

 @KEY
001 PH
002 CUSTNO ORDDATE

@KEY_SEPARATOR
001 X
002 *

With these entries in the dictionary, the following statements are legal:

>INSERT INTO FILEX (CUSTNO, ORDDATE, ITEM,...) VALUES (123,
'6/1/97',...);

>UPDATE FILEX SET ORDDATE = '5/31/97' WHERE CUSTNO = 123 AND ITEM
= 'BOLT';

Association Definition
Whether a multivalued field belongs to an association or not affects:

How you can access the multivalued data in exploded form
The results of an SQL SELECT from the dynamically normalized virtual
table filename_assocname because the field will be padded (if necessary)
with empty values up to the depth of the association

Suppose the file ORDERS contains an association called ITEMS consisting of the
two multivalued fields PART and QTY with the following data:

ORDER_NO.. CUST_NO PART...... QTY...

 1 123 BOLT 500
 FLANGE 250
 2 456 SCREW 1000
 3 789 BOLT 400
 SCREW 850
6-10 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
To explode the values of PART into individual rows of singlevalued data, enter:

>SELECT ORDER_NO, PART FROM ORDERS_ITEMS;
ORDER_NO.. PART......

 1 BOLT
 1 FLANGE
 2 SCREW
 3 SCREW
 3 BOLT

5 records listed.

The entire association ITEMS is exploded as one virtual table called
ORDERS_ITEMS. To obtain all fields of the association, including the virtual
column @ASSOC_ROW, enter:

>SELECT * FROM ORDERS_ITEMS;

ORDER_NO.. PART...... QTY... @ASSOC_ROW

 1 BOLT 500 1
 1 FLANGE 250 2
 2 SCREW 1000 1
 3 BOLT 400 1
 3 SCREW 850 2

5 records listed.

But the following is not legal because PART is allowed to belong to only one virtual
table, so there is no such thing as ORDERS_PART:

>SELECT ORDER_NO, PART FROM ORDERS_PART;
UniVerse/SQL: Table "ORDERS_PART" does not exist.
 6-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
Suppose now you were to add order 4 (in which the QTY field for FLANGE is left
empty) to the ORDERS file:

ORDER_NO.. CUST_NO PART...... QTY...

 1 123 BOLT 500
 FLANGE 250
 2 456 SCREW 1000
 3 789 BOLT 400
 SCREW 850
 4 800 SCREW 2000
 FLANGE
and then issue the following query:
>SELECT ORDER_NO, QTY FROM ORDERS_ITEMS;

ORDER_NO.. QTY...

 1 500
 1 250
 2 1000
 3 850
 3 400
 4 2000
 4 0

7 records listed.

Because QTY belongs to an association, the number of QTY values for each
ORDER_NO is determined from the “depth of the association” in that record. In the
case of order number 4, the depth is 2 (since the ITEMS field has two values, SCREW
and FLANGE), so the virtual table ORDERS_ITEMS has two rows with
ORDER_NO equal to 4. Since QTY is a numeric field, its value is displayed as 0 even
though the actual stored value is empty.

When processing SQL statements, UniVerse uses the ASSOC field (dictionary field
7 for D- and I-descriptors, field 4 for A- and S-descriptors) to determine whether a
field belongs to an association and, if so, to which association it belongs. For an
association of D- and I-descriptor fields there must also be a phrase, naming the fields
in the association, whose record ID is the association name. Also the field (if D- or
I-descriptor) must be marked as multivalued in the SM field.
6-12 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Association Behavior
Additional control of association behavior can be provided by adding an
@ASSOC_KEY.mvname X-descriptor to the dictionary, where mvname is the name
of an association or the name of an unassociated multivalued field. The
@ASSOC_KEY.mvname record lets you specify one of the following modes of
behavior:

A specified field or fields serve as a unique key for association rows in each
record.
This association (or unassociated field) has no key, and therefore is given an
artificial key called @ASSOC_ROW which is STABLE.
This association (or unassociated field) has no key and @ASSOC_ROW is
treated as an UNSTABLE key (this is the default mode of behavior).

The syntax and definition of @ASSOC_KEY.mvname are discussed under
@ASSOC_KEY.mvname in Chapter 5, “Creating, Modifying, and Dropping
Tables.”

In the ORDERS table used in the previous examples you might decide that PART is
the key field of association ITEMS. This means that within any one order the set of
PART values must all be different. You would enter the following into the dictionary
of ORDERS:

 @ASSOC_KEY.ITEMS
001 X
002 KEY PART

An example of an association with a STABLE key might be the quarterly budget for
each department in a DEPTS file, where there are two fields CAPITAL and
EXPENSE belonging to association BUDGET:

>SELECT * FROM DEPTS_BUDGET;

DEPT_NO... CAPITAL... EXPENSE... @ASSOC_ROW

 100 65000 840000 1
 100 70000 865000 2
 100 70000 905000 3
 100 70000 955000 4
 200 40000 350000 1
 200 40000 380000 2
 200 40000 410000 3
 200 40000 440000 4

8 records listed.
 6-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
This data shows the capital and expense budgets for departments 100 and 200, by
quarter. The capital budget for department 100 is 65000 for the first quarter and
70000 for the second, third, and fourth quarters. Suppose the company controller
decides to delete the second quarter budgets for all departments, because he needs to
recompute and reenter the figures, by issuing the following SQL statement:

>DELETE FROM DEPTS_BUDGET WHERE @ASSOC_ROW = 2;

If the BUDGET association is defined as UNSTABLE then the result would be:

>SELECT * FROM DEPTS_BUDGET;

DEPT_NO... CAPITAL... EXPENSE... @ASSOC_ROW

 100 65000 840000 1
 100 70000 905000 2
 100 70000 955000 3
 200 40000 350000 1
 200 40000 410000 2
 200 40000 440000 3

6 records listed.

The third and fourth quarter budgets have been shifted forward into the second and
third quarters, which is not what the controller wanted. If, on the other hand, the
BUDGET association had been defined as STABLE then the previous DELETE
statement would cause the second quarter budget figures to be removed but their
position to be retained:

>SELECT * FROM DEPTS_BUDGET;

DEPT_NO... CAPITAL... EXPENSE... @ASSOC_ROW

 100 65000 840000 1
 100 0 0 2
 100 70000 905000 3
 100 70000 955000 4
 200 40000 350000 1
 200 0 0 2
 200 40000 410000 3
 200 40000 440000 4

8 records listed.

The dictionary of DEPTS should contain the following X-record to define the
BUDGET association as STABLE:

 @ASSOC_KEY.BUDGET
001 X
002 STABLE
6-14 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Visible Fields (Stored and Computed)
Any field defined in the dictionary can be selected by name or referred to in an SQL
WHERE clause. This includes stored fields (all D-descriptors and noncorrelative A-
and S-descriptors) as well as computed fields (I-descriptors and A- and S-descriptors
containing a correlative in field 8). Computed fields are considered to be read-only
fields unless they belong to a multipart key. Fields defined in the dictionary that are
not read-only can be inserted and updated.

Note: Some fields defined in the dictionary may not be visible to some UniVerse
ODBC applications, since the list of visible fields is created by determining the
default selected fields. For details, see “Default Selected Fields.”

The data type of the dictionary entry controls the behavior of the SQL statement; for
example, if field 1 has two dictionary definitions called FLD1 and ONE, which have
different data types, an SQL statement referring to FLD1 will use FLD1’s data type
whereas a reference to ONE will use ONE’s data type.

Default Selected Fields

Consider the following SQL queries:

SELECT * FROM filename;
SELECT filename.* FROM filename;

The asterisk (*) means all columns. For a UniVerse file, the fields selected by the
previous queries is determined by the contents of a phrase called @SELECT if it
exists. The @SELECT phrase names all fields (whether stored or computed) to be
selected by SELECT * or SELECT filename.*. If there is no @SELECT phrase, the
@ phrase is used (plus @ID unless the phrase contains ID.SUP), and if there is
neither an @SELECT nor an @ phrase, only @ID is selected.

An @SELECT phrase must contain the record ID field name (or key-part field
names) and should not include the token ID.SUP. Thus, the following two phrases are
equivalent to each other as far as their effect on SELECT *:

 @SELECT
001 PH
002 @ID FLD1 FLD2 ITYPE1

@
001 PH
002 FLD1 FLD2 ITYPE1
 6-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
The following phrases are also equivalent to each other:

 @SELECT
001 PH
002 KEYFLD FLD1 FLD2 ITYPE1

@
001 PH
002 ID.SUP KEYFLD FLD1 FLD2 ITYPE1

Default Inserted Fields

If you do an INSERT into a file without naming the columns into which you are
inserting, then the file’s dictionary must contain an @INSERT phrase. The contents
of the @INSERT phrase are used, in the order specified, as the insert-column-list for
such inserts. Of course, the fields named in the @INSERT phrase should not be read-
only fields.

Empty-Null Mapping

The SQL language includes the concept of a null value, meaning that the value is not
known. For example, an EMPLOYEES file might have a DEPT_NAME column,
which would contain null for a new employee who is in a training program until being
assigned to a permanent department. In SQL, null values form the basis for what is
called three-valued logic, in which a condition can be either true, false, or unknown.
The clause WHERE DEPT_NAME = 'SALES' would be true for employees in the
SALES department, false for employees in other departments, and unknown for
trainees who have not been assigned to a department. The clause WHERE
DEPT_NAME <> 'SALES' would also be unknown for unassigned employees.

UniVerse files often contain empty values whose meaning is roughly equivalent to
the SQL null value. But the SQL language does not recognize an empty string as a
valid piece of data. In order to allow SQL statements (issued by UniVerse ODBC, for
example) to deal with empty strings in UniVerse files, UniVerse SQL provides a
special mode of operation called empty-null mapping, which is activated by an X-
descriptor called @EMPTY.NULL in the file’s dictionary:

 @EMPTY.NULL
001 X
6-16 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
This mode is available only for SQL statements issued from client programs (such as
those written using UCI or BCI) which connect to the UniVerse database with a
particular option set. The UniVerse ODBC server sets this option by default, so
empty-null mapping is normally available when you are running a UniVerse ODBC
application.

When the connect option is set and the @EMPTY.NULL X-descriptor is present in
the dictionary, empty values read from the file are presented to the client program as
null values, and null values sent by the client are written to the database as empty
values.

Suppose you have an EMPLOYEES file with the following dictionary and data (note
that the dictionary contains an @EMPTY.NULL X-descriptor and that MARTINEZ’s
department name is empty):

 Type &
Field......... Field. Field........ Conversion.. Column.........
Output
Name.......... Number Definition... Code........ Heading........
Format

@ID D 0 EMPLOYEES
10L
@EMPTY.NULL X
EMP_NAME D 0
10L
DEPT_NAME D 1
10L
@INSERT PH EMP_NAME DEPT_NAME

EMP_NAME.. DEPT_NAME.

HOGAN SALES
MARTINEZ
WOODS SALES
YANG ACCTG

4 records listed.

As a result of empty-null mapping, a user of a UniVerse ODBC client program sees
the following results for this SELECT statement:

>SELECT EMP_NAME FROM EMPLOYEES WHERE DEPT_NAME <> 'SALES';

EMP_NAME..

YANG

1 records listed.
 6-17

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
The previous query does not select MARTINEZ because his department is unknown.
Since it is unknown it might be SALES, so it would be wrong to report that
MARTINEZ is not in the SALES department. The following query shows how to
explicitly check for a null department name:

>SELECT EMP_NAME FROM EMPLOYEES WHERE DEPT_NAME IS NULL;

EMP_NAME..

MARTINEZ

1 records listed.

The following statement inserts a new employee by name only. Since no value is
supplied for DEPT_NAME, this SQL statement generates a null value for that
column. What is actually written into the UniVerse file is an empty string because of
empty-null mapping. This can be seen from the ED command at the end.

>INSERT INTO EMPLOYEES (EMP_NAME) VALUES ('COHEN');
UniVerse/SQL: 1 record inserted.

>ED EMPLOYEES 'COHEN'
0 lines long.
6-18 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Converting a UniVerse File to a Table
UniVerse lets you refer to both files and tables in your SQL (DML) statements. Many
users are content to continue to use files, but there are many advantages to using
tables. Working with tables, you can:

Define views
Define integrity constraints such as CHECK and REFERENCES
Define multicolumn indexes
Specify default values for columns
Specify fine-granularity access control (by granting SELECT, UPDATE,
INSERT, or DELETE privileges to named users)
Use client ODBC programs to create, alter, and drop tables
Use the SQL catalog that describes all schemas, tables, columns, views, and
authorized users on the system

The CONVERT.SQL Command
CONVERT.SQL is a utility program that converts a UniVerse file into a table by
generating a CREATE TABLE statement based on an analysis of the file’s dictionary.
For details about CONVERT.SQL, see the UniVerse User Reference. You can control
the structure of the generated table (column and association definitions) by putting
certain information in the dictionary before running CONVERT.SQL.

For example, suppose FILEX has two different dictionary entries that define the same
field (say field 1):

 Type &
Field...... Field. Field....... Conversion.. Output Depth &
Name....... Number Definition.. Code........ Format Assoc.. SQL
DATA TYPE..

ONE D 1 10R S
FLD1 D 1 10L S
 6-19

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
Based on this dictionary information, CONVERT.SQL defines a data type of INT for
field ONE (because it is right-justified) and a data type of VARCHAR(10) for FLD1,
and chooses one or the other as the preferred column definition for field 1; let’s say
it chooses ONE. When the table is generated, column 1 is given a numeric data type
of INT. Then, in SQL DML statements, references to either FLD1 or ONE use the
data type of column 1 (INT) from the SICA. This means that a query such as the
following will not be allowed because you cannot compare a numeric column to a
character-string literal:

 >SELECT * FROM FILEX WHERE FLD1 = 'ABC';

Because of this you may want to force CONVERT.SQL to choose FLD1, instead of
ONE, as the preferred definition of column 1.

Although CONVERT.SQL analyzes any file dictionary and converts it into a well-
structured table, the previous example shows a reason why you may want to force
CONVERT.SQL to behave in a particular way. The following general procedure can
be used to control the behavior of CONVERT.SQL so that the generated table will
have the exact characteristics you want:

1. Include an @SELECT phrase in your dictionary, listing the dictionary
names of all stored data fields in the file (plus whatever I-descriptors and A-
and S-descriptors containing correlatives you want to show when you run a
SELECT * from the table).
This @SELECT phrase should contain exactly one name for each stored
data field (so, in the previous example, it should contain the name FLD1 or
the name ONE, but not both).

2. For every stored data field named in the @SELECT phrase, specify an SQL
data type in that field’s dictionary entry. This should be the data type that
you want the generated column at that location to have.

3. For every field named in the @SELECT phrase that belongs to an
association, be sure the association name appears in its ASSOC field for
D-descriptors and I-descriptors, and that controlling and dependent fields
are defined properly for A-descriptors and S-descriptors. Also be sure the
dictionary contains an association phrase for every association of
D-descriptors and I-descriptors.

4. Include an @ASSOC_KEY.mvname X-descriptor in the dictionary for
every association. This @ASSOC_KEY.mvname X-descriptor defines
whether the association has a key, and, if not, defines whether it should be
treated as having stable or unstable @ASSOC_ROW numbers.
6-20 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
5. If the file has a multipart record ID, include an @KEY phrase and an
@KEY_SEPARATOR X-descriptor in the dictionary, and be sure the names
of the key-part fields are included in the @SELECT phrase.

6. Be sure that the dictionary entries for all fields named in the @SELECT
phrase are properly marked in the SM field as being singlevalued or multi-
valued. For example, a field in an association should always be marked as
multivalued.

7. For unassociated multivalued fields named in the @SELECT phrase,
include an @ASSOC_KEY.mvname X-descriptor if you want to define a
stable @ASSOC_ROW for this field. The default is an unstable
@ASSOC_ROW.

Using CONVERT.SQL
The most straightforward way to use CONVERT.SQL is first to run the command:

CONVERT.SQL filename TEST GEN

For a list of options for the CONVERT.SQL command, see the UniVerse User
Reference. Examine the results to see if the column and association definitions are
what you want. Look especially at the data types generated for all of the columns. If
a field has a right-justified FORMAT it will probably be given a numeric data type
such as INT, whereas a left-justified FORMAT will result in VARCHAR. If you
know that the field actually contains nonnumeric information, you will want the data
type to be VARCHAR, whereas if the data is all numeric you will want INT or DEC.
You can easily force the correct data type to be chosen for a column by modifying the
field’s dictionary entry, specifying the correct value in the SQLTYPE field:

UPDATE DICT filename 'fieldname' SET {F8 | F6} = 'datatype';

You can also force CONVERT.SQL to choose a particular field definition (among
several definitions of the same field location) by naming all of your preferred field
definitions in an @SELECT phrase in the dictionary:

>INSERT INTO DICT filename (@ID,CODE,EXP)
SQL+VALUES ('@SELECT','PH','xx yy zz');

After you have done this, run the CONVERT.SQL command again and iterate
through the process until you are ready to do the actual conversion. At that time, use
the following command to create the new table:

CONVERT.SQL filename CREATE
 6-21

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
Run the command
CONVERT.SQL filename TEST GEN

to generate the SQLDEF file
and examine the results.

Add information to the dictionary
to control the execution of the

CONVERT.SQL command
(Optional).

Run the command
CONVERT.SQL filename TEST GEN

to determine the effects of the
changes to the dictionary.

Run the command
CONVERT.SQL filename CREATE

to create the new table.

The following flowchart illustrates this process:

The next flowchart shows the process of running CONVERT.SQL in more generality.
You can run the CONVERT.SQL operation interactively instead of using the TEST
keyword. To run interactively, use this syntax:

CONVERT.SQL filename

In this mode, you can make your own changes to the generated column and
association definitions by using the editing facility provided by the CONVERT.SQL
command. With this facility, you can easily change the data type that was originally
generated for a column to a different data type of your choice; or you can choose a
different column definition than the one originally chosen by CONVERT.SQL, for a
field location that is defined several times in the dictionary.
6-22 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Start

Add information to the file dictionary to control
the execution of the CONVERT.SQL command

(Optional).

Run the command
CONVERT.SQL filename TEST GEN

to generate the SQLDEF file
and examine the results.

Run the CONVERT.SQL
command interactively,

making the desired changes
to

the file’s column and
association definitions

(these are saved in
the SQLDEF file).

Run the command
CONVERT.SQL filename CREATE
or select X from the interactive prompt

to create the new table.

Run the command
CONVERT.SQL filename RESTORE

to revert the table to a file and
start the conversion process again

(Optional).

Delete the SQLDEF file when you
are satisfied with the new table

(Optional).
 6-23

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
CONVERT.SQL Example
Here is the dictionary of FILEB, which has D-descriptors, I-descriptors, a multipart
key (using @KEY and @KEY_SEPARATOR), two definitions of field 1, an associ-
ation AAA which includes an I-descriptor, and an @SELECT phrase:

 Type &
Field......... Field. Field........ Conversion.. Output Depth &
SQL
Name.......... Number Definition... Code........ Format Assoc..
DATA TYPE

@ID D 0 10L S
KEY1 I FIELD(@ID,"*" 10R S
 ,1)
KEY2 I FIELD(@ID,"*" 10R S
 D2-,2)
@KEY_SEPARATOR X *
@KEY PH KEY1 KEY2
MULTI1 D 1 10L M
FIELD1 D 1 10L M AAA
FIELD2 D 2 10R M AAA
SUM I ADDS(FIELD1, 10R M AAA
 FIELD2)
AAA PH FIELD1 FIELD2
 SUM
@SELECT PH KEY1 KEY2
 FIELD1 FIELD2
 SUM

The following command analyzes FILEB’s dictionary and generates a new SQLDEF
file, but doesn’t convert the file to a table; it also shows the proposed CREATE
TABLE statement:

>CONVERT.SQL FILEB TEST GEN SHOW
Analyzing 'FILEB' for conversion to SQL 18 JUN
1997 17:43
Generating file 'FILEB_SQLDEF'
Table name: "FILEB" (SQLDEF was generated 18 JUN
1997 17:43)
Columns:
 K01 "KEY1" INT FMT '10R'
 K02 "KEY2" DATE FMT '10R' CONV 'D2-'
 01 "FIELD1" VARCHAR MULTIVALUED FMT '10L'
 01B "MULTI1" VARCHAR MULTIVALUED FMT '10L'
 02 "FIELD2" INT MULTIVALUED FMT '10R'
Associations:
 01 "AAA" (01, 02)
CREATE EXISTING TABLE "FILEB"
6-24 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
 ("KEY1" INT NOT NULL FMT '10R',
 "KEY2" DATE NOT NULL FMT '10R' CONV 'D2-',
 PRIMARY KEY '*' ("KEY1", "KEY2"),
 "FIELD1" VARCHAR MULTIVALUED FMT '10L',
 "FIELD2" INT MULTIVALUED FMT '10R',
 ASSOC "AAA" ("FIELD1", "FIELD2"));

The column definitions and CREATE TABLE statement shown above illustrate that:

The I-descriptors KEY1 and KEY2 show up as key-parts in the column
definition and are used in the PRIMARY KEY definition in the CREATE
TABLE statement.
The conversion code D2- caused CONVERT.SQL to define KEY2’s data
type as DATE.
FIELD1 is preferred over MULTI1 as the definition of field 1 because it was
in the @SELECT phrase.
Association AAA is defined as consisting of two data columns (the
I-descriptor SUM is ignored as part of the table definition, but will be
preserved in the association’s phrase in the dictionary when a table is
created).

Now suppose you want to change the definition of the table before creating it. The
next command invokes CONVERT.SQL in interactive mode:

>CONVERT.SQL FILEB
Analyzing 'FILEB' for conversion to SQL 19 JUN
1997 13:44
File 'FILEB_SQLDEF' exists. Do you wish to overwrite? [N] <Return>
Return accepts the existing SQLDEF file.
Table name: "FILEB" (SQLDEF was generated 18 JUN
1997 17:43)
Columns:
 K01 "KEY1" INT FMT '10R'
 K02 "KEY2" DATE FMT '10R' CONV 'D2-'
 01 "FIELD1" VARCHAR MULTIVALUED FMT '10L'
 01B "MULTI1" VARCHAR MULTIVALUED FMT '10L'
 02 "FIELD2" INT MULTIVALUED FMT '10R'
Associations:
 01 "AAA" (01, 02)
Enter C..., D..., U..., R..., R, S, X, Q, or H for Help [R]: CK1 T
VARCHAR

This changes the data type of KEY1 to VARCHAR:

 K01 "KEY1" VARCHAR FMT '10R'
Enter C..., D..., U..., R..., R, S, X, Q, or H for Help [R]: DA1
 6-25

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch6.fm
12/29/08
This deletes association 1:

 Association deleted
Enter C..., D..., U..., R..., R, S, X, Q, or H for Help [R]: U1B

This chooses to use synonym B (MULTI) for column 1:

 01 "MULTI1" VARCHAR MULTIVALUED FMT '10L'
Enter C..., D..., U..., R..., R, S, X, Q, or H for Help [R]: S

This shows the generated CREATE TABLE statement, so you can see the effect of
the interactive changes:

CREATE EXISTING TABLE "FILEB"
 ("KEY1" VARCHAR NOT NULL FMT '10R',
 "KEY2" DATE NOT NULL FMT '10R' CONV 'D2-',
 PRIMARY KEY '*' ("KEY1", "KEY2"),
 "MULTI1" VARCHAR MULTIVALUED FMT '10L',
 "FIELD2" INT MULTIVALUED FMT '10R');
Enter C..., D..., U..., R..., R, S, X, Q, or H for Help [R]:
X.SAVEDATA

This creates the table, saving its current data first:

Generating file 'FILEB_SQLSAVE'
Preparing to create table
Creating Table "FILEB"
Adding Column "KEY1"
Adding Column "KEY2"
Adding Column "MULTI1"
Adding Column "FIELD2"

The following updated dictionary display shows SQL data types and new phrases.
Note that the @SELECT and AAA phrases still include the I-descriptor SUM. Also
MULTI (preferred by you) replaces FIELD1 in the @SELECT phrase.

 Type &
Field......... Field. Field........ Conversion.. Output Depth & SQL
Name.......... Number Definition... Code........ Format Assoc.. DATA TYPE

@ID D 0 10L S
FIELD2 D 2 10R M AAA INTEGER
MULTI1 D 1 10L M VARCHAR,254
@KEY_SEPARATOR X *
@KEY PH KEY1 KEY2
FIELD1 D 1 10L M AAA
AAA PH FIELD1 FIELD2
 SUM
@SELECT PH KEY1 KEY2
 MULTI1 FIELD2
 SUM
@ PH ID.SUP KEY1
 KEY2 MULTI1
 FIELD2
@REVISE PH MULTI1 FIELD2
6-26 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
KEY1 I FIELD(@ID,"*" 10R S VARCHAR,254
 ,1)
KEY2 I FIELD(@ID,"*" D2- 10R S DATE
 ,2)
SUM I ADDS(FIELD1,F 10R M AAA
 IELD2)

The next command restores table FILEB to a file, restoring both its dictionary and its
data file to their contents at the time the file was converted:

>CONVERT.SQL FILEB RESTOREDATA
Restoring Table FILEB to a file.
 Restoring DICT 'FILEB' (using FILEB_SQLDEF)
 Restoring DATA 'FILEB' (using FILEB_SQLSAVE)
 Deleting file 'FILEB_SQLSAVE'
File restored
 6-27

:\Prog
ecem
6Administering UniData on Windows NT or Windows 2000
0

7
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Ensuring Data Integrity
Data Integrity and UniVerse SQL 7-3
Entity Integrity 7-5
 Unique Values and Primary Keys 7-5
 Checking for Uniqueness (UNIQUE) 7-6
 Checking for Unique Multivalues in Each Row (ROWUNIQUE) . . 7-7
Semantic or Domain Integrity. 7-8
 Testing for NOT NULL and NOT EMPTY 7-8
 Data Types and Domains 7-9
 Rules (CHECK) 7-10
Referential Constraints 7-13
 Referential Integrity 7-14
Removing Integrity Constraints 7-23
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
This chapter discusses data integrity, an important principle in relation to databases.
As a DBA (database administrator) you play an important role in maintaining data
integrity. Typically, a database is constructed, maintained, and used by many people.
If there were no overall monitoring of the data, errors would quickly multiply.

Even with the relatively simple database used in this manual, any or all of the
following errors could easily occur if no measures are taken to prevent them:

Order entries in INVENTORY.T contain vendor IDs that have no match in
the VENDORS.T table.
A vendor ID (VENDOR_CODE) was changed in the VENDORS.T table,
but the change was never reflected in the INVENTORY.T and
EQUIPMENT.T tables.
Nulls and zeros are found in primary key columns.
The same engagement ID (LOCATION_CODE) and date appear several
times in the ENGAGEMENTS.T table.
A value of 1L500 rather than 11500 appears in the SEATS column of the
LOCATIONS.T table.
The PRICE value in a row in the INVENTORY.T table is less than the
COST value in that same row.

Such errors and inaccuracies can be introduced any time you execute an INSERT,
UPDATE, or DELETE statement against a table, but they are preventable. In some
cases, detection and prevention are automatic (such as when a primary key column
enforces unique values). In other cases they must be handled through the prudent use
of certain UniVerse SQL facilities.
7-2 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Data Integrity and UniVerse SQL
In UniVerse SQL there are four kinds of data integrity, as shown in the following
table. The first three categories are covered on the following pages, and the last is
dealt with in Chapter 9, “Transactions, Recovery, and Concurrent Access.”.

You cannot apply a constraint to the data in a column retroactively. Such a constraint
will purge any nonconforming values by adding a constraint with an ALTER TABLE
statement. To ensure that all values conform to certain constraints, include those
constraints at the time the table is created in the CREATE TABLE statement. Only
table constraints (UNIQUE, CHECK, and FOREIGN KEY) can be added later, and
such constraints affect only values entered after the change.

However, if you try to add a table constraint that is violated by data already in the
table, you get an error message and the constraint is not added. Correct this by
deleting or updating the rows causing the violation and then retry the ALTER TABLE
statement.

Category Description Implementation

Entity integrity Each value in a column must be
unique.

UNIQUE,
ROWUNIQUE,
PRIMARY KEY

Semantic/domain
integrity

Null values and empty strings
are prohibited, and values must
conform to certain rules.

NOT NULL,
NOT EMPTY,
SQL Data Types,
CHECK

Referential integrity Table-to-table, parent-child
dependencies; a value in one
column of one table must also
exist as a value in some column
in this or another table.

PRIMARY KEY,
FOREIGN KEY Table
Constraint,
REFERENCES Privilege,
ON DELETE,
ON UPDATE

Consistency An INSERT, UPDATE, or
DELETE to this table also
requires an INSERT, UPDATE,
or DELETE to one or more
other tables.

Transaction Processing

UniVerse SQL Data Integrity Constraints
 7-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
Entity Integrity
For some columns it is important that every value be unique. This is always true for
the primary key of a table, but it can apply to other columns as well. This concept of
unique values is referred to as entity integrity, because duplicate values in such
columns raise serious doubts about the accuracy of the data.

Unique Values and Primary Keys
Because each row in a table represents an individual entity in the real world, it makes
sense for each row to be unique. Taking the Circus database as an example, each row
in VENDORS.T represents an individual vendor source, each row in
EQUIPMENT.T represents a specific piece of purchased equipment, each row in
INVENTORY.T represents a specific stock item, and so forth.

The primary key of a table is one or more columns that together express this
uniqueness. Looking at the Circus database, every table except one has a single
column defined as the primary key of that table:

VENDOR_CODE. . . . PRIMARY KEY
LOCATION_CODE. . . PRIMARY KEY
ITEM_CODE. PRIMARY KEY
EQUIP_CODE PRIMARY KEY
BADGE_NO PRIMARY KEY
ANIMAL_ID. PRIMARY KEY
CONC_NO. PRIMARY KEY
ACT_NO PRIMARY KEY

A primary key often is a single column. However, in those tables with no single
column of unique values, it can be made up of multiple columns. This is the case with
ENGAGEMENTS.T, where the engagement ID (LOCATION_CODE) is not unique
because a site may be booked more than once, on different dates. The primary key is
defined as a combination of LOCATION_CODE and date (DATE).

LOCATION_CODE
"DATE"
.
.
.
CONSTRAINT PRIMARY KEY (LOCATION_CODE,"DATE")
7-4 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
If you allow a row to be entered that has the same primary key value as another row
in the table, there would be no way to distinguish one from the other or to determine
which was the “real” row for that entity (inventory item, location, equipment, act, and
so on). Thus, SQL standards require that each primary key column (as well as any
column with a uniqueness constraint) not contain any null values.

Every time you insert or update a row in a table, UniVerse SQL checks the uniqueness
of its primary key (or @ID) value and rejects the insertion or update if the check fails.

Sometimes there are reasons for columns other than primary keys to contain unique
values. In those cases, there are two levels of uniqueness:

For single- or multivalued columns, uniqueness across all rows (UNIQUE)
For multivalued columns, uniqueness only within each row
(ROWUNIQUE)

Checking for Uniqueness (UNIQUE)
As an example of the first level with a singlevalued column, for every act’s
description to be unique, define the DESCRIPTION column as:

DESCRIPTION VARCHAR FMT '25T' NOT NULL UNIQUE

As an example of uniqueness with a multivalued column, you decide that no
employee could be part of more than one act, and define OPERATOR in the ACTS.T
table as:

OPERATOR INTEGER FMT '5L' NOT NULL UNIQUE MULTIVALUED
REFERENCES PERSONNEL

This definition prohibits the OPERATOR column from having duplicate values in the
same row or in any other row in the table.
 7-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
Checking for Unique Multivalues in Each Row
(ROWUNIQUE)
In the case of multivalued columns, sometimes all you care about is that the multiple
values in each row are unique. As an example, return to the ACTS.T table. This time
an employee can be part of more than one act, but there is still no sense in having an
employee ID appear more than once in an act, so define OPERATOR as
ROWUNIQUE:

OPERATOR INTEGER FMT '5L' MULTIVALUED NOT NULL ROWUNIQUE
REFERENCES PERSONNEL

UniVerse SQL syntax rules require that NOT NULL precede any ROWUNIQUE.

Consider applying ROWUNIQUE to other columns, such as all personnel, livestock,
equipment, and inventory IDs found in the ACTS.T and CONCESSIONS.T tables:

ANIMAL_ID (in ACTS.T)
EQUIP_CODE (in ACTS.T, CONCESSIONS.T)
OPERATOR (in ACTS.T, CONCESSIONS.T)
ITEM_CODE (in CONCESSIONS.T)

These definitions mean that each animal, piece of equipment, employee, and
inventory item can appear only once for each act or concession.
7-6 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Semantic or Domain Integrity
One way to enforce data integrity is to apply certain tests to a value before it is
accepted for entry into a column. There are three ways to do this:

Testing that the value is real, and not a null value or an empty string
Checking that the data is compatible with the data type of the column
Applying one or more rules (CHECK) on the value

This is called domain integrity or semantic integrity and ensures that the value
conforms to the characteristics defined for the column.

Testing for NOT NULL and NOT EMPTY
The simplest constraints are those requiring a column to contain “real” data values,
that is, values that are neither null values nor empty strings.

If you look at the description of the Circus database, you see that many columns are
described as NOT NULL. In fact, this constraint is mandatory for any column desig-
nated as UNIQUE or ROWUNIQUE. Primary key columns are implicitly defined as
NOT NULL, so you need not explicitly define them as such.

A number of columns are defined as NOT NULL, such as:

DEP_NAME VARCHAR FMT '10T' MULTIVALUED NOT NULL ROWUNIQUE
VAC_TYPE CHAR(1) FMT '1L' MULTIVALUED NOT NULL ROWUNIQUE
"DATE" DATE FMT '10L' CONV 'D2/' NOT NULL
GATE_NUMBER INTEGER FMT '5R' MULTIVALUED NOT NULL ROWUNIQUE

You also can define a column with the NOT EMPTY keyword. The column must
contain a nonempty string (a string of other than zero length) in order for the row to
be accepted for insertion or updating. Because NOT NULL and NOT EMPTY have
different effects, you can specify both constraints for a column.

Frequently, nulls and empty values are inserted in a column inadvertently because the
person entering the data skips that column. Although this problem can be avoided by
specifying a DEFAULT clause for the column, this approach is not always feasible.
For example, there are no logical “default values” for name, vaccination type, or
engagement date.
 7-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
NOT NULL and NOT EMPTY are convenient for ensuring that some value is
supplied. In UniVerse SQL, to check whether that value is valid, specify a data type
and apply specific tests (rules) to the value.

Data Types and Domains
Unlike non-SQL UniVerse, which does not use data types, UniVerse SQL recognizes
several data types. In SQL, each column is referred to as having a domain, a set of
data values that are valid for that column. The data type of a column is one way of
establishing that column’s domain.

This section discusses what these data types are and how they control what values are
accepted as valid.

If you have an SQL background, be aware that, in the context of UniVerse, certain
SQL data types are treated as equivalent. Data types are summarized in the following
table.

For complete descriptions of these categories and data types, see the UniVerse SQL
Reference.

Data Types Contents and Usage

NUMERIC and DECIMAL Store decimal fixed-scale numbers, and are
used for money amounts, percentages, and the
other values that require precise fractional
parts.

CHARACTER, VARCHAR, NCHAR,
and NVARCHAR

Store any combination of numbers, letters, and
special characters, and are used for names,
addresses, descriptions, phone numbers, and so
forth.

INTEGER and SMALLINT Store whole decimal numbers, and are used for
counts, quantities and the like.

DOUBLE PRECISION, REAL, and
FLOAT

Store integer numbers, and are used for scien-
tific values that can be calculated only
approximately.

DATE and TIME Store dates and times.

BIT and VARBIT Store bit strings.

UniVerse SQL Data Types
7-8 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Rules (CHECK)
Another way to establish a column’s domain in UniVerse SQL is to define a rule for
testing a value before it is accepted in that column. A rule (condition) is defined in a
CHECK clause in the CREATE TABLE and ALTER TABLE statements and is
entered as an SQL expression. For example:

CHECK (EST_LIFE BETWEEN 1 AND 50)

ensures that no animal is considered to have an estimated life span longer than 50
years (or less than 1 year).

A CHECK constraint can set either a column constraint (that is, part of the column
definition) or a table constraint (which generally applies to more than one column in
the table).

Although the Circus database was not defined CHECK constraints, here are a few
instances where they might have been used to advantage.

Since the circus does not hire anyone under 18 and the mandatory retirement age is
70, set a column constraint on DOB in the PERSONNEL table to allow only values
between 1924 and 1977 (using a current year of 1995):

DOB DATE CONSTRAINT AGE_CHK CHECK (DOB BETWEEN '1/1/24' AND
'1/1/77') FMT '10L' CONV 'D2/'

Because all shows are either early afternoon (2 p.m.) or late afternoon (5 p.m.) perfor-
mances, specify a column constraint to restrict TIME to only those values. Note that
UniVerse SQL times are like UniVerse times, with time literals expressed in military
format and enclosed in single quotation marks:

"TIME" TIME CONSTRAINT TIME_CHK CHECK (TIME IN ('14:00',
'17:00')) FMT '10L' CONV 'MTH'

These two examples illustrate column constraints, because the condition referred
only to the column itself. But what if you wanted to compare one column to another?
Because two columns are involved, use a CHECK table constraint. One example of
using a CHECK table constraint is to ensure that the cost of any entered inventory
item (what you pay for it) always is less than its price (what you charge for it):

>CREATE TABLE INVENTORY.T (...CONSTRAINT COST_CHK
SQL+CHECK (COST < PRICE),...);
 7-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
The CONSTRAINT name phrase can be included in the definition of a constraint.
This is the name you use in the DROP clause of an ALTER TABLE statement to drop
the constraint. Supplying a name is useful for documentation purposes. However, if
you do not supply a name for a constraint, the system generates one for you. Double
quoted column names are allowed within a CHECK constraint.

Note: You cannot use CURRENT_DATE and CURRENT_TIME in a CHECK
constraint.

CHECK Constraints and Multivalued Columns

When applying CHECK constraints to multivalued columns, multivalued logic is
followed. Thus the use of the keyword EVERY in a CHECK constraint on a multi-
valued column requires that every value meet the criteria of the CHECK constraint
when writing data into the file. Omission of the keyword EVERY implies intent of
the keyword ANY: if any value in the multivalued columns meets the criteria of the
CHECK constraint, data can be written.

The following example shows a CHECK table constraint involving multivalued
columns. To ensure that every vaccination type (VAC_TYPE) is either R (rabies), P
(parvo), or L (feline leukemia), and that every VAC_NEXT is greater than
VAC_DATE, enter:

>CREATE TABLE LIVESTOCK.T (...
SQL+CONSTRAINT LV1 CHECK (EVERY VAC_TYPE IN ('R', 'P', 'L')
SQL+AND EVERY VAC_NEXT > VAC_DATE));
7-10 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Referential Constraints
Another way to ensure the completeness and accuracy of your data is to set up depen-
dencies between tables, using primary and foreign keys or the REFERENCES clause.
This is known as referential integrity.

Certain relationships exist among the tables in the Circus database, as is the case in
almost all databases. For example, each engagement has a location along with a list
of rides and concessions; every vendor from whom you purchased inventory or
equipment is represented in the VENDORS.T table; and all the acts, concessions, and
rides use employees, equipment, and livestock.

Dependent, or Parent-Child, Relationships
These referential relationships are called dependent, or parent-child, relationships.
Each VENDORS.T (parent) row has zero or more EQUIPMENT.T (child) rows with
matching vendor IDs, and each EQUIPMENT.T (child) row has one VENDORS.T
(parent) row with a matching VENDOR_CODE.

A referential constraint defines a dependent relationship between one column (the
referencing, or child, column) and another column (the referenced, or parent,
column). The referencing column becomes a foreign key. The referenced column is
a primary key (or @ID if the table has no primary key) or other column containing
unique values (which must be defined as UNIQUE and NOT NULL). Only values
contained in the referenced column can be inserted into the referencing column
(however, you can always insert null values into the referencing column).

Because of this relationship, a value about to be inserted into a child row can be
verified by first comparing it to the parent table. That is, to verify that a vendor ID
value about to be entered into the VENDOR_CODE column in the EQUIPMENT.T
table is correct, it has to match one of the values in the VENDOR_CODE column of
the VENDORS.T table.
 7-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
Refer to the following table when using multivalued columns with referential
constraints:

Referential Integrity
Referential integrity is important in the following situations:

Before a new EQUIPMENT.T (child) row is inserted, referential integrity
ensures that its VENDOR_CODE value has a match in the VENDORS.T
table.
Before an EQUIPMENT.T row is updated, referential integrity ensures that
any change to its VENDOR_CODE value has a match in the VENDORS.T
table.
Indirectly, referential integrity also is affected if you modify the
VENDORS.T table by deleting a vendor or updating the VENDOR_CODE
of a vendor. Such changes would “orphan” any EQUIPMENT.T rows
whose VENDOR_CODE column contained those deleted or old vendor
IDs.

Scanning the database definitions, you see quite a few instances where referential
integrity could be applied. Every location code (LOCATION_CODE) in the
ENGAGEMENTS.T table should have a match in the LOCATION_CODE column
of the LOCATIONS.T table, every vendor code in the VENDOR_CODE column of
the INVENTORY.T table and the VENDOR_CODE column of the EQUIPMENT.T
table should have a match in the VENDOR_CODE column of the VENDORS.T
table, and so forth.

If the referencing column is... The referenced column can be...

One singlevalued column One single- or multivalued column

Two or more singlevalued columns
(checked pair by pair)

Two or more singlevalued columns

One multivalued column (every value must
exist somewhere in the referenced column)

One single- or multivalued column

Two or more multivalued columns (not
allowed)

—

Referential Constraints
7-12 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
UniVerse SQL has two mechanisms for establishing referential integrity: primary and
foreign keys, and the REFERENCES clause.

PRIMARY KEY Constraint

The PRIMARY KEY clause is, in itself, a constraint that imposes several restrictions
on a column’s content:

Nulls are not allowed.
The columns must be singlevalued.
The values must be unique.

Each table can have only one primary key, but a primary key can comprise more than
one column. In many cases, values in the primary key of one table can be used to
maintain referential integrity for one or more columns in other tables by applying a
FOREIGN KEY constraint.

FOREIGN KEY Constraint

The FOREIGN KEY table constraint defines a dependent relationship between one
column (the referencing column) and another column (the referenced column). The
syntax is as follows:

FOREIGN KEY (referencing_columns)
REFERENCES tablename (referenced_columns)
[ON DELETE action] [ON UPDATE action]

Implicit in the definition is the concept that any value entered in a referencing column
must exist in the corresponding referenced column. The optional ON DELETE and
ON UPDATE clauses are discussed later in this chapter.

If, as stated before, the values in VENDOR_CODE depend on the values in
VENDOR_CODE of the VENDORS.T table, you could define VENDOR_CODE as
a foreign key that references VENDORS.T.VENDOR_CODE:

>CREATE TABLE M... (...VENDOR_CODE INTEGER FMT '5L',
SQL+FOREIGN KEY (VENDOR_CODE)
SQL+REFERENCES VENDORS.T (VENDOR_CODE);
 7-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
Now UniVerse SQL will match any value to be entered in VENDOR_CODE against
the values in the VENDOR_CODE column of the VENDORS.T table before
accepting it. If UniVerse SQL cannot find a match, it will reject the INSERT or
UPDATE and return an error message. (Note that you could have omitted the actual
name of the referenced column, VENDOR_CODE, because it is the primary key of
the VENDORS.T table and the REFERENCES keyword refers to the primary key of
the referenced table by default.)

As noted earlier, the Circus database offers many opportunities for establishing refer-
ential integrity. You could, of course, define those columns as foreign keys in the
CREATE TABLE statements that originally created the Circus database. However, if
you did not, use ALTER TABLE statements to add these foreign keys to the existing
definitions. For example:

>ALTER TABLE ENGAGEMENTS.T
SQL+ADD CONSTRAINT EIDFK FOREIGN KEY (LOCATION_CODE)
SQL+REFERENCES LOCATIONS.T (LOCATION_CODE);
>ALTER TABLE INVENTORY.T
SQL+ADD CONSTRAINT IOVFK FOREIGN KEY (VENDOR_CODE)
SQL+REFERENCES VENDORS.T (VENDOR_CODE);
.
.
.

REFERENCES Clause

Another way to define a referential relationship between two columns is to use the
column constraint REFERENCES to designate a specific column as a foreign key. It
takes the same form as the REFERENCES keyword of the FOREIGN KEY clause
and applies to the column being currently defined.

An example of REFERENCES is the CREATE TABLE statement for the ACTS.T
table:

>CREATE TABLE ACTS.T (...
SQL+OPERATOR... REFERENCES PERSONNEL.T,
SQL+ANIMAL_ID... REFERENCES LIVESTOCK.T,
SQL+EQUIP_CODE... REFERENCES EQUIPMENT.T,...);

FOREIGN KEY Versus REFERENCES

In some situations, it is preferable to use the FOREIGN KEY clause rather than
REFERENCES to define a referential relationship:
7-14 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You must use FOREIGN KEY if the key is multicolumn. Note that the key
must be split up in the same way in both the parent table and the child table.
If you are adding a foreign key constraint to an already existing table, you
must use FOREIGN KEY, because you cannot add column constraints.

For example, if you are defining a new table that has a three-part foreign key, you
could include one FOREIGN KEY clause in your CREATE TABLE statement:

FOREIGN KEY (FKEY1, FKEY2, FKEY3)
 REFERENCES TABLEA (TFKEY1, TFKEY2, TFKEY3)

If you are creating a table that has a single-column foreign key, it is simpler to define
it with the REFERENCES keyword as part of that column’s definition.

Referential Cycles

Special problems arise when table relationships form a referential cycle. An example
of this is in the VENDORS.T and EQUIPMENT.T tables, where the
VENDOR_CODE value in EQUIPMENT.T refers to VENDOR_CODE in
VENDORS.T, and EQUIP_CODE in VENDORS.T refers to EQUIP_CODE in
EQUIPMENT.T. Thus, a circular link flows in both directions between these tables:
every vendor is related to one or more rows in EQUIPMENT.T, and every row in
EQUIPMENT.T is related to a row in VENDORS.T.

A problem occurs when a new piece of equipment is purchased from a new vendor.
For example, if both the VENDOR_CODE and EQUIP_CODE columns are defined
with referential integrity and you try to insert a new row into EQUIPMENT.T first,
with VENDOR_CODE containing the ID (152) for the new vendor:

>INSERT INTO EQUIPMENT.T VALUES (62, 232, 'Ted Schultz', 'D',
SQL+'Calliope', 75000, 20, 10, 220, '10/28/94');
UniVerse/SQL: REFERENCES Constraint Violation on column
VENDOR_CODE
Can’t insert record <62>, contents <232...................>

UniVerse SQL will not find a value in the VENDOR_CODE column of
VENDORS.T that matches the value you are trying to insert into the
VENDOR_CODE column of EQUIPMENT.T because vendor 232 is not in the
database.
 7-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
If you reverse the order of these two statements and try the VENDORS.T insert first,
you just encounter a different version of the same problem:

>INSERT INTO VENDORS.T VALUES (232, 'Showtime Music Co.', '2100
SQL+Plains Avenue', 'Milwaukee WI', 'USA', 'Net 90 Days',
SQL+'John Jenks', '414-555-1300', '414-555-1303',
SQL+62, 20, 30);
UniVerse/SQL: REFERENCES Constraint Violation on column EQUIP_CODE
Can’t insert record <232>, contents <"Showtime..............">

This time UniVerse SQL will not find a value in the EQUIP_CODE column of
EQUIPMENT.T that matches the value inserted into the EQUIP_CODE column of
VENDORS.T because equipment item 62 is not in the database.

To get around this deadlock, be sure that when creating these tables, you define one
of the foreign keys as accepting null values. Then execute the INSERT statement on
that table first (with the value for the foreign key as NULL), and then on the second
table. Then use an UPDATE statement on the first table to change the value of the
foreign key from NULL to its real value. Continuing with the example, here’s how
you would make these two entries (assuming that there isn’t a NOT NULL constraint
on VENDOR_CODE):

>INSERT INTO EQUIPMENT.T VALUES (62, NULL, 'Ted Schultz',
SQL+'D', 'Calliope', 75000, 20, 10, 220, '10/28/94');
UniVerse/SQL: 1 record inserted.
>INSERT INTO VENDORS.T VALUES (232, 'Showtime Music Co.',
SQL+'2100 Plains Avenue', 'Milwaukee WI', 'USA',
SQL+'Net 90 Days', 'John Jenks', '414-555-1300',
SQL+'414-555-1303', 62, 20, 30);
UniVerse/SQL: 1 record inserted.
>UPDATE EQUIPMENT.T SET VENDOR_CODE = 232
SQL+WHERE EQUIP_CODE = 62;
UniVerse/SQL: 1 record updated.

ON DELETE and ON UPDATE Clauses

Until now, referential integrity implied that you could not delete or update a row in a
referenced table if related rows exist in referencing tables. It implied, for example,
that you could not delete a row from EQUIPMENT.T or update EQUIP_CODE to
another value if EQUIP_CODE existed in ACTS.T.
7-16 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
But there is another way to maintain referential integrity, other than refusing to delete
or update a referenced record. Specifying ON DELETE action or ON UPDATE
action when defining the referential constraint accomplishes this. The CASCADE
action in an ON UPDATE or ON DELETE clause causes columns in tables refer-
encing the current (referenced) table column to be updated or deleted. Thus all values
mirror one another. However, you cannot specify CASCADE in an ON UPDATE or
ON DELETE clause if the initial referenced column is multivalued.

ON UPDATE specifies what action to take if a referential constraint violating update
is attempted. Conversely, ON DELETE specifies what action to take if a referential
constraint violating delete is attempted.

Add CASCADE (or another referential action such as SET NULL, SET DEFAULT,
or NO ACTION) as part of the ON UPDATE or ON DELETE clause of a greater
REFERENCES clause. For example, to specify a cascaded update or delete in the
previous example of the CREATE TABLE statement for the ACTS.T table, enter:

>CREATE TABLE ACTS.T (...
SQL+OPERATOR... REFERENCES PERSONNEL.T,
SQL+ANIMAL_ID... REFERENCES LIVESTOCK.T ON UPDATE CASCADE,
SQL+EQUIP_CODE... REFERENCES EQUIPMENT.T,...);

In the previous example, if an ANIMAL_ID number is updated in LIVESTOCK.T,
all occurrences of that ANIMAL_ID in ACTS.T are updated automatically to the
same new value. If an animal is deleted from LIVESTOCK.T, all acts using that
animal are deleted automatically.

If ON DELETE or ON UPDATE is omitted, or if NO ACTION is specified, any
attempt to update or delete a referenced row will be deleted. If SET NULL or SET
DEFAULT is specified, any such update (or delete) will cause values in the refer-
encing rows to be rewritten as null or as the referencing column’s default value,
respectively.

Any change to a referencing table caused by CASCADE, SET NULL, or SET
DEFAULT will be verified as valid with respect to the referencing table’s integrity
constraints. If the referencing table is also a referenced table, such a change could
result in additional referential actions being performed on other tables.

If you specify both the ON DELETE and ON UPDATE clauses, it does not matter
which clause you specify first. For any pair of referenced and referencing tables, you
can define only one ON DELETE clause and only one ON UPDATE clause that
specify CASCADE, SET NULL, or SET DEFAULT.
 7-17

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
When the referential actions CASCADE, SET NULL, and SET DEFAULT change
referencing tables, the changes are verified as valid according to the referencing
tables’ integrity constraints. If a referencing table is also a referenced table, such
changes may result in other referential actions occurring in other tables.

Referential Integrity and Multivalues

The result of ON UPDATE and ON DELETE clauses varies according to whether the
values in a referenced or referencing column are single- or multivalued.

As discussed in “FOREIGN KEY Constraint” on page 15, updating rows in a refer-
enced table also can affect rows in the referencing table. How such rows are affected
is best illustrated in the following table. The tables use the following notation:

refgtab is the name of the referencing table.
refgcol is the name of the referencing column.
oldval is the value being deleted or updated in a singlevalued referenced
column.
newval is the replacement value in an update.
oldval_1 through oldval_n are the values being deleted from a multivalued
referenced column, or the now missing values in the case of an update to that
column.
refgtab_refgassoc represents the use of dynamic normalization to unnest a
multivalued referencing column. If the column is unassociated, refgassoc is
replaced by refcol.
refcol_1 through refcol_m are the column names of the m parts of a
multipart referencing column set.
oldpart_1 through oldpart_m are the values in m parts of a multipart refer-
enced column set that is being updated or deleted.
newpart_1 through newpart_m are the replacement values from the m parts
of a multipart referenced column set that is being updated.
7-18 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table shows what happens when the referencing table’s REFER-
ENCES clause includes the ON UPDATE clause.

Referenced
Column

Referencing
Column

Number of
Parts Action

Singlevalued Singlevalued 1 UPDATE refgtab SET refgcol =
{ NULL| DEFAULT | newval }
WHERE refgcol = oldval;

Multivalued Singlevalued 1 UPDATE refgtab SET refgcol =
{ NULL | DEFAULT }
WHERE refgcol IN (oldval_1, … ,
oldval_n);

Singlevalued Multivalued 1 UPDATE refgtab_refgassoc SET refgcol
=
{ NULL | DEFAULT | newval }
WHERE refgcol = oldval;

Multivalued Multivalued 1 UPDATE refgtab_refgassoc SET refgcol
=
{ NULL | DEFAULT } WHERE refgcol
IN (oldval_1, … , oldval_n);

Singlevalued Singlevalued m (>1) UPDATE refgtab SET refgcol_1 =
{ NULL | DEFAULT | newpart_1 }, … ,
refgcol_m { NULL | DEFAULT |
newpart_m } WHERE refgpart_1 =
oldpart_1 AND …
AND refgpart_m = oldpart_m;

Referential Integrity and Multivalues with ON UPDATE
 7-19

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch7.fm
12/29/08
The next table describes what happens when the referencing table’s REFERENCES
clause includes the ON DELETE clause.

Referenced
Column

Referencing
Column

Number of
Parts Action

Singlevalued Singlevalued 1 DELETE FROM refgtab
WHERE refgcol = oldval;

Multivalued Singlevalued 1 DELETE FROM refgtab
WHERE refgcol IN (oldval_1, … ,
oldval_n);

Singlevalued Multivalued 1 DELETE FROM refgtab_refgassoc
WHERE refgcol = oldval;

Multivalued Multivalued 1 DELETE FROM refgtab_refgassoc
WHERE refgcol IN (oldval_1, … ,
oldval_n);

Singlevalued Singlevalued m (>1) DELETE FROM refgtab
WHERE refgcol_1 = oldpart_1 AND …
AND refgcol_m = oldpart_m;

Referential Integrity and Multivalues with ON DELETE
7-20 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Removing Integrity Constraints
The only constraints you can remove from a table definition are the table constraints
UNIQUE, CHECK, and FOREIGN KEY. You cannot remove a PRIMARY KEY
constraint.

To remove a constraint, use the ALTER TABLE statement with a DROP
CONSTRAINT clause. DROP CONSTRAINT specifies the name of the constraint
(when creating or altering a table, you can assign a name to a constraint; if you do
not, the system assigns a default name).1 For example, if you added a FOREIGN
KEY constraint to ACTS.T and called it AOFK, and you now want to remove it, issue
the following ALTER TABLE statement:

>ALTER TABLE ACTS.T DROP CONSTRAINT AOFK;
Dropping Constraint AOFK

When used to drop a UNIQUE constraint, the DROP CONSTRAINT clause has two
options: RESTRICT and CASCADE. RESTRICT is the default, and prohibits the
removal of a UNIQUE constraint if the column is referenced by a foreign key in
another table. CASCADE has the opposite effect, and it not only allows removal of
the UNIQUE constraint in such instances but also removes the referential constraint
from the referencing (foreign key) columns.

1. Tables created on a UniVerse Release 7 system may include unnamed constraints. To drop
an unnamed constraint, use LIST.SICA to list any unnamed constraints, then use ALTER
TABLE to drop the constraint. Use the following syntax: ALTER TABLE tablename
DROP CONSTRAINT "UNNAMED*n", where n is the position number of the
constraint as shown by LIST.SICA.
 7-21

:\Prog
ecem
7Administering UniData on Windows NT or Windows 2000
0

8
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Maintaining Database
Security
Controlling Access to Your Database 8-3
 Users . 8-3
 Database Objects 8-4
 Privileges. 8-4
Granting Privileges 8-6
 Granting Database Privileges 8-6
 Granting Table Privileges. 8-8
Revoking Privileges 8-14
 Revoking Database Privileges 8-14
 Revoking Table Privileges 8-14
 REVOKE and WITH GRANT OPTION 8-15
 REVOKE and Overlapping GRANTs 8-16
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch8TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The need for data security is obvious, especially when you consider how easy it is to
access a database through interactive SQL. Without security, anyone at a terminal can
probe, change, and even destroy your data at will. However, establishing blanket
security on everything is not the answer; a database that only you can access is not
very useful. Rather, security should be established at various levels. This is because
the security needs of a particularly large production database are complex and differ
at each level. For example:

A given schema accessed by some users but not at all by others.
Within a schema, each table accessed by some users but not others.
Within a given table, access to data restricted on a column-by-column basis.
Access also can be restricted according to function—users can be granted
SELECT Privilege, DELETE Privilege, INSERT Privilege, UPDATE
Privilege, or ALTER Privilege on a table, or any combination thereof.

With the additional information provided by the SQL catalog and the SICA (security
and integrity constraints area) of an SQL table, UniVerse SQL offers more levels of
data security and more options within those levels than UniVerse without SQL. Just
as UniVerse SQL incorporates more extensive data integrity mechanisms, so does it
incorporate greater database security, and for many of the same reasons. The SQL
catalog contains extensive information about the database tables and users, and the
SICA region contains in-depth information about the table, its columns, constraints,
and permissions.
 8-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch8.fm
12/29/08
Controlling Access to Your Database
To determine what types of security you need for a particular database, ask yourself
the following questions:

Who should have access?
To what should they have access?
In what manner should they have access?

This introduces the three major elements of database security:

Users
Objects
Privileges

Users
Who should have access?

Technically, a user is a name defined with an operating system add command. All
users who have access to the database have user IDs: unique names that identify them
to the system. Because every process carried out by the system is on behalf of some
user, it is this user ID that determines what database objects are accessible and what
SQL functions can be performed on them. In addition to a user ID, each user also has
a password for greater security, and both must be entered before the user is
authenticated to the system.

All registered UniVerse SQL users have CONNECT Privilege and are defined in the
UV_USERS table of the SQL catalog.

In some installations, groups of users have similar needs and consequently are
assigned similar privileges. In the Circus database, everyone in the Concessions
Manager’s office might be granted similar privileges on the CONCESSIONS.T and
INVENTORY.T tables, and everyone in the Procurement department might be given
the same privileges on the INVENTORY.T and EQUIPMENT.T tables. However,
only the Human Resources department and a few high-level managers might be
granted privileges on the PERSONNEL.T table because of the sensitive data that it
contains.
8-3 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
In some cases you might want to grant privileges to everyone; PUBLIC is a group
that includes all UniVerse users, whether or not they are defined in the SQL catalog.

Database Objects
To what objects should each user be granted access?

An object can be a schema, a table in a schema, or one or more columns or rows in a
table. Access to objects is controlled hierarchically; you cannot have access to a table
unless you first have access to the schema in which it resides, and you cannot have
access to a particular column or row of a table unless you first have access to the table
itself.

Access to tables is gained either by being the owner (creator) of the table or by being
granted privileges to that table by someone who has those privileges and the authority
to grant them.

Privileges
In what manner should users have access?

The answer to this question is determined by privileges, a set of permitted actions that
a user can perform on an object. For example, some users might have only SELECT
privilege on the ENGAGEMENTS.T table (that is, they can execute only SELECTs
against that table, but not an INSERT, DELETE, UPDATE, or ALTER), while other
users may have SELECT, INSERT, DELETE, and UPDATE privileges on the same
table.

Privileges consist of database privileges and table privileges. Database privileges are
grouped at three levels:

CONNECT is the lowest level and registers a user as a UniVerse SQL user,
with certain limited privileges (mainly restricted to the tables or views they
have created).
RESOURCE Privilege includes all CONNECT capabilities, and adds the
ability to create schemas.
 8-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch8.fm
12/29/08
DBA Privilege (database administrator), the highest level of database
privilege, allows one to do everything (much like a superuser),
incorporating all RESOURCE privilege plus the power to create schemas
and tables for other users, grant database privileges, grant table privileges
on any table and view to any user, revoke the database or table privileges of
any user, and access all tables.

The database privilege state of each user is recorded in the UV_USERS table of the
SQL catalog. Just being listed in the UV_USERS table implies that the user has
CONNECT privileges. In addition, two bytes, one for RESOURCE and one for
DBA, indicate whether the user has been granted privileges for either or both of those
levels.

Table privileges (applicable to views as well as tables) are grouped by process:
SELECT, INSERT, UPDATE, DELETE, REFERENCES, ALTER, and ALL
PRIVILEGES. A user obtains any of these privileges for a table in two ways:

By creating a table, a user becomes its owner and has full privileges to it
automatically. Similarly, if a user creates a view for a table, he or she is the
owner of that view and has full privileges to the view, but not necessarily to
the table.
By being granted specific privileges to the table. Privileges can be granted
by the table’s owner, by someone to whom the same privileges have been
granted previously, or by someone with DBA privileges.

SQL security on tables and views is enforced for all attempts at access, whether by
SQL statements, UniVerse commands and utilities, or UniVerse BASIC programs.
Note that a UniVerse BASIC program can write into a table only if the user has both
INSERT and UPDATE privileges. Views are discussed in the UniVerse SQL User
Guide.
8-5 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Granting Privileges
Except for obtaining certain privileges automatically, either because of one’s
database privilege level or because one creates (and therefore owns) a table or view,
the only way to obtain privileges is through the GRANT statement.

Granting Database Privileges
When UniVerse SQL is first installed, only one user is registered to use SQL. That
user is either uvsql, root, or uvadm, depending on how UniVerse was installed. That
user is also granted DBA authority. Only a DBA can grant or revoke database
privileges and create schemas for other users.

The GRANT statement syntax for granting database privileges is:

GRANT database_privilege TO users;

users is a comma-separated list of user IDs.

You cannot grant RESOURCE or DBA privilege to any user who does not already
have CONNECT privileges. If you try to grant a privilege to a user who already has
that privilege, the grant request is ignored.

CONNECT

CONNECT is the lowest level of database privilege and is the minimum authority
assigned to anyone registered as a UniVerse SQL user. To register a new user at this
level, the DBA uses the following syntax:

GRANT CONNECT TO user;

Users granted CONNECT authority can:

Create tables (and become their owners)
Alter and drop any tables they own
Grant and revoke privileges on tables they own and tables for which they
have the GRANT OPTION
Use the SELECT, INSERT, UPDATE, and DELETE statements on tables to
which they have access
 8-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch8.fm
12/29/08
Create and drop views on tables to which they have access

For example, to register three new users (with IDs of sam, joyce, and john), and grant
them CONNECT privilege, enter:

>GRANT CONNECT TO sam, joyce, john;
Granting privilege(s).

RESOURCE

To register these new users with a higher level of database authority, allowing them
all aspects of CONNECT authority as well as the ability to create their own schemas,
grant RESOURCE privilege. For example, enter:

>GRANT RESOURCE TO sam, joyce, john;
Granting privilege(s).

Note that you must grant CONNECT privilege before granting RESOURCE
privilege.

DBA

A DBA has the most power and can grant any privilege to (or revoke the privilege of)
any user, create schemas (and tables and views within the CREATE SCHEMA
statement) for other users (users with CONNECT and RESOURCE levels can create
database objects only for themselves), and access any table or view, regardless of
who owns it. DBA authority includes both the CONNECT and the RESOURCE
privileges.

Although only one user is designated DBA when UniVerse SQL is installed, that user
can create other DBAs at any time. To grant DBA (and therefore RESOURCE and
CONNECT) privilege to two other users, daveb and wendyj, enter:

>GRANT DBA TO daveb, wendyj;
Granting privilege(s).

Granting Table Privileges
Table (and view) privileges, allowing users to execute ALTER, DELETE, INSERT,
REFERENCES, SELECT, and UPDATE statements, can be granted by:

A DBA
8-7 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Anyone who owns a table or view
Anyone who has been granted those privileges with a WITH GRANT
OPTION by someone else

The syntax for the GRANT statement that grants table privileges is:

GRANT table_privileges ON tablename TO { users | PUBLIC }
[WITH GRANT OPTION];

When you create a table, you are the owner of that table and the only user with
privileges on it (except for any DBAs). As such, you can grant any or all of those
privileges to others. If you are not the creator/owner of a table, you have only those
privileges that others have granted to you.

The next sections discuss the various table privileges and the clauses that designate
the recipients of the grant and determine whether those recipients can pass it on.

Letting Other Users Change a Table (ALTER Privilege)

Granting the ALTER Privilege allows a user to change the structure of a table. This
includes adding new columns, adding or removing table constraints or associations,
and setting or removing default specifications using an ALTER statement.

For example, to grant ALTER privilege on the EQUIPMENT.T table to sheilaf and
bonnieb, enter:

>GRANT ALTER ON EQUIPMENT.T TO shielaf, bonnieb;
Granting privilege(s).

Letting Other Users Delete Rows from a Table (DELETE Privilege)

Granting the DELETE Privilege allows a user to remove rows from a table using a
DELETE statement. You can grant DELETE privilege only on the entire table.

The following statement grants DELETE privilege on the CONCESSIONS.T table
to stevew:

>GRANT DELETE ON CONCESSIONS.T TO stevew;
Granting privilege(s).
 8-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch8.fm
12/29/08
Letting Other Users Add Rows to a Table (INSERT Privilege)

Granting the INSERT Privilege allows a user to add new rows to a table using an
INSERT statement.

To grant INSERT privilege on the VENDORS.T table to barbaram, enter:

>GRANT INSERT ON VENDORS.T TO barbaram;
Granting privilege(s).

Letting Other Users Define Foreign Keys (REFERENCES Privilege)

Granting the REFERENCES Privilege allows a user to place referential constraints
(define foreign keys) on columns. As with UPDATE, you can grant the REFER-
ENCES privilege to all the columns of the table, or you can restrict permission to
selected columns. If you grant the REFERENCES privilege to an entire table, the
other user can create his or her own tables and include a referential constraint
pointing to this table. If you grant REFERENCES to only specific columns, the other
user can define referential constraints that point to only the specified columns in this
table.

To grant the REFERENCES privilege on all columns of the PERSONNEL.T table to
chuckt, enter:

>GRANT REFERENCES ON PERSONNEL.T TO chuckt;
Granting privilege(s).

To grant the REFERENCES privilege on only the BADGE_NO column, enter:

>GRANT REFERENCES ON PERSONNEL.T (BADGE_NO) TO
chuckt;
Granting privilege(s).

Letting Other Users Read from a Table (SELECT Privilege)

Granting the SELECT Privilege grants “look but don’t touch” permission, allowing
a user to read the data in a table using, for example, a SELECT statement or BASIC
program, but not to insert, delete, or update it.

You can grant SELECT privilege only on the entire table. If you want to restrict the
privilege to particular columns, define a view on the table and grant SELECT
privilege on the view.
8-9 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
To grant read-only privileges on the ENGAGEMENTS.T table to paulc, enter:

>GRANT SELECT ON ENGAGEMENTS.T TO paulc;
Granting privilege(s).

Letting Other Users Update Existing Rows (UPDATE Privilege)

Granting the UPDATE Privilege allows a user to update existing rows in a table,
using an UPDATE statement. As with REFERENCES, you can grant UPDATE
privilege to all the columns of the table, or restrict permission to selected columns.

To grant UPDATE privilege to jackd for any column of the INVENTORY.T table,
enter:

>GRANT UPDATE ON INVENTORY.T TO jackd;
Granting privilege(s).

Because you did not include WITH GRANT OPTION, jackd will not be able to
assign this privilege to anyone else. Note that when you grant UPDATE privilege on
all the columns of a table, it applies not only to existing columns but to any columns
that may be added later.

If jackd is responsible for setting prices, and you want to grant him permission to look
at all columns in the INVENTORY.T table but be able to update only the PRICE
column, issue the following grants:

>GRANT SELECT ON INVENTORY.T TO jackd;
Granting privilege(s).
>GRANT UPDATE (PRICE) ON INVENTORY.T TO jackd;
Granting privilege(s).

If sandyh is a stock clerk who needs to see the entire INVENTORY.T table but should
be allowed to update only the quantity on hand (QOH), grant SELECT and UPDATE
privileges as follows:

>GRANT SELECT ON INVENTORY.T TO sandyh;
Granting privilege(s).
>GRANT UPDATE (QOH) ON INVENTORY.T TO sandyh;
Granting privilege(s).
 8-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch8.fm
12/29/08
Granting Multiple Privileges

You can specify more than one table privilege in a GRANT statement. To grant
SELECT, INSERT, and DELETE privileges on the LIVESTOCK.T table to lindah,
enter:

>GRANT SELECT, INSERT, DELETE ON LIVESTOCK.T TO lin-
dah;
Granting privilege(s).

To grant all of the grantable privileges you possess on a table, specify ALL PRIVI-
LEGES as table.privileges. To grant all privileges on the ENGAGEMENTS.T table
to davidb, enter:

>GRANT ALL PRIVILEGES ON ENGAGEMENTS.T TO davidb;
Granting privilege(s).

Specifying the Recipient of the GRANT (TO Clause)

The TO users|PUBLIC clause indicates the users to whom you are granting
permission.

If you specify TO users, those users named must be defined in the SQL catalog. A
grant can be to one or to multiple users; in the latter case, separate the users by
commas as shown:

>GRANT SELECT ON ENGAGEMENTS.T TO celiaw, tedj, billg,
joyced;
Granting privilege(s).

If you specify TO PUBLIC instead, you are granting the privileges to all UniVerse
users, whether or not they are in the catalog. The following statement grants SELECT
privilege on the LOCATIONS.T table to all UniVerse users:

>GRANT SELECT ON LOCATIONS.T TO PUBLIC;
Granting privilege(s).

Be aware that PUBLIC grants permission to current and future SQL users. One
advantage of using PUBLIC is that you will not have to explicitly grant privileges to
new users as they are added. However, the disadvantage is that you no longer have
control over the grant (unless you revoke it).
8-11 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Passing on the Privileges (WITH GRANT OPTION Clause)

Including WITH GRANT OPTION allows those users to whom you are granting
privileges to pass them on to others. If you do not include WITH GRANT OPTION,
they can take advantage of the privileges themselves, but they cannot pass them on.

For example, to grant all privileges on the PERSONNEL.T table to susanc and allow
her to pass on those privileges to others, enter the following statement:

>GRANT ALL PRIVILEGES ON PERSONNEL.T TO susanc
SQL+WITH GRANT OPTION;
Granting privilege(s).

Now susanc has the option of passing along any or all of the privileges she has been
granted to other users. So she decides to give bobm SELECT privilege to allow him
to view the table and enters:

>GRANT SELECT ON PERSONNEL.T TO bobm;
Granting privilege(s).

Because the preceding GRANT statement does not include the WITH GRANT
OPTION, the permissions chain ends here; bobm cannot pass on his SELECT
privilege to someone else.

Note that the WITH GRANT OPTION applies to all the privileges listed in the
statement. To allow the recipient to pass on only some of the privileges you are
granting to him or her, issue two separate GRANT statements as follows:

>GRANT SELECT, INSERT ON PERSONNEL.T TO bobm WITH
GRANT OPTION;
Granting privilege(s).
>GRANT ALTER, UPDATE, DELETE ON PERSONNEL.T TO
bobm;
Granting privilege(s).

Here, bobm can pass on only the SELECT and INSERT privileges to other users.
 8-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch8.fm
12/29/08
Revoking Privileges
Any privileges you grant, you can also take back using the REVOKE statement. The
syntax for REVOKE parallels that of the GRANT statement, specifying a set of
privileges, the object to which they apply, and the users.

Revoking Database Privileges
Only a user with DBA privilege can revoke database privileges. If you revoke a
user’s DBA privilege, the user still retains RESOURCE and CONNECT privileges.
If you revoke a user’s RESOURCE privilege, the user still has the CONNECT
privilege.

The syntax for revoking database privileges is:

REVOKE database_privilege FROM users;

For example, to revoke RESOURCE privilege from jamesd, enter:

>REVOKE RESOURCE FROM jamesd;

You must revoke database privileges from the top down. For example, you cannot
directly revoke the CONNECT privilege of a user who has DBA or RESOURCE
privilege. Attempting to do so will return an error. Instead, if a user has RESOURCE
privilege, first revoke the user’s RESOURCE privilege (which leaves the user with
the CONNECT privilege), and then revoke the CONNECT privilege. If you try to
revoke a privilege that the user does not have, the request is ignored.

If you revoke the CONNECT privilege from a user, any schemas or tables owned by
that user will have their ownership changed to uvsql, root, or uvadm, (whichever
owns the CATALOG schema).

Revoking Table Privileges
The syntax for revoking table privileges is:

REVOKE [GRANT OPTION FOR] table_privileges ON tablename
FROM {users | PUBLIC};
8-13 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
As the second syntax indicates, you can remove just the WITH GRANT OPTION on
a privilege, or you can revoke the privilege itself. Revoking a privilege also revokes
any GRANT OPTION on that privilege.

Because you already are familiar with the choices in the GRANT statement, you
should be able to follow these REVOKE statements (the privileges revoked are those
granted by some of the previous examples of the GRANT statement):

>REVOKE RESOURCE FROM sam;
Revoking privilege(s).
>REVOKE ALTER ON EQUIPMENT.T FROM shielaf, bonnieb;
Revoking privilege(s).
>REVOKE SELECT, UPDATE ON INVENTORY.T FROM jackd;
Revoking privilege(s).
>REVOKE SELECT ON LOCATIONS.T FROM PUBLIC;
Revoking privilege(s).
>REVOKE UPDATE (QOH) ON INVENTORY.T FROM sandyh;
Revoking privilege(s).

If you have the power to grant a privilege, you can revoke that privilege, no matter
how a user obtained the privilege, whether from you or from someone else.

REVOKE and WITH GRANT OPTION
Because REVOKE has no CASCADE option, even when you revoke a user’s
previously issued GRANT OPTION, any privileges that this user passed on to other
users as a result remain unaffected.

For example, earlier you granted ALL PRIVILEGES WITH GRANT OPTION on
the PERSONNEL.T table to susanc, and she in turn passed on the SELECT privilege
to bobm. Later, you issue a REVOKE statement, taking back the GRANT OPTION:

>REVOKE GRANT OPTION FOR ALL PRIVILEGES ON
PERSONNEL.T
SQL+FROM susanc;
Revoking privilege(s).

This revokes susanc’s GRANT OPTION privilege, but has no effect on bobm, who
can continue retrieving information from the PERSONNEL.T table. The same would
hold true if you revoked susanc’s SELECT privilege itself: bobm would still retain
the privilege.
 8-14

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch8.fm
12/29/08
REVOKE and Overlapping GRANTs
Sometimes a user will be granted the same privilege by more than one user, creating
a situation known as an overlapping GRANT.

If you and another user grant a third user the same privilege, and you revoke yours,
the other (duplicate) one is also revoked.
8-15 UniVerse SQL Administration for DBAs

:\Prog
ecem
8Administering UniData on Windows NT or Windows 2000
0

9
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Transactions, Recovery,
and Concurrent Access
Transaction Processing 9-3
 Transaction Processing and UniVerse SQL 9-5
Database Recovery 9-6
 File Backup 9-6
 Transaction Logging 9-7
 Media Recovery 9-8
 Warmstart Recovery 9-9
Concurrent Access 9-10
 Locks . 9-11
 Isolation Levels 9-13
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch9TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
While databases are in use, systems can fail, errors and discrepancies can occur, and
not all operations necessarily run to a successful completion. If whole databases are
lost or destroyed, they must be recreated. Tables are accessed by many users, who
may be inserting new rows, or deleting or modifying existing rows in the same table
at the same time. Managing these situations is the DBA’s responsibility and involves
transaction processing, transaction logging and recovery, and concurrent access.
 9-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch9.fm
12/29/08
Transaction Processing
A transaction is a series of statements that are treated as a single event. Any changes
made to the database by a transaction are guaranteed either to go to completion or to
have no effect at all. Transactions and transactional processing are explained fully in
UniVerse BASIC.

An example of a familiar transaction occurs at a bank ATM (automatic teller
machine, or cash machine): transferring funds from your savings account to your
checking account. If the system crashed just after deducting the money from savings
but before depositing it in checking, what would be the state of your account?

There are two possibilities: either the system remembers to deposit the money in your
checking account when service is restored, or it reverses (rolls back) the deduction
from your savings and leaves everything as it was before the transaction began.

If someone were watching this at a terminal, he or she would know if each activity
proceeded to completion and could take the necessary measures if it did not (such as
manually retyping the “deposit to checking” request). But when the statements
executed are part of a program, there is no way to directly monitor what is happening
or to take steps to correct any omissions. Therefore, a transaction needs to be coded
for all possible outcomes.

Transaction processing is designed for situations like the ATM transaction described
here and introduces the subject of programmatic SQL.

Transaction Processing in Programs
To illustrate the principles of SQL usage, this manual uses interactive SQL—SQL
statements typed at a terminal that return an immediate response. Interactive SQL
statements are issued as UniVerse commands and deliver their output to a terminal
screen or a printer. There is another kind of SQL—programmatic SQL.

Programmatic SQL is a set of SQL statements that can be embedded within and
executed by a C-language program (using the UniVerse Call Interface, or UCI) or a
UniVerse BASIC program (using the UniVerse BASIC SQL Client Interface, or
BCI). Programmatic SQL statements are part of the program code and deliver their
output to data variables defined within the program.
9-4 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Generally, the SQL statements used in BASIC and C programs are the same
statements that you can issue interactively. However, there are some differences at the
detail level between programmatic SQL and interactive SQL. More information
about programmatic SQL is in UniVerse SQL Reference. For information about UCI
and the BASIC SQL Client Interface, see UCI Developer’s Guide and UniVerse
BASIC SQL Client Interface Guide, respectively.

Procedurally, a transaction is a series of statements that begin when a BEGIN
TRANSACTION statement is executed and ends when either a ROLLBACK or a
COMMIT statement is executed. An END TRANSACTION statement marks the
point where processing continues after the transaction ends.

Within the transaction sequence, there must be either a COMMIT statement or a
ROLLBACK statement. COMMIT applies all changes made during the transaction
if everything proceeded normally. ROLLBACK cancels all changes made during the
transaction if some error occurred. For example:

BEGIN TRANSACTION
READU data1 FROM file1, record1 ELSE ROLLBACK
READU data2 FROM file2, record2 ELSE ROLLBACK

.
[process data]

.
WRITE new.data1 ON file1, record1 ELSE ROLLBACK
WRITE new.data2 ON file2, record2 ELSE ROLLBACK
COMMIT WORK

END TRANSACTION

As an application performs writes or deletes on tables, the actual data is stored in a
cache (temporary storage), not in the table.While a transaction sequence is being
executed, an application read is satisfied from the cache if such an entry exists. Data
is not written to disk or available to other users until the COMMIT statement is
executed, at which time all data changes are written to their respective tables.

Locking is not automatic, but any locks that are explicitly set during the transaction
are not released until COMMIT or ROLLBACK is executed, at which time all locks
acquired during the transaction are released.
 9-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch9.fm
12/29/08
Transaction Processing and UniVerse SQL
Within UniVerse, transaction processing in interactive SQL is different from
transaction processing in programmatic SQL. UniVerse SQL is designed to operate
within a transactional environment. For that reason, each individual interactive
UniVerse SQL statement is treated as a transaction. Each time you enter an SQL
statement, it begins a new transaction. Until that transaction finishes, the results are
not available to you or other users, nor are they permanently committed to disk. To
terminate the transaction, an implied COMMIT (called autocommit) is issued by the
system at the completion of an SQL statement, making each such interactive
statement an independent transaction.

In interactive SQL you cannot group multiple SQL statements into a single
transaction because you cannot enter BEGIN TRANSACTION, COMMIT,
ROLLBACK, or END TRANSACTION statements interactively.

In programmatic SQL a transaction is one or more SQL or non-SQL statements
bounded by BEGIN TRANSACTION, COMMIT, ROLLBACK, and END
TRANSACTION statements. In addition, transactions can be nested, that is, a
program can initiate a new transaction while another transaction is still active.

Consequently, transaction processing is relevant only with respect to either
programmatic SQL transactions or non-SQL transactions.

As an example of a transaction rollback, assume that the circus bought out a smaller
circus and is merging those personnel records with their own, treating their EMP_NO
as the BADGE_NO primary key. The transaction proceeds until an EMP_NO is
encountered that duplicates a BADGE_NO in your PERSONNEL.T table and causes
a “Duplicate Primary Key” error. The entire INSERT operation is rolled back
automatically, and no new employees are added.
9-6 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Database Recovery
A number of events can disrupt processing and corrupt or even destroy your database.
These include media failures (such as disk crashes), system failures, and power
outages. In such an event, you need some way to recover your database and restore it
to its most recent state. Several components work together to enable a database
recovery:

Most of these actions, such as backing up files, setting up transaction logging,
identifying the files that should be activated for logging, and recovering media, are
the responsibility of the system administrator, not the individual users.

File Backup
Periodically copying all disk files onto an offline storage medium, such as magnetic
tape or a second disk, is an accepted computing practice. If files are lost or destroyed,
they can be restored from these backup copies.

Component Description

File backup Copying all files in an account (or, optionally, each file
separately) periodically.

Transaction logging Copying every file update to a log file.

Media recovery Restoring the database to a usable state if the data becomes
corrupted by a media failure (a damaged disk, for example). This
is done by taking the backup copy and rolling forward all
completed transactions (from the transaction log) that were
executed from the time the backup was made to the point where
the media failure occurred.

Warmstart recovery Handling certain file structuring and other system-level details
that may be left unfinished when a system failure (such as a
power outage or system crash) occurs.

Components for Database Recovery
 9-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch9.fm
12/29/08
Each installation chooses its own strategy for implementing file backup and
restoration. You can use the Backup and Restore options of UniVerse Admin, the
UniVerse uvbackup and uvrestore commands, or the appropriate backup and restore
commands for the operating system. When you use the UniVerse backup facilities,
you can choose to perform either a full backup (making backup copies of all files), or
an incremental backup (copying only those files that are new or have changed since
the last backup).

The procedures for backing up and restoring files in UniVerse are covered in
Administering UniVerse.

Transaction Logging
File backup is an important step in protecting your database, but what happens if you
do a backup on Monday, and suddenly on Thursday your disk crashes? Does that
mean you have lost three days of work? If you have been using transaction logging,
the answer is no.

Transaction logging is the first part of the two-part UniVerse database recovery
process. The second part is media recovery (covered later in this chapter) and warm-
start recovery. Basically, transaction logging is the recording of each file update
applied to the database.

The variables for transaction logging affect how transactions are both executed and
logged. Transaction logging may be set up in one of two modes, activated or not, and
each table or file may be designated recoverable or nonrecoverable.

Setting Up Transaction Logging

Unless you activated the transaction logging system, recoverable files will not be
logged. Besides creating a log directory and creating several log files in that
directory, you also determine whether to run logging in archive mode (primarily
designed for media recovery) or checkpoint mode (primarily designed for warmstart
recovery), or both.

Once you set up transaction logging, the next task is to designate which of the tables
in the database are to be made recoverable.
9-8 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Making Tables Recoverable

It is up to you to decide which tables and files are to be made recoverable. Then the
user can implement transaction logging either table-by-table or by account. Once a
user activates a table for logging, the logging of all file updates to that table is
automatic. But updates to nonrecoverable tables are not written to the log file, and
therefore such tables are not recoverable.

Many considerations determine whether a table should be recoverable: the
importance of the data, whether the table can be recreated quickly and economically,
the cost (in terms of system performance) of making the table recoverable, how
frequently the table is backed up, and so on. Tables and files are made recoverable
through the transaction logging menus, as described in UniVerse Transaction
Logging and Recovery. For example, assuming that you already set up transaction
logging (as described in the previous section), designate the ENGAGEMENTS.T and
LOCATIONS.T tables in the Circus account as recoverable, or a user could make all
the tables in the account recoverable.

Setting the Status of the Transaction Logging Subsystem

You can enable, disable, or suspend the transaction logging subsystem itself through
the transaction logging menus (or through the UniVerse ENABLE.RECOVERY,
SHUTDOWN.RECOVERY, and SUSPEND.RECOVERY commands). For more
information about these menus and commands, see Administering UniVerse and the
UniVerse User Reference.

Media Recovery
When a disk crash or other media failure occurs, you need to use recovery procedures
to restore your database. The two approaches to doing this are media recovery and
file recovery, both detailed in UniVerse Transaction Logging and Recovery. Media
recovery, the more complex of the two, restores multiple files, whereas file recovery
rolls forward updates on a specific file.
 9-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch9.fm
12/29/08
Warmstart Recovery
If the system crashes, or UniVerse fails or is shut down in an uncontrolled manner,
files on disk may be left in an inconsistent state. If such inconsistencies are detected
when UniVerse is brought back up again (with logging enabled in checkpointing
mode), a process called warmstart recovery is initialized automatically.

Warmstart recovery uses information from the log files to restore the structure and
integrity of the database. First, each file is brought to a structurally consistent state
(correcting such problems as invalid overflow block pointers and partially updated
index files). Then the database is brought to a logically consistent state, in which each
transaction has been either fully committed to disk or rolled back. Warmstart
recovery is discussed in greater detail in UniVerse Transaction Logging and
Recovery.
9-10 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Concurrent Access
If every user had exclusive access to a database, and transactions against that
database were executed serially, results would be totally predictable. However, when
multiple transactions are run concurrently against a database, reading from and
writing to the same data rows, conflicts can produce unpredictable and erroneous
results.

The problems that can arise from concurrent access of a database can be grouped into
four classic categories:

Lost updates. Both transactions A and B attempt to update the same row.
Because each transaction reads and updates its own “copy” of the row, the
last transaction to write an update to that row overwrites the update of the
first transaction.
Dirty reads. Transaction A updates a row, and transaction B reads the
updated row and proceeds to modify it. Meanwhile transaction A aborts
(thus restoring the row to its original state), and then transaction B writes
back its update (which is based on values no longer valid).
Nonrepeatable reads. Transaction A reads a row, then transaction B updates
that row. Later, transaction A rereads the same row and sees different values
than it saw initially.
Phantom discrepancies. Transaction A determines the number of rows that
meet certain selection criteria (say the COUNT of cars in stock that are red),
then transaction B adds another red car into inventory. Later, transaction A
requests the SUM of costs of all red cars and divides that sum by the original
count. The result is an artificially high average cost for red cars, because the
set of rows meeting the selection criteria changed during the transaction.

All of these situations can be resolved to some degree by the use of locks and
isolation levels.

You can explicitly set locks and isolation levels only in a UniVerse BASIC program.
Even though there are no explicit SQL statements for setting locks and isolation
levels, you should have a general understanding of how locks and isolation levels
work because their activation by UniVerse BASIC programs in a session can affect
how your SQL statements operate. Also, each SQL transaction automatically does
the appropriate locking, as explained in “Isolation Levels” on page 14.
 9-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch9.fm
12/29/08
The ultimate purpose of locks and isolation levels is to provide serializability, which
ensures that the output of any set of concurrent transactions is the same as that
produced by running the individual transactions serially in some specific order, with
each of the transactions having exclusive use of the system during its execution.

Locks
UniVerse record and file locks control access to records and files among concurrent
user processes.

Lock compatibility determines what a user’s process can access while other
processes have locks on records or files. Record locks allow more compatibility
because they coexist with other record locks, thus allowing more transactions to take
place concurrently. However, these “finer-grained” locks provide a lower isolation
level. File locks enforce a high isolation level and more concurrency control, but less
compatibility. For information about transaction processing and isolation levels, see
UniVerse BASIC.

UniVerse supports the following locks (in order of increasing strength):

Shared record lock
Update record lock
Shared file lock
Intent file lock
Exclusive file lock
9-12 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Whenever you use an SQL statement to access a table, you may find that a lock has
been placed on that table or on one or more rows in that table. If this happens, your
statement must delay execution until the lock is released. A UniVerse BASIC
program can impose several kinds of lock:

For a full discussion of file and record locks, see UniVerse BASIC.

Transactions and Locks

Locks acquired before a transaction exists or outside an active transaction are inher-
ited by the active transaction. Locks acquired or promoted within a transaction are
not released. Instead they adhere to the following behavior:

Locks acquired or promoted within a nested transaction are adopted by the
parent transaction when the nested transaction commits.
Locks acquired within a nested transaction are released when the nested
transaction rolls back.
Locks promoted within a nested transaction are demoted to the level they
were before the start of that transaction when the nested transaction rolls
back.
All locks acquired, promoted, or adopted from nested transactions are
released when the top-level transaction commits or rolls back.

Type of Lock Description

FILELOCK
(FS, IX, FX)

Locks the entire table. A file lock can be a shared lock (which makes the
table read-only to other users), an intent lock (which reserves the right
to set an exclusive lock), or an exclusive lock (which excludes all other
users from accessing the table in any manner).

READL (RL),
READVL

Sets a shared lock on a row, letting other programs or users read but not
update the row.

READU (RU),
READVU

Sets an exclusive update lock on a row, preventing other programs or
users from updating or locking the row.

BASIC Program Locks
 9-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch9.fm
12/29/08
Managing Deadlocks

Deadlocks occur when one of several processes acquiring locks incrementally tries
to acquire a lock that another process owns, and the existing lock is incompatible with
the requested lock.

You can configure UniVerse to automatically identify and resolve deadlocks as they
occur, or you can manually fix a deadlock by selecting and aborting one of the
deadlocked user processes. For more information about managing deadlocks, see
Administering UniVerse.

Isolation Levels
Isolation levels separate one concurrent transaction from another so that their actions
do not affect one another. Although the SQL standard recognizes only four isolation
levels, UniVerse provides a fifth, adding isolation level 0 for backward compatibility.
The default isolation level is 1.

UniVerse BASIC provides two ways to set isolation levels: the SET
TRANSACTION ISOLATION LEVEL statement and the ISOLATION LEVEL
clause of the BEGIN TRANSACTION statement. For more information about
setting isolation levels, see UniVerse BASIC.

You can also use the SET.SQL command at the UniVerse prompt to set isolation
levels.

To ensure successful operation, most isolation levels require that a program obtain a
certain minimal lock on a table. In UniVerse SQL the SQL statements obtain the
appropriate lock automatically, as shown in the following table:

When you use... At this isolation level...
UniVerse SQL obtains this lock
for you automatically...

SELECT NO.ISOLATION (0) None

READ.UNCOMMITTED (1) None

READ.COMMITTED (2) Shared record lock (RL)

REPEATABLE.READ (3) Shared record lock (RL)

SERIALIZABLE (4) Shared file lock (FS)

Locks Obtained by SQL Statements
9-14 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Note: In the case of record locks, if an SQL statement needs more than MAXRLOCK
(a system-configurable parameter) record locks, UniVerse obtains a file lock instead
of adding more record locks.

For more information about locks and isolation levels and how to set them, see
UniVerse BASIC.

DELETE, INSERT,
or UPDATE

NO.ISOLATION (0) Update record lock (RU)

READ.UNCOMMITTED (1) Update record lock (RU)

READ.COMMITTED (2) Update record lock (RU)

REPEATABLE.READ (3) Update record lock (RU)

SERIALIZABLE (4) Update record lock (RU) and
intent file lock (IX)

When you use... At this isolation level...
UniVerse SQL obtains this lock
for you automatically...

Locks Obtained by SQL Statements (Continued)
 9-15

:\Prog
ecem
9Administering UniData on Windows NT or Windows 2000
0

10
Chapter

ram Fi
ber 29

 Beta Beta Beta Beta Beta Beta
Transferring Tables Across
Schemas
Preparing to Export SQL Tables 10-4
 Conversion File Formats 10-5
Physically Transferring Exported SQL Tables. 10-7
Resolving Conflicts in the New Schema 10-8
Importing Transferred SQL Tables 10-9
 Errors in Importing. 10-9
Deleting Exported Tables from the Old Schema 10-10
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch10TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
You can transfer SQL tables from one schema to another on the same system or from
one system to another using the format conversion utility. The format conversion
utility converts UniVerse database files, SQL tables, and UniVerse BASIC object
code from one machine’s storage format to another.

You can use the format.conv command at the UNIX shell prompt, or the
FORMAT.CONV command in UniVerse.

You can use these commands to do the following:

Prepare SQL tables for transfer to another schema on either the same or a
different system
Convert the storage format of SQL tables and reconstitute them in the
schema to which they have been transferred
 10-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch10.fm
12/29/08
Moving SQL Tables
Use the format conversion utility when you want to move UniVerse SQL tables from
one schema to another. The schemas can be on the same or on different machines.
Converting tables is a bit more complex than converting regular UniVerse files. The
process consists of the following steps:

1. Prepare the tables for transfer on the source machine, using the
 –export option of the format conversion utility.

2. Physically transfer the tables to an existing schema on the same or a
different machine.

3. Evaluate the transferred data to prevent conflicts with existing data in the
new schema.

4. Import the tables on the target machine using the –import option of the
format conversion utility.

5. If desired, delete the tables from the source machine.
10-3 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Preparing to Export SQL Tables
The format conversion utility with the –export option generates a set of files
containing commands to be used to convert and reconstitute tables after you transfer
them to another schema on the same or a different machine. It analyzes the SICAs of
specified tables and generates a set of data definition language (DDL) commands that
are used later to reconstitute the tables in the target schema. These commands are
stored in a set of four text files whose default names are:

EXPORTEDDDL.EXPORT
EXPORTEDDDL.IMPORT
EXPORTEDDDL.DROP
EXPORTEDDDL.UNDO

To generate these files, use the following command at the UNIX shell prompt:

format.conv –export [–name name] [–silent] tablepaths

Or use the following command at the UniVerse prompt:

FORMAT.CONV –export [–name name] [–silent] tablepaths

You must be the owner of the specified tables or a DBA to use the −export option.

Use the −name option to specify a prefix other than EXPORTEDDDL for the names
of the four text files. Use the −silent option to suppress system messages generated
by the format conversion utility.

Use tablepaths to specify one or more tables to be exported. Specify each table by its
relative or absolute path. Separate multiple table paths with spaces.

Specify tables with referential constraints first, before you specify the tables they
reference. This ensures that the commands in the name.DROP and name.UNDO files
are in the proper sequence.
 10-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch10.fm
12/29/08
Conversion File Formats
The name.EXPORT file looks something like this:

DISPLAY name.EXPORT created to hold DDL 09:19:51 04 APR 1997
* List of files that should be transferred.
* /usr/joan/uv/name.*
* /usr/joan/uv/table1
* /usr/joan/uv/D_table1
* /usr/joan/uv/table2
* /usr/joan/uv/D_table2

The format of the name.IMPORT file is as follows:

DISPLAY name.IMPORT created to hold DDL 09:19:51 04 APR 1997
* Command file to change copied files to Base Tables.
DISPLAY IMPORT/CREATE BASE TABLE section
* create VOC 'F' entry
INSERT INTO VOC (@ID, F1, F2, F3) VALUES ('table1', 'F Generated
by

FORMAT.CONV -export utility', 'table1','D_table1');
* remove 'I' descriptor(s) for UNIQUE and INDEX names from DICT
DELETE DICT table1 UVCON_4
* import Base Table
FORMAT.CONV "D_table1"
FORMAT.CONV -convert "table1"
* raise to Base Table [DYNAMIC, SEQ NUM, MINIMUM MODULUS 2,GROUP
SIZE 2,

SPLIT LOAD 75, MERGE LOAD 40,]
CREATE EXISTING TABLE "table1" . . .
* create INDEX(es)
* create TRIGGER(s)
* grant PERMISSION(s)
GRANT SELECT, INSERT, UPDATE on "table1" TO PUBLIC
GRANT SELECT, UPDATE("COL5") ON "table1" TO PUBLIC WITH GRANT
OPTION;

You can execute the FORMAT.CONV utility multiple times, using the same value of
the –name option, to export a number of tables in the same group. Each execution of
the FORMAT.CONV utility appends more information to the end of the four text
files. For example, to create just one set of text files, including export information for
tables TABLE1 through TABLE5, you could enter the following commands:

>FORMAT.CONV -export -name AA TABLE1 TABLE2
>FORMAT.CONV -export -name AA TABLE3
>FORMAT.CONV -export -name AA /usr/joe/TABLE4 /usr/joe/TABLE5

These commands create one set of text files, called AA.EXPORT, AA.IMPORT,
AA.DROP and AA.UNDO, which include export information for tables TABLE1
through TABLE5.
10-5 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
After transferring this set of tables and text files to the target schema or system, you
should delete the four text files, so that you can use the same
–name value for another export session.
 10-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch10.fm
12/29/08
Physically Transferring Exported SQL Tables
When format.conv −export has finished, copy the following tables and files to either
the export media or a target schema:

All exported tables
All exported table dictionaries
Any trigger BASIC programs associated with the tables
The four text files:

name.EXPORT
name.IMPORT
name.DROP
name.UNDO

Note: Be sure to copy the tables. Do not use operating system commands to move or
delete them. To delete the tables after you copy them, use the format conversion utility
with the −drop option.

Use the list of tables in name.EXPORT file as a checklist of all the tables you need
to transfer. For type 30 tables, be sure to transfer the directory and all subordinate
files and directories.

If the target schema (the one to which you are transferring your tables and files) is
new, transfer the tables directly into the schema. If the target schema already exists
and contains tables, you should transfer your tables and files to a temporary directory.
This lets you verify that nothing in the transferred tables or files conflicts with
anything in the target schema.
10-7 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Resolving Conflicts in the New Schema
Once you transfer your tables and files to the temporary directory, you can edit the
name.IMPORT file to resolve any conflicts that may occur. For example, the names
of the VOC file pointers to be created should not already exist in the schema’s VOC
file, nor should the names of the tables to be reconstituted be the same as any existing
tables in the target schema.

The following cases require some kind of administrative intervention:

If user names from the source machine do not exist on the target machine,
edit the user names specified in the * grant PERMISSION(s)
subsection under each base table.
You may not want to create certain indexes, or you may want to activate or
deactivate certain indexes. Edit the * create INDEX(es) subsection
under each base table.
Some trigger names may conflict with other program names on the target
machine. Edit the * create TRIGGER(s) subsection under each base
table.
If you are transferring tables to a schema on the same machine, remove the
CATALOG command from the * create TRIGGER(s) subsection.
If any foreign key clauses reference unexported or nonexistent tables,
remove the ALTER TABLE … ADD FOREIGN KEY command from the
FOREIGN KEY subsection.
If a table has a referential constraint to another table’s constraint with
multiple columns, you must include the names of the columns in the foreign
key section of the import file.
If any table names conflict with the names of existing tables, edit the names
of the tables and their dictionaries in the name.IMPORT file to make them
unique.
 10-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch10.fm
12/29/08
Importing Transferred SQL Tables
After you finish editing the name.IMPORT file, import the transferred tables using
the following command at the UNIX shell prompt:

format.conv –import [–name name]
Or use the following command at the UniVerse prompt:

FORMAT.CONV –import [–name name]
These commands execute the set of commands in the name.IMPORT file, including
byte-order conversion, if necessary. The user who executes these commands
becomes the owner of the imported tables.

If you are importing several tables, you may want to capture the screen output and
save it to a file. In UniVerse you can use the COMO command; in UNIX, pipe both
standard output and standard error to the tee command.

Errors in Importing
If something goes wrong during the import conversion process, you can either use
specific commands to correct the problem, or use the format conversion utility with
the –undo option:

format.conv –undo [–name name]
The −undo option executes the set of commands in the name.UNDO file. These
commands turn imported SQL tables back into UniVerse files, removing their SICAs
and any SQL indexes. The format of the name.UNDO file is as follows:

DISPLAY name.UNDO created to hold DDL 09:19:51 04 APR 1997
* Execute this file to UNDO the effect of the import command file.
CREATE EXISTING TABLE "table1" RESTORE;
DELETE FROM VOC "table1";
CREATE EXISTING TABLE "table2" RESTORE;
DELETE FROM VOC "table2";
10-9 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Deleting Exported Tables from the Old Schema
If you want to delete the exported tables from the source schema after transferring
them to their destination, use the format conversion utility with the –drop option:

format.conv –drop [–name name]
The −drop option executes the commands contained in the name.DROP file. The for-
mat of this file is as follows:

DISPLAY name.DROP created to hold DDL 09:19:51 04 APR 1997
* Execute this file to DROP all exported Base Tables.
DROP TABLE "table1" CASCADE;
DROP TABLE "table2" CASCADE;
 10-10

:\Prog
ecem
10Administering UniData on Windows NT or Windows
2000
0

11
Chapter

ram Fi
ber 29

 Beta Beta Beta Beta Beta Beta
Creating an XML Document
with UniVerse SQL
XML for IBM UniVerse 11-2
 Document Type Definitions 11-2
 The Document Object Model (DOM) 11-3
 Well-Formed and Valid XML Documents 11-3
Creating an XML Document from RetrieVe 11-4
 Create the &XML& File 11-4
 Mapping Modes 11-4
 Creating a Mapping File 11-7
 How Data is Mapped 11-12
 Mapping Example 11-14
 Creating an XML Document. 11-15
 Examples . 11-16
Creating an XML Document with UniVerse SQL 11-27
 Create the &XML& File 11-27
 Processing Rules for UniVerse SQL SELECT Statements 11-29
 XML Limitations in UniVerse SQL 11-30
 Examples . 11-30
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
XML for IBM UniVerse
The Extensible Markup Language (XML) is a markup language used to define,
validate, and share document formats. It enables you to tailor document formats to
specifications unique to your application by defining your own elements, tags, and
attributes.

Note: XML describes how a document is structured, not how a document is
displayed.

XML was developed by the World Wide Web Consortium (W3C), who describe
XML as:

The Extensible Markup Language (XML) is the universal format for struc-
tured documents and data on the Web.

An XML document consists of a set of tags that describe the structure of data. Unlike
HTML, you can write your own tags. You can use XML to describe any type of data
so that it is cross-platform and machine independent.

For detailed information about XML, see the W3C website at
http://www.w3.org/TR/REC-xml.

Document Type Definitions
You must define the rules of the structure of your XML document. These rules may
be part of the XML document, and are called the Document Type Definition, or DTD.
The DTD provides a list of elements, tags, attributes, and entities contained in the
document, and describes their relationship to each other.

A DTD can be external or internal.

External DTD — An external DTD is a separate document from the XML
document, residing outside of your XML document. External DTDs can be
applied to many different XML documents. If you need to change the DTD,
you can make the change once, and all referencing XML documents are
updated automatically.
Internal DTD — An internal DTD resides in the XML document as part of
the header of the document, and applies only to that XML document.

You can combine external DTDs with internal DTDs in an XML document.
 11-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
The Document Object Model (DOM)
The Document Object Model (DOM) is a platform- and language-independent
interface that enables programs and scripts to dynamically access and update the
content, structure, and style of documents. A DOM is a formal way to describe an
XML document to another application or programming language. You can describe
the XML document as a tree, with nodes representing elements, attributes, entities,
an text.

Well-Formed and Valid XML Documents
An XML document is either well-formed or valid:

Well-formed XML documents must follow XML rules. All XML
documents must be well-formed.
Valid XML documents are both well-formed, and follow the rules of a
specific DTD. Not all XML documents must be valid.

For optimum exchange of data, you should try to ensure that your XML documents
are valid.
11-3 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Creating an XML Document from RetrieVe
You can create an XML document from UniVerse files through RetrieVe. To create
an XML document through RetrieVe, complete the following steps:

1. Analyze the DTD associated with the application to which you are sending
the XML file. Determine which of your dictionary attributes correspond to
the DTD elements.

2. Create an XML mapping file, if necessary.
3. List the appropriate fields using the LIST command.

Create the &XML& File
UniVerse stores XML mapping files in the &XML& directory file. To create this file,
enter the following command:

CREATE.FILE &XML& 19

Mapping Modes
UniVerse supports four modes for mapping data to XML files. These modes are:

Attribute-centric
Element-centric
Mixed
Match-Element

Attribute-centric Mode

In the attribute-centric mode, which is the default mode, each record displayed in the
query statement becomes an XML element. The following rules apply to the record
fields:

Each singlevalued field becomes an attribute within the element.
Each multivalued or multi-subvalued field becomes a sub-element of the
record element. The name of the sub-element is association_name-MV.
 11-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Within a sub-element, each multivalued field becomes an attribute of the
sub-element.

Associated multi-subvalued fields become another nested sub-element
of the sub-element. The name of this nested sub-element is
association_name-MS.
If there are no associated multi-subvalued fields, the sub-element name
is field_name-MV/MS.

This is the default mapping scheme. You can change the default by defining maps in
the &XML& file.

Element-centric Mode

In the element-centric mode, as in the attribute-centric mode, each record becomes
an XML element. The following rules apply:

Each singlevalued field becomes a simple sub-element of the element,
containing no nested sub-elements. The value of the field becomes the value
of the sub-element.
Each association whose multivalued and multi-subvalued fields are
included in the query statement form a complex sub-element. In the sub-
element, each multivalued field belonging to the association becomes a sub-
element that may contain multi-subvalued sub-elements. There are two
ways to display empty values in multivalued fields belonging to an associ-
ation. For detailed information, see Displaying Empty Values in
Multivalued Fields in An Assocation.
By default, UniVerse converts text marks to an empty string.

Specify that you want to use element-centric mapping by using the ELEMENTS
keyword in the RetrieVe statement.

Displaying Empty Values in Multivalued Fields in An Assocation

How UniVerse displays empty values in multivalued fields belonging to an associ-
ation is dependent on the setting of the Matchelement field in the U2XMLOUT.map
file, located in the $UVHOME/&XML& directory.

If Matchelement is set to 1 (the default), matching values or subvalues belonging to
the same association display as empty elements for matching pairs.
11-5 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Consider the following example:

LIST XSTUDENT NAME CGA 02:22:19pm 14 Sep 2006 PAGE 1
XSTUDENT.. Name........... Semester.. Courser NO GRADE

521814564 Smith FA93 CS130 A
 CS100 B
 PY100 B
 SP94 CS131 B
 B
 PE220 A

Notice that the second value of the COURSE NO field is empty, but the associated
value for GRADE is not. When Matchelement is set to 1, the second value for
COURSE NO displays as an empty value in the XML document, as shown in the
following example:

>LIST XSTUDENT LNAME CGA TOXML ELEMENTS

<?xml version="1.0" encoding="UTF-8"?>
<ROOT>
<XSTUDENT>
 <_ID>521814564</_ID>
 <LNAME>Smith</LNAME>
 <CGA-MV>
 <SEMESTER>FA93</SEMESTER>
 <COURSE_NBR>CS130</COURSE_NBR>
 <COURSE_GRD>A</COURSE_GRD>
 <SEMESTER/>
 <COURSE_NBR>CS100</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <SEMESTER/>
 <COURSE_NBR>PY100</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 </CGA-MV>
 <CGA-MV>
 <SEMESTER>SP94</SEMESTER>
 <COURSE_NBR>CS131</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
<SEMESTER/>
 <COURSE_NBR/>
 <COURSE_GRD>B</COURSE_GRD>
 <SEMESTER/>
 <COURSE_NBR>PE220</COURSE_NBR>
 <COURSE_GRD>A</COURSE_GRD>
 </CGA-MV>
</XSTUDENT>
</ROOT>
>

This is the default behavior.

Empty Value
 11-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
When Matchelement is set to 0, the second value for COURSE NO is ignored in the
XML document, as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<ROOT>
<XSTUDENT>
 <_ID>521814564</_ID>
 <LNAME>Smith</LNAME>
 <CGA-MV>
 <SEMESTER>FA93</SEMESTER>
 <COURSE_NBR>CS130</COURSE_NBR>
 <COURSE_GRD>A</COURSE_GRD>
 <COURSE_NBR>CS100</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NBR>PY100</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 </CGA-MV>
 <CGA-MV>
 <SEMESTER>SP94</SEMESTER>
 <COURSE_NBR>CS131</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NBR>PE220</COURSE_NBR>
 <COURSE_GRD>A</COURSE_GRD>
 </CGA-MV>
</XSTUDENT>
</ROOT>

Mixed Mode

In the mixed-mode, you create your own map file, where you specify which fields are
treated as attribute-centric and which fields are treated as element-centric.

Field-level mapping overrides the mode you specify in the RetrieVe.

Creating a Mapping File
You can create the U2XMLOUT.map file in $UVHOME/&XML& to define
commonly used global settings for creating XML documents. UniVerse reads and
processes this mapping file each time UniVerse is started. For example, if you
normally create element-centric output, and display empty elements for missing
values or subvalues belonging to the same association, you can define these settings
in the U2XMLOUT.map file, as shown in the following example:

<U2
 matchelement = “1”
 treated-as = “element”
/>

Missing Value
11-7 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Defining these settings in the mapping file eliminates the need to specify them in
each RetrieVe statement.

UniVerse processes XML options as follows:

1. Reads options defined in the U2XMLOUT.map file when UniVerse starts.
2. Reads any options defined in a mapping file. This mapping file resides in

the &XML& directory in the current account, and is specified in the
RetrieVe statement, as shown in the following example:

LIST STUDENT SEMESTER TOXML XMLMAPPING mystudent.map

3. Processes any options you specify in the RetrieVe statement.

Options you specify in the RetrieVe statement override options defined in the
mapping file. Options defined in the mapping file override options defined in the
U2XMLOUT.map file.

Warning: The attribute type definition for a multivalued or multi-subvalued field in a
UniVerse dictionary record is “M.” If you know that a field is multi-subvalued, you
must define it as such in a mapping file, or the XML document you create may not be
accurate.

A mapping file has the following format:

<?XML version=”1.0”?>
<U2xml-mapping xmlns:U2xml=”http://www.informix.com/U2-xml”>
<!--there can be multiple <U2xml:mapping> elements -->
 <U2xml :mapping file=”file_name”

field=”dictionary_display_name”
map-to=”name_in_xml_doc”
namespace=”namespace_name”
type=”MV” | “MS”
hastm=”yes” | “1”
treated-as=”attribute” | “element”
root=”root_element_name”
record=”record_element_name”
association-mv=”mv_level_assoc_name”
association-ms=”ms_level_assoc_name”
matchelement=”0”|”1”
format = “format -pattern”..
conversion = “conversion code”
encode=”encoding characters”

/>
 11-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
...

</U2xml-mapping>

The following table describes each field of the mapping file.

Field Description

XML version The XML version number.

U2xml-mapping The element name of a mapping rule.

file The name of the UniVerse data file from which you are creating
the XML document.

field The display name of the dictionary record from which you are
creating an XML element.

map-to The name of the field to create in the XML document.

namespace The name of the namespace. A namespace is a unique identifier
that links an XML markup element to a specific DTD. They
indicate to the processing application which DTD you are
using.

type The type of attribute. Value can be MV (multivalued), MS
(multi-subvalued), TM (text mark), or any other mark
contained in your data. The default is S (singlevalued).

hastm Specifies whether or not to treat a text mark as another level of
an element. A value of yes treats a text mark as another level of
an element, while a value of 1 does not. This field applies only
to element-centric mode.

treated-as Specifies how to treat the XML element. Value is either
attribute or element.

root Root element name.

record The name of the resulting XML record element.

association-mv The name of the resulting XML multivalued association.

association-ms The name of the resulting XML multi-subvalued association.

Mapping File Fields
11-9 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Conversion Code Considerations

UniVerse XML follows the following rules when extracting data from database files:

If the dictionary record of a field you are extracting contains a conversion
code, UniVerse XML uses that conversion code when extracting data from
database files.
If you specify a conversion code in the mapping file, the conversion code in
the mapping file overrides the conversion code specified in the dictionary
record.
If you specify a conversion code using the CONV keyword during the
execution of a RetrieVe statement, that conversion code overrides both the
conversion code specified in the mapping file, and the conversion code
specified in the dictionary record.

Formatting Considerations

UniVerse XML does not generally apply the dictionary format pattern to the
extracted data. To specify a format, define it in the mapping file. If you specify a
format using the FMT keyword in a RetrieVe statement, that format will override the
format defined in the mapping file.

format Specifies the format to use in the output. See “Formatting
Considerations” for more information.

conversion Specifies the conversion code to use in the output. See
“Conversion Code Considerations” for more information about
how UniVerse XML processes conversion codes.

encode Encoding characters in hexadecimal format, separated by
spaces. See “Mapping File Encoding” for more information
about how UniVerse XML handles encoding.

Field Description

Mapping File Fields (Continued)
 11-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Mapping File Encoding

For special character encountered in data, UniVerse XML uses the default XML
entities to encode the data. For example, ‘<‘ becomes <, ‘>’ becomes >, ‘&’
becomes &, and “ becomes ". However, UniVerse XML does not convert
‘ to ', unless you specify it in attribute encode. (<, >, &, ', and
" are all built-in entities for the XML parser).

Use the encode field in the mapping file to add flexibility to the output. You can
define special characters to encode in hexadecimal form. UniVerse encodes these
special characters to &#x##;. For example, if you want the character ‘{‘ to be
encoded for field FIELD1, specify the following encode value in the mapping file for
FIELD1:

encode=”0x7B”

In this case, UniVerse XML will convert ‘{‘ found in the data of FIELD1 to {.

You can also use this type of encoding for any nonprintable character. If you need to
define more than one character for a field, add a space between the hexadecimal
definitions. For example, if you want to encode both ‘{‘ and ‘}’, the encode value in
the mapping file should look like the following example:

encode=”0x7B 0x7D”
11-11 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following example illustrates a mapping file for the STUDENT file.

<?XML version=”1.0”?>
<U2xml-mapping xmlns:U2xml=”http://www.informix.com/U2-xml”>
<! -- this is a comment -->
<U2xml:mapping record=”STUDENT_rec”
 root = “SCHOOL”
 xmlns:IBM=”http://www.IBM.com”
 namespace=”IBM”
/>
<U2XML:mapping file=”STUDENT”

field = “SEMESTER”
type=”MV”

treated-as=”element”
/>
<U2XML:mapping file=”STUDENT”

field = “COURSE_NBR”
type=”MS”

treated-as=element”
/>
<U2XML:mapping file=”STUDENT”

field = “COURSE_GRD”
type=”MS”

treated-as=”element”
/>
<U2XML:mapping file=”STUDENT”

field = “COURSE_NAME”
type=”MS”

treated-as=”element”
/>
</U2xml-mapping>

Notice that the SEMESTER, COURSE_NBR, COURSE_GRD, and
COURSE_NAME fields are to be treated as elements. When you create the XML
document, these fields will produce element-centric XML data. Any other fields
listed in the query statement will produce attribute-centric XML data, since attribute-
centric is the default mode.

Additionally, COURSE_NBR, COURSE_GRD, and COURSE_NAME are defined
as multi-subvalued fields. If they were not, UniVerse would create the XML data as
if they were multivalued attributes.

How Data is Mapped
Regardless of the mapping mode you choose, the outer-most element in the XML
document is created as <ROOT>, by default. The name of each record element
defaults to <file_name>.
 11-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
You can change these mapping defaults in the mapping file, as shown in the following
example:

<U2xml:mapping root=”root_name”
record=”record_name”/>
11-13 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Mapping Example
The following examples illustrate creation of XML documents. These examples use
the STUDENT file, which contains the following fields:

>LIST DICT STUDENT

DICT STUDENT 12:50:05pm 10 Oct 2001 Page 1

 Type &
Field......... Field. Field........ Conversion.. Column......... Output
Depth &
Name.......... Number Definition... Code........ Heading........ Format
Assoc..

@ID D 0 STUDENT 10L S
ID D 0 STUDENT 12R### S
 -##-##
 ##
LNAME D 1 Last Name 15T S
FNAME D 2 First Name 10L S
MAJOR D 3 Major 4L S
MINOR D 4 Minor 4L S
ADVISOR D 5 Advisor 8L S
SEMESTER D 6 Term 4L M
CGA
COURSE_NBR D 7 Crs # 5L M
CGA
COURSE_GRD D 8 GD 3L M
CGA
TEACHER I TRANS('COURSE Teacher 10L M
CGA
 S',COURSE_NBR
 ,'TEACHER','X
 ')
COURSE_NAME I TRANS('COURSE Course Name 25L M
CGA
Press any key to continue...

DICT STUDENT 12:50:07pm 10 Oct 2001 Page 2

 Type &
Field......... Field. Field........ Conversion.. Column......... Output
Depth &
Name.......... Number Definition... Code........ Heading........ Format
Assoc..

 S',COURSE_NBR
 ,'NAME','X')
GPA1 I SUBR('GPA1',C MD3 GPA 5R S
 OURSE_HOURS,C
 OURSE_GRD)
COURSE_HOURS I TRANS('COURSE Hours 5R M
CGA
 S',COURSE_NBR
 ,CREDITS,'X')
CGA PH SEMESTER
 COURSE_NBR
 COURSE_NAME
 11-14

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
 COURSE_GRD
 COURSE_HOURS
 TEACHER
@ORIGINAL S @ID M
@SYNONYM S ID M

Press any key to continue...

DICT STUDENT 12:50:08pm 10 Oct 2001 Page 3

 Type &
Field......... Field. Field........ Conversion.. Column......... Output
Depth &
Name.......... Number Definition... Code........ Heading........ Format
Assoc..

17 records listed.
>

Creating an XML Document
To create an XML document using RetrieVe, use the LIST command.

LIST [DICT | USING [DICT] dictname] filename ... [TOXML [ELE-
MENTS] [WITHDTD] [XMLMAPPING mapping_file]]...

The following table describes each parameter of the syntax.

Parameter Description

DICT Lists records in the file dictionary of filename. If you do not
specify DICT, records in the data file are listed.

USING [DICT]
dictname

If DICT is not specified, uses dictname as the dictionary of
filename. If DICT is specified, the dictionary of dictname is used
as the dictionary of filename.

filename The file whose records you want to list. You can specify
filename anywhere in the sentence. LIST uses the first word in
the sentence that has a file descriptor in the VOC file as the
filename.

TOXML Outputs LIST results in XML format.

LIST Parameters
11-15 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
For detailed information about the LIST command, see the RetrieVe Users Guide.

Examples
Note: The examples in this section use the STUDENT.F and COURSES files. To
create these files, execute the MAKE.DEMO.FILES from the TCL prompt.

Creating an Attribute-centric XML Document

This example lists fields from the STUDENT file, using the TOXML keyword, to
create an XML document. By default, UniVerse uses the attribute-centric mapping
mode.

ELEMENTS Outputs results in element-centric format. I

WITHDTD Output produces a DTD corresponding to the query.

XMLMAPPING
mapping_file

Specifies a mapping file containing transformation rules for
display. This file must exist in the &XML& file.

Parameter Description

LIST Parameters (Continued)
 11-16

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Note: UniVerse does not store the XML document unless you execute the COMO ON
statement prior to executing the RetrieVe statement. If you execute COMO ON, the
XML document is stored in the &COMO& file. You can also direct the output to the
&HOLD& file using SETPTR, or the printer using LPTR.

>LIST STUDENT.F SEMESTER COURSE_NBR COURSE_GRD COURSE_NAME TOXML
Validate XML name changed display name from '@ID' to '_ID'

<?xml version="1.0"?>
<ROOT>
<STUDENT.F_record _ID = "424325656">
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "PY100" COURSE_GRD = "C"
COURSE_NAME =
"Introduction to Psychology" COURSE_NBR = "PE100" COURSE_GRD = "C"
COURSE_NAME =
 "Golf - I"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "521814564">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "CS130" COURSE_GRD = "A"
COURSE_NAME =
"Intro to Operating Systems" COURSE_NBR = "CS100" COURSE_GRD = "B"
COURSE_NAME =
 "Intro to Computer Science" COURSE_NBR = "PY100" COURSE_GRD = "B"
COURSE_NAME =
 "Introduction to Psychology"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "CS131" COURSE_GRD = "B"
COURSE_NAME =
"Intro to Operating Systems" COURSE_NBR = "CS101" COURSE_GRD = "B"
COURSE_NAME =
 "Intro to Computer Science" COURSE_NBR = "PE220" COURSE_GRD = "A"
COURSE_NAME =
 "Racquetball"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "978766676">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "FA120" COURSE_GRD = "A"
COURSE_NAME =
"Finger Painting" COURSE_NBR = "FA230" COURSE_GRD = "C"
COURSE_NAME = "Photograp
hy Principals" COURSE_NBR = "HY101" COURSE_GRD = "C" COURSE_NAME =
"Western Civi
lization"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "FA121" COURSE_GRD = "A"
COURSE_NAME =
"Watercorlors" COURSE_NBR = "FA231" COURSE_GRD = "B" COURSE_NAME =
"Photography
Practicum" COURSE_NBR = "HY102" COURSE_GRD = "I" COURSE_NAME =
"Western Civiliza
tion - 1500 to 1945"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "221345665">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "EG110" COURSE_GRD = "C"
11-17 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
COURSE_NAME =
"Engineering Principles" COURSE_NBR = "MA220" COURSE_GRD = "B"
COURSE_NAME = "Ca
lculus- I" COURSE_NBR = "PY100" COURSE_GRD = "B" COURSE_NAME =
"Introduction to
Psychology"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "EG140" COURSE_GRD = "B"
COURSE_NAME =
"Fluid Mechanics" COURSE_NBR = "EG240" COURSE_GRD = "B"
COURSE_NAME = "Circut Th
eory" COURSE_NBR = "MA221" COURSE_GRD = "B" COURSE_NAME =
"Calculus - II"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "291222021">
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "FA100" COURSE_GRD = "B"
COURSE_NAME =
"Visual Thinking"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "414446545">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "CS104" COURSE_GRD = "D"
COURSE_NAME =
"Database Design" COURSE_NBR = "MA101" COURSE_GRD = "C"
COURSE_NAME = "Math Prin
cipals" COURSE_NBR = "FA100" COURSE_GRD = "C" COURSE_NAME =
"Visual Thinking"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "CS105" COURSE_GRD = "B"
COURSE_NAME =
"Database Design" COURSE_NBR = "MA102" COURSE_GRD = "C"
COURSE_NAME = "Algebra"
COURSE_NBR = "PY100" COURSE_GRD = "C" COURSE_NAME = "Introduction
to Psychology"
/>
</STUDENT.F_record>
</ROOT>
>

 11-18

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Creating an Element-centric XML Document

To create an element-centric XML document, use the ELEMENTS keyword.

>LIST STUDENT.F SEMESTER COURSE_NBR COURSE_GRD COURSE_NAME TOXML
ELEMENTS
Validate XML name changed display name from '@ID' to '_ID'

<?xml version="1.0"?>
<ROOT>
<STUDENT.F_record _ID = "424325656">
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "PY100" COURSE_GRD = "C"
COURSE_NAME =
"Introduction to Psychology" COURSE_NBR = "PE100" COURSE_GRD = "C"
COURSE_NAME =
 "Golf - I"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "521814564">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "CS130" COURSE_GRD = "A"
COURSE_NAME =
"Intro to Operating Systems" COURSE_NBR = "CS100" COURSE_GRD = "B"
COURSE_NAME =
 "Intro to Computer Science" COURSE_NBR = "PY100" COURSE_GRD = "B"
COURSE_NAME =
 "Introduction to Psychology"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "CS131" COURSE_GRD = "B"
COURSE_NAME =
"Intro to Operating Systems" COURSE_NBR = "CS101" COURSE_GRD = "B"
COURSE_NAME =
 "Intro to Computer Science" COURSE_NBR = "PE220" COURSE_GRD = "A"
COURSE_NAME =
 "Racquetball"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "978766676">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "FA120" COURSE_GRD = "A"
COURSE_NAME =
"Finger Painting" COURSE_NBR = "FA230" COURSE_GRD = "C"
COURSE_NAME = "Photograp
hy Principals" COURSE_NBR = "HY101" COURSE_GRD = "C" COURSE_NAME =
"Western Civi
lization"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "FA121" COURSE_GRD = "A"
COURSE_NAME =
"Watercorlors" COURSE_NBR = "FA231" COURSE_GRD = "B" COURSE_NAME =
"Photography
Practicum" COURSE_NBR = "HY102" COURSE_GRD = "I" COURSE_NAME =
"Western Civiliza
tion - 1500 to 1945"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "221345665">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "EG110" COURSE_GRD = "C"
COURSE_NAME =
11-19 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
"Engineering Principles" COURSE_NBR = "MA220" COURSE_GRD = "B"
COURSE_NAME = "Ca
lculus- I" COURSE_NBR = "PY100" COURSE_GRD = "B" COURSE_NAME =
"Introduction to
Psychology"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "EG140" COURSE_GRD = "B"
COURSE_NAME =
"Fluid Mechanics" COURSE_NBR = "EG240" COURSE_GRD = "B"
COURSE_NAME = "Circut Th
eory" COURSE_NBR = "MA221" COURSE_GRD = "B" COURSE_NAME =
"Calculus - II"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "291222021">
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "FA100" COURSE_GRD = "B"
COURSE_NAME =
"Visual Thinking"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "414446545">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "CS104" COURSE_GRD = "D"
COURSE_NAME =
"Database Design" COURSE_NBR = "MA101" COURSE_GRD = "C"
COURSE_NAME = "Math Prin
cipals" COURSE_NBR = "FA100" COURSE_GRD = "C" COURSE_NAME =
"Visual Thinking"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "CS105" COURSE_GRD = "B"
COURSE_NAME =
"Database Design" COURSE_NBR = "MA102" COURSE_GRD = "C"
COURSE_NAME = "Algebra"
COURSE_NBR = "PY100" COURSE_GRD = "C" COURSE_NAME = "Introduction
to Psychology"
/>
</STUDENT.F_record>
</ROOT>
>

 11-20

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Creating a Mixed-mode XML Document

Using the mapping file described in “Creating a Mapping File,” the following
example creates a mixed-mode XML document. To use a mapping file, specify the
XMLMAPPING keyword in the RetrieVe statement.

>LIST STUDENT.F LNAME FNAME SEMESTER COURSE_NBR COURSE_GRD
COURSE_NAME TOXML XMLMAPPING STUDENT_MAP
Validate XML name changed display name from '@ID' to '_ID'

<?xml version="1.0"?>
<SCHOOL
xmlns:IBM="HTTP://WWW.IBM.COM"
>
<IBM:STUDENT_REC _ID = "424325656" LNAME = "Martin" FNAME =
"Sally">
 <CGA-MV>
 <SEMESTER>SP94</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>PY100</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Introduction to Psychology</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>PE100</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Golf - I</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
</IBM:STUDENT_REC>
<IBM:STUDENT_REC _ID = "521814564" LNAME = "Smith" FNAME =
"Harry">
 <CGA-MV>
 <SEMESTER>FA93</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>CS130</COURSE_NBR>
 <COURSE_GRD>A</COURSE_GRD>
 <COURSE_NAME>Intro to Operating Systems</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>CS100</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Intro to Computer Science</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>PY100</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Introduction to Psychology</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
 <CGA-MV>
11-21 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
 <SEMESTER>SP94</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>CS131</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Intro to Operating Systems</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>CS101</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Intro to Computer Science</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>PE220</COURSE_NBR>
 <COURSE_GRD>A</COURSE_GRD>
 <COURSE_NAME>Racquetball</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
</IBM:STUDENT_REC>
<IBM:STUDENT_REC _ID = "978766676" LNAME = "Muller" FNAME =
"Gerhardt">
 <CGA-MV>
 <SEMESTER>FA93</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>FA120</COURSE_NBR>
 <COURSE_GRD>A</COURSE_GRD>
 <COURSE_NAME>Finger Painting</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>FA230</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Photography Principals</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>HY101</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Western Civilization</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
 <CGA-MV>
 <SEMESTER>SP94</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>FA121</COURSE_NBR>
 <COURSE_GRD>A</COURSE_GRD>
 <COURSE_NAME>Watercorlors</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>FA231</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Photography Practicum</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>HY102</COURSE_NBR>
 <COURSE_GRD>I</COURSE_GRD>
 <COURSE_NAME>Western Civilization - 1500 to
 11-22

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
1945</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
</IBM:STUDENT_REC>
<IBM:STUDENT_REC _ID = "221345665" LNAME = "Miller" FNAME =
"Susan">
 <CGA-MV>
 <SEMESTER>FA93</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>EG110</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Engineering Principles</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>MA220</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Calculus- I</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>PY100</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Introduction to Psychology</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
 <CGA-MV>
 <SEMESTER>SP94</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>EG140</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Fluid Mechanics</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>EG240</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Circut Theory</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>MA221</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Calculus - II</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
</IBM:STUDENT_REC>
<IBM:STUDENT_REC _ID = "291222021" LNAME = "Smith" FNAME = "jojo">
 <CGA-MV>
 <SEMESTER>SP94</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>FA100</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Visual Thinking</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
</IBM:STUDENT_REC>
<IBM:STUDENT_REC _ID = "414446545" LNAME = "Offenbach" FNAME =
11-23 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
"Karl">
 <CGA-MV>
 <SEMESTER>FA93</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>CS104</COURSE_NBR>
 <COURSE_GRD>D</COURSE_GRD>
 <COURSE_NAME>Database Design</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>MA101</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Math Principals</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>FA100</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Visual Thinking</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
 <CGA-MV>
 <SEMESTER>SP94</SEMESTER>
 <CGA-MS>
 <COURSE_NBR>CS105</COURSE_NBR>
 <COURSE_GRD>B</COURSE_GRD>
 <COURSE_NAME>Database Design</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>MA102</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Algebra</COURSE_NAME>
 </CGA-MS>
 <CGA-MS>
 <COURSE_NBR>PY100</COURSE_NBR>
 <COURSE_GRD>C</COURSE_GRD>
 <COURSE_NAME>Introduction to Psychology</COURSE_NAME>
 </CGA-MS>
 </CGA-MV>
</IBM:STUDENT_REC>
</SCHOOL>
>

Notice in the XML document that LNAME and FNAME are attribute-centric, and the
rest of the elements are element-centric.
 11-24

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Creating an XML Document with a DTD

If you only include the TOXML keyword in the RetrieVe statement, the resulting
XML document does not include the DTD. To create an XML document that includes
a DTD, use the WITHDTD keyword.

LIST STUDENT.F SEMESTER COURSE_NBR COURSE_GRD COURSE_NAME TOXML
WITHDTD
Validate XML name changed display name from '@ID' to '_ID'

<?xml version="1.0"?>
<!DOCTYPE ROOT[
<!ELEMENT ROOT (STUDENT.F_record*)>
<!ELEMENT STUDENT.F_record (CGA-MV*)>
<!ATTLIST STUDENT.F_record
 _ID CDATA #REQUIRED
>
<!ELEMENT CGA-MV EMPTY>
<!ATTLIST CGA-MV
 SEMESTER CDATA #IMPLIED
 COURSE_NBR CDATA #IMPLIED
 COURSE_GRD CDATA #IMPLIED
 COURSE_NAME CDATA #IMPLIED
>
]>
<ROOT>
<STUDENT.F_record _ID = "424325656">
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "PY100" COURSE_GRD = "C"
COURSE_NAME =
"Introduction to Psychology" COURSE_NBR = "PE100" COURSE_GRD = "C"
COURSE_NAME =
 "Golf - I"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "521814564">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "CS130" COURSE_GRD = "A"
COURSE_NAME =
"Intro to Operating Systems" COURSE_NBR = "CS100" COURSE_GRD = "B"
COURSE_NAME =
 "Intro to Computer Science" COURSE_NBR = "PY100" COURSE_GRD = "B"
COURSE_NAME =
 "Introduction to Psychology"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "CS131" COURSE_GRD = "B"
COURSE_NAME =
"Intro to Operating Systems" COURSE_NBR = "CS101" COURSE_GRD = "B"
COURSE_NAME =
 "Intro to Computer Science" COURSE_NBR = "PE220" COURSE_GRD = "A"
COURSE_NAME =
 "Racquetball"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "978766676">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "FA120" COURSE_GRD = "A"
11-25 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
COURSE_NAME =
"Finger Painting" COURSE_NBR = "FA230" COURSE_GRD = "C"
COURSE_NAME = "Photograp
hy Principals" COURSE_NBR = "HY101" COURSE_GRD = "C" COURSE_NAME =
"Western Civi
lization"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "FA121" COURSE_GRD = "A"
COURSE_NAME =
"Watercorlors" COURSE_NBR = "FA231" COURSE_GRD = "B" COURSE_NAME =
"Photography
Practicum" COURSE_NBR = "HY102" COURSE_GRD = "I" COURSE_NAME =
"Western Civiliza
tion - 1500 to 1945"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "221345665">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "EG110" COURSE_GRD = "C"
COURSE_NAME =
"Engineering Principles" COURSE_NBR = "MA220" COURSE_GRD = "B"
COURSE_NAME = "Ca
lculus- I" COURSE_NBR = "PY100" COURSE_GRD = "B" COURSE_NAME =
"Introduction to
Psychology"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "EG140" COURSE_GRD = "B"
COURSE_NAME =
"Fluid Mechanics" COURSE_NBR = "EG240" COURSE_GRD = "B"
COURSE_NAME = "Circut Th
eory" COURSE_NBR = "MA221" COURSE_GRD = "B" COURSE_NAME =
"Calculus - II"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "291222021">
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "FA100" COURSE_GRD = "B"
COURSE_NAME =
"Visual Thinking"/>
</STUDENT.F_record>
<STUDENT.F_record _ID = "414446545">
 <CGA-MV SEMESTER = "FA93" COURSE_NBR = "CS104" COURSE_GRD = "D"
COURSE_NAME =
"Database Design" COURSE_NBR = "MA101" COURSE_GRD = "C"
COURSE_NAME = "Math Prin
cipals" COURSE_NBR = "FA100" COURSE_GRD = "C" COURSE_NAME =
"Visual Thinking"/>
 <CGA-MV SEMESTER = "SP94" COURSE_NBR = "CS105" COURSE_GRD = "B"
COURSE_NAME =
"Database Design" COURSE_NBR = "MA102" COURSE_GRD = "C"
COURSE_NAME = "Algebra"
COURSE_NBR = "PY100" COURSE_GRD = "C" COURSE_NAME = "Introduction
to Psychology"
/>
</STUDENT.F_record>
</ROOT>
>

 11-26

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Creating an XML Document with UniVerse SQL
In addition to RetrieVe, you can also create XML documents using UniVerse SQL.
To create an XML document through UniVerse SQL, complete the following steps:

1. Analyze the DTD associated with the application to which you are sending
the XML file. Determine which of your dictionary attributes correspond to
the DTD elements.

2. Create an XML mapping file, if necessary.
3. List the appropriate fields using the UniVerse SQL SELECT command.

Create the &XML& File
UniVerse stores XML mapping files and XSL files in the &XML& directory file. To
create this file, enter the following command:

CREATE.FILE &XML& 19

To create an XML document from UniVerse SQL, use the UniVerse SQL SELECT
command.

SELECT clause FROM clause
[WHERE clause]
[WHEN clause [WHEN clause]...]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause]
[report_qualifiers]
[processing_qualifiers]
[TOXML [ELEMENTS] [WITHDTD]

[XMLMAPPING mapping_file]]
[XMLDATA extraction_mapping_file];
11-27 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

You must specify clauses in the SELECT statement in the order shown in the syntax.
You can use the SELECT statement with type 1, type 19, and type 25 files only if the
current isolation level is 0 or 1.

For a full discussion of the UniVerse SQL SELECT statement clauses, see the
UniVerse SQL Reference.

Parameter Description

SELECT clause Specifies the columns to select from the database.

FROM clause Specifies the tables containing the selected columns.

WHERE clause Specifies the criteria that rows must meet to be selected.

WHEN clause Specifies the criteria that values in a multivalued column must
meet for an association row to be output.

GROUP BY clause Groups rows to summarize results.

HAVING clause Specifies the criteria that grouped rows must meet to be selected.

ORDER BY clause Sorts selected rows.

report_qualifiers Formats a report generated by the SELECT statement.

processing_qualifiers Modifies or reports on the processing of the SELECT statement.

TOXML Outputs SELECT results in XML format.

ELEMENTS Outputs results in element-centric format.

WITHDTD Output produces a DTD corresponding to the query.

XMLMAPPING
‘mapping_file’

Specifies a mapping file containing transformation rules for
display. This file must exist in the &XML& file.

XMLDATA
extraction_mapping_file

Specifies the file containing the extraction rules for the XML
document. This file is used for receiving an XML file.

SELECT Parameters
 11-28

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Processing Rules for UniVerse SQL SELECT Statements
UniVerse processes SELECT statements much the same as it processes LIST
statements, with a few exceptions.

The processing rules for a UniVerse SQL SELECT statement against a single table
are the same as the RetrieVe LIST rules. For a discussion of how UniVerse SQL
processes these statements, see “Creating an XML Document from RetrieVe.”

Processing Multiple Tables

When processing a UniVerse SQL SELECT statement involving multiple files,
UniVerse attempts to keep the nesting inherited in the query in the resulting XML
document. Because of this, the order in which you specify the fields in the UniVerse
SQL SELECT statement is important for determining how the elements are nested.

Processing in Attribute-centric Mode

As with RetrieVe, the attribute-centric mode is the default mapping mode. For more
information about the attribute-centric mode, see “Attribute-centric Mode.”

In this mode, UniVerse uses the name of the file containing the first field you
specify in the SELECT statement as the outer-most element in the XML
output. Any singlevalued fields you specify in the SELECT statement that
belong to this file become attributes of this element.
UniVerse processes the SELECT statement in the order you specify. If it
finds a field that belongs to another file, UniVerse creates a sub-element.
The name of this sub-element is the new file name. All singlevalued fields
found in the SELECT statement that belong to this file are created as attri-
butes for the sub-element.
If UniVerse finds a multivalued or multi-subvalued field in the SELECT
statement, it creates a sub-element. The name of this element is the name of
the association of which this field is a member.
When you execute UNNEST against an SQL table, it flattens the
multivalues into single values.

UniVerse processes the ELEMENTS, WITHDTD, and XMLMAPPING keywords in
the same manner as it processes them for the RetrieVe LIST command.
11-29 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Processing in Element-centric Mode

When using the element-centric mode, UniVerse automatically prefixes each file
name to the association name. For example, the CGA association in the STUDENT
file is named STUDENT_CGA in the resulting XML file.

XML Limitations in UniVerse SQL
The TOXML keyword is not allowed in the following cases:

In a sub-query
In a SELECT statement that is part of an INSERT statement.
In a SELECT statement that is part of a UNION definition.
In a SELECT statement that is part of a VIEW definition.

Examples
This section illustrates XML output from the UniVerse SQL SELECT statement. The
examples use sample CUSTOMER, TAPES, and STUDENT files.

The following example lists the dictionary records from the CUSTOMER file that are
used in the examples:

DICT CUSTOMER 04:31:35pm 11 Oct 2001 Page 1

 Type &
Field......... Field. Field........ Conversion.. Column......... Output Depth &
Name.......... Number Definition... Code........ Heading........ Format Assoc..

NAME D 1 Customer Name 15T S
TAPES_RENTED D 7 Tapes 10L M TAPE_
 INFO
TAPE_INFO PH TAPES_RENTED
 DATE_OUT
 DATE_DUE
 DAYS_BETWEEN
 TAPE_COST
 TAPE_NAME
 UP_NAMES
 TAPE_CAT

DICT TAPES 04:33:47pm 11 Oct 2001 Page 1

 Type &
Field......... Field. Field........ Conversion.. Column......... Output Depth &
Name.......... Number Definition... Code........ Heading........ Format Assoc..

@ID D 0 TAPES 10L S
NAME D 1 Tape Name 20T S
CAT_NAME I TRANS('CATEGO Tape Type 20L S CATS
 RIES',CATEGOR
 11-30

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
 IES,'NAME','X
 ')

1 records listed.

>

11-31 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Creating an XML Document From Multiple Files in Attribute-
centric Mode

In the following example, UniVerse creates an XML document from the
CUSTOMER.F and TAPES.F file in the attribute-centric mode.

>SELECT CUSTOMER.F.NAME, TAPES.F.NAME, CAT_NAME FROM
CUSTOMER.F,TAPES.F WHERETAPES_RENTED = TAPES.F.@ID ORDER BY
CUSTOMER.F.NAME TOXML;

<?xml version="1.0"?>
<ROOT>
<CUSTOMER.F_record NAME = "Barrie, Dick">
<TAPES.F NAME = "Citizen Kane">
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Best, George">
<TAPES.F NAME = "Love Story">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Bowie, David">
<TAPES.F NAME = "The Stalker">
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "'Round Midnight">
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "American Graffiti ">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "Flash Gordon">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Faber, Harry">
<TAPES.F NAME = "To Kill A Mockingbird">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 11-32

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Fischer, Carrie">
<TAPES.F NAME = "Girl Friday">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "James, Bob">
<TAPES.F NAME = "Blue Velvet">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jamieson, Dale">
<TAPES.F NAME = "2001">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Bob">
<TAPES.F NAME = "Z">
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Freddie">
<TAPES.F NAME = "Help">
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Mable">
<TAPES.F NAME = "Psycho">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Mable">
<TAPES.F NAME = "Gone With The Wind">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Samuel">
<TAPES.F NAME = "'Round Midnight">
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Samuel">
11-33 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
<TAPES.F NAME = "Flash Gordon">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Partner, Bonnie">
<TAPES.F NAME = "Tammy">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Partner, Bonnie">
<TAPES.F NAME = "Love Story">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Journey Abroad">
 <TAPES.F_CATS_MV CAT_NAME = "B - Movie"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Catch 22">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Blue Velvet">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
</CUSTOMER.F_record>
</ROOT>
>

 11-34

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
The next example illustrates the results of a UniVerse SQL statement against the
same fields with a different SELECT order and a different sorting option:

01 SELECT TAPES.F.NAME, CUSTOMER.F.NAME, CAT_NAME FROM CUSTOMER.F,
TAPES.F WHERE
 TAPES_RENTED = TAPES.F.@ID ORDER BY TAPES.F.NAME TOXML;

<?xml version="1.0"?>
<ROOT>
<TAPES.F_record NAME = "'Round Midnight">
<CUSTOMER.F NAME = "Jones, Samuel"/>
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F_record>
<TAPES.F_record NAME = "'Round Midnight">
<CUSTOMER.F NAME = "Chase, Carl"/>
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F_record>
<TAPES.F_record NAME = "2001">
<CUSTOMER.F NAME = "Jamieson, Dale"/>
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F_record>
<TAPES.F_record NAME = "American Graffiti ">
<CUSTOMER.F NAME = "Chase, Carl"/>
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Blue Velvet">
<CUSTOMER.F NAME = "Smith, Harry"/>
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Blue Velvet">
<CUSTOMER.F NAME = "James, Bob"/>
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Catch 22">
<CUSTOMER.F NAME = "Smith, Harry"/>
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Citizen Kane">
<CUSTOMER.F NAME = "Barrie, Dick"/>
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Flash Gordon">
11-35 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
<CUSTOMER.F NAME = "Chase, Carl"/>
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Flash Gordon">
<CUSTOMER.F NAME = "Jones, Samuel"/>
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Girl Friday">
<CUSTOMER.F NAME = "Fischer, Carrie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Gone With The Wind">
<CUSTOMER.F NAME = "Jones, Mable"/>
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Help">
<CUSTOMER.F NAME = "Jones, Freddie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Journey Abroad">
<CUSTOMER.F NAME = "Smith, Harry"/>
 <TAPES.F_CATS_MV CAT_NAME = "B - Movie"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Love Story">
<CUSTOMER.F NAME = "Partner, Bonnie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Love Story">
<CUSTOMER.F NAME = "Best, George"/>
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Psycho">
<CUSTOMER.F NAME = "Jones, Mable"/>
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Tammy">
<CUSTOMER.F NAME = "Partner, Bonnie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F_record>
<TAPES.F_record NAME = "The Stalker">
<CUSTOMER.F NAME = "Bowie, David"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
</TAPES.F_record>
<TAPES.F_record NAME = "To Kill A Mockingbird">
<CUSTOMER.F NAME = "Faber, Harry"/>
 11-36

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F_record>
<TAPES.F_record NAME = "Z">
<CUSTOMER.F NAME = "Jones, Bob"/>
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F_record>
</ROOT>
>

11-37 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Creating an XML Document From Multiple Files in Element-centric
Mode

The following example illustrates creating an XML document from multiple files in
element-centric mode, using the ELEMENTS keyword.

>SELECT CUSTOMER.NAME, TAPES.NAME, CAT_NAME FROM CUSTOMER, TAPES
WHERE TAPES_RENTED = TAPES.@ID ORDER BY CUSTOMER.NAME TOXML
ELEMENTS;
Validate XML name changed display name from 'Customer Name' to
'Customer_Name'
Validate XML name changed display name from 'Tape Name' to
'Tape_Name'
Validate XML name changed display name from 'Tape Type' to
'Tape_Type'

<?xml version="1.0"?>
<ROOT>
<CUSTOMER_record>
 <Customer_Name>Chase, Carl</Customer_Name>
<TAPES>
 <Tape_Name>American Graffiti</Tape_Name>
 <TAPES_CATS_MV>
 <Tape_Type>Comedy</Tape_Type>
 </TAPES_CATS_MV>
 <TAPES_CATS_MV>
 <Tape_Type>Childrens Movie</Tape_Type>
 </TAPES_CATS_MV>
</TAPES>
</CUSTOMER_record>
<CUSTOMER_record>
 <Customer_Name>Chase, Carl</Customer_Name>
<TAPES>
 <Tape_Name>Flash Gordon</Tape_Name>
 <TAPES_CATS_MV>
 <Tape_Type>Science Fiction</Tape_Type>
 </TAPES_CATS_MV>
 <TAPES_CATS_MV>
 <Tape_Type>Childrens Movie</Tape_Type>
 </TAPES_CATS_MV>
</TAPES>
</CUSTOMER_record>
<CUSTOMER_record>
 <Customer_Name>Chase, Carl</Customer_Name>
<TAPES>
 <Tape_Name>'Round Midnight</Tape_Name>
 <TAPES_CATS_MV>
 <Tape_Type>Musical</Tape_Type>
 </TAPES_CATS_MV>
 <TAPES_CATS_MV>
 <Tape_Type>Drama</Tape_Type>
 </TAPES_CATS_MV>
 11-38

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
</TAPES>
</CUSTOMER_record>
<CUSTOMER_record>
 <Customer_Name>Jamieson, Dale</Customer_Name>
<TAPES>
 <Tape_Name>2001</Tape_Name>
 <TAPES_CATS_MV>
 <Tape_Type>Science Fiction</Tape_Type>
 </TAPES_CATS_MV>
 <TAPES_CATS_MV>
 <Tape_Type>Drama</Tape_Type>
 </TAPES_CATS_MV>
</TAPES>
</CUSTOMER_record>
<CUSTOMER_record>
 <Customer_Name>Jones, Bob</Customer_Name>
<TAPES>
 <Tape_Name>Z</Tape_Name>
 <TAPES_CATS_MV>
 <Tape_Type>Political</Tape_Type>
 </TAPES_CATS_MV>
 <TAPES_CATS_MV>
 <Tape_Type>Drama</Tape_Type>
 </TAPES_CATS_MV>
</TAPES>
</CUSTOMER_record>
</ROOT>
>

11-39 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Creating an XML Document From Multiple Files with a Multivalued
Field

The next example illustrates creating an XML document from multiple files with a
multivalued field. In the example, TAPES_RENTED is multivalued and belongs to
the TAPE_INFO association in the CUSTOMER file. In the XML document,
TAPES_RENTED appears in the CUSTOMER_TAPE_INFO_MV element.

>SELECT CUSTOMER.F.NAME, TAPES.F.NAME, CAT_NAME, TAPES_RENTED FROM
CUSTOMER.F, TAPES.F WHERE TAPES_RENTED = TAPES.F.@ID ORDER BY
CUSTOMER.F.NAME TOXML;

<?xml version="1.0"?>
<ROOT>
<CUSTOMER.F_record NAME = "Barrie, Dick">
<TAPES.F NAME = "Citizen Kane">
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V996"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Best, George">
<TAPES.F NAME = "Love Story">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B2297"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Bowie, David">
<TAPES.F NAME = "The Stalker">
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V9961"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "'Round Midnight">
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4951"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "American Graffiti ">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
 11-40

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4951"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "Flash Gordon">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4951"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Faber, Harry">
<TAPES.F NAME = "To Kill A Mockingbird">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V5151"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Fischer, Carrie">
<TAPES.F NAME = "Girl Friday">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V110"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "James, Bob">
<TAPES.F NAME = "Blue Velvet">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V2001"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jamieson, Dale">
<TAPES.F NAME = "2001">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V6670"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Bob">
<TAPES.F NAME = "Z">
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4341"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Freddie">
<TAPES.F NAME = "Help">
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
11-41 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V9431"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Mable">
<TAPES.F NAME = "Psycho">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1249"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4499"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Mable">
<TAPES.F NAME = "Gone With The Wind">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1249"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4499"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Samuel">
<TAPES.F NAME = "'Round Midnight">
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Samuel">
<TAPES.F NAME = "Flash Gordon">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Partner, Bonnie">
<TAPES.F NAME = "Tammy">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B914"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B2297"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Partner, Bonnie">
<TAPES.F NAME = "Love Story">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B914"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B2297"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Journey Abroad">
 <TAPES.F_CATS_MV CAT_NAME = "B - Movie"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V2001"/>
 11-42

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V5004"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8181"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Catch 22">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V2001"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V5004"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8181"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Blue Velvet">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V2001"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V5004"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8181"/>
</CUSTOMER.F_record>
</ROOT>
>

11-43 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Creating an XML Document From Multiple Files with a DTD

The following example illustrates creating an XML document from multiple files
with a DTD. To include the DTD, use the WITHDTD keyword.

>SELECT CUSTOMER.F.NAME, TAPES.F.NAME, CAT_NAME, TAPES_RENTED FROM
CUSTOMER.F, TAPES.F WHERE TAPES_RENTED = TAPES.F.@ID ORDER BY
CUSTOMER.F.NAME TOXML WITHDTD;

<?xml version="1.0"?>
<!DOCTYPE ROOT[
<!ELEMENT ROOT (CUSTOMER.F_record*)>
<!ELEMENT CUSTOMER.F_record (TAPES.F* , CUSTOMER.F_TAPE_INFO_MV*
)>
<!ATTLIST CUSTOMER.F_record
 NAME CDATA #REQUIRED
>
<!ELEMENT TAPES.F (TAPES.F_CATS_MV*)>
<!ATTLIST TAPES.F
 NAME CDATA #IMPLIED
>
<!ELEMENT TAPES.F_CATS_MV EMPTY>
<!ATTLIST TAPES.F_CATS_MV
 CAT_NAME CDATA #IMPLIED
>
<!ELEMENT CUSTOMER.F_TAPE_INFO_MV EMPTY>
<!ATTLIST CUSTOMER.F_TAPE_INFO_MV
 TAPES_RENTED CDATA #IMPLIED
>
]>
<ROOT>
<CUSTOMER.F_record NAME = "Barrie, Dick">
<TAPES.F NAME = "Citizen Kane">
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V996"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Best, George">
<TAPES.F NAME = "Love Story">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B2297"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Bowie, David">
<TAPES.F NAME = "The Stalker">
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V9961"/>
 11-44

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "'Round Midnight">
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4951"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "American Graffiti ">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4951"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "Flash Gordon">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4951"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Faber, Harry">
<TAPES.F NAME = "To Kill A Mockingbird">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V5151"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Fischer, Carrie">
<TAPES.F NAME = "Girl Friday">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V110"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "James, Bob">
<TAPES.F NAME = "Blue Velvet">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V2001"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jamieson, Dale">
<TAPES.F NAME = "2001">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
11-45 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V6670"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Bob">
<TAPES.F NAME = "Z">
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4341"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Freddie">
<TAPES.F NAME = "Help">
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V9431"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Mable">
<TAPES.F NAME = "Psycho">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1249"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4499"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Mable">
<TAPES.F NAME = "Gone With The Wind">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1249"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V4499"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Samuel">
<TAPES.F NAME = "'Round Midnight">
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Samuel">
<TAPES.F NAME = "Flash Gordon">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V1254"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8481"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Partner, Bonnie">
<TAPES.F NAME = "Tammy">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F>
 11-46

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B914"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B2297"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Partner, Bonnie">
<TAPES.F NAME = "Love Story">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B914"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "B2297"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Journey Abroad">
 <TAPES.F_CATS_MV CAT_NAME = "B - Movie"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V2001"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V5004"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8181"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Catch 22">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V2001"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V5004"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8181"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Blue Velvet">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V2001"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V5004"/>
 <CUSTOMER.F_TAPE_INFO_MV TAPES_RENTED = "V8181"/>
</CUSTOMER.F_record>
</ROOT>
>

Creating an XML Document From Multiple Files Using a Mapping
File

As with RetrieVe, you can create a mapping file to define transformation rules
differing from the defaults. For information about creating the mapping file, see
“Creating a Mapping File.”
11-47 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following mapping file defines rules for the CUSTOMER and TAPES file.

<?XML version= “1.0” ?>
<U2xml-mapping xmlns:U2xml=”http://www.informix.com/U2-xml”>
<! -- CUSTOMER AND TAPE MAPPING FILE -->
<U2xml:mapping file = “TAPES.F”

field = “CAT_NAME”
map-to= Cat_name
TYPE= “MV”

/>
<U2xml:mapping file = “CUSTOMER.F”

field = “TAPES_RENTED”
map-to=”Tapes_rented”
TYPE=”MV”

/>
<U2xml:mapping file = “CUSTOMER.F”

field = “DATE_OUT”
TYPE=”MV”

/>
<U2xml:mapping file = “CUSTOMER.F”

field = “DATE_DUE”
TYPE=”MV”

/>
</U2xml-mapping>

To use this mapping file in the SELECT statement, specify the XMLMAPPING
keyword, as shown in the following example:
 11-48

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
Note: You must surround the name of the mapping file in single quotation marks.

02 SELECT CUSTOMER.F.NAME, TAPES.F.NAME, CAT_NAME, DATE_OUT,
DATE_DUE FROM CUSTO
MER.F, TAPES.F WHERE TAPES_RENTED = TAPES.F.@ID ORDER BY
CUSTOMER.F.NAME TOXML X
MLMAPPING 'CUST.TAPE.MAP';

<?xml version="1.0"?>
<ROOT>
<CUSTOMER.F_record NAME = "Barrie, Dick">
<TAPES.F NAME = "Citizen Kane">
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "03/29/94" DATE_DUE = "03/31/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Best, George">
<TAPES.F NAME = "Love Story">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "03/29/94" DATE_DUE = "03/31/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Bowie, David">
<TAPES.F NAME = "The Stalker">
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/15/94" DATE_DUE = "04/17/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "'Round Midnight">
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/20/94" DATE_DUE = "04/22/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/20/94" DATE_DUE = "04/22/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/21/94" DATE_DUE = "04/23/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "American Graffiti ">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/20/94" DATE_DUE = "04/22/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/20/94" DATE_DUE = "04/22/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/21/94" DATE_DUE = "04/23/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Chase, Carl">
<TAPES.F NAME = "Flash Gordon">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
11-49 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/20/94" DATE_DUE = "04/22/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/20/94" DATE_DUE = "04/22/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/21/94" DATE_DUE = "04/23/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Faber, Harry">
<TAPES.F NAME = "To Kill A Mockingbird">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/19/94" DATE_DUE = "04/21/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Fischer, Carrie">
<TAPES.F NAME = "Girl Friday">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Old Classic"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/23/94" DATE_DUE = "04/25/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "James, Bob">
<TAPES.F NAME = "Blue Velvet">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/25/94" DATE_DUE = "04/27/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jamieson, Dale">
<TAPES.F NAME = "2001">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Bob">
<TAPES.F NAME = "Z">
 <TAPES.F_CATS_MV CAT_NAME = "Political"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Freddie">
<TAPES.F NAME = "Help">
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/23/94" DATE_DUE = "04/25/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Mable">
<TAPES.F NAME = "Psycho">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 11-50

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch11.fm
12/29/08
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/23/94" DATE_DUE = "04/25/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/25/94" DATE_DUE = "04/27/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Mable">
<TAPES.F NAME = "Gone With The Wind">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/23/94" DATE_DUE = "04/25/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/25/94" DATE_DUE = "04/27/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Samuel">
<TAPES.F NAME = "'Round Midnight">
 <TAPES.F_CATS_MV CAT_NAME = "Musical"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/25/94" DATE_DUE = "04/27/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Jones, Samuel">
<TAPES.F NAME = "Flash Gordon">
 <TAPES.F_CATS_MV CAT_NAME = "Science Fiction"/>
 <TAPES.F_CATS_MV CAT_NAME = "Childrens Movie"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/25/94" DATE_DUE = "04/27/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Partner, Bonnie">
<TAPES.F NAME = "Tammy">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "01/01/94" DATE_DUE = "01/03/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "01/03/94" DATE_DUE = "01/05/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Partner, Bonnie">
<TAPES.F NAME = "Love Story">
 <TAPES.F_CATS_MV CAT_NAME = "Romance"/>
 <TAPES.F_CATS_MV CAT_NAME = "Tear Jerker"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "01/01/94" DATE_DUE = "01/03/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "01/03/94" DATE_DUE = "01/05/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Journey Abroad">
 <TAPES.F_CATS_MV CAT_NAME = "B - Movie"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/23/94" DATE_DUE = "04/25/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Catch 22">
 <TAPES.F_CATS_MV CAT_NAME = "Comedy"/>
11-51 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/23/94" DATE_DUE = "04/25/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
</CUSTOMER.F_record>
<CUSTOMER.F_record NAME = "Smith, Harry">
<TAPES.F NAME = "Blue Velvet">
 <TAPES.F_CATS_MV CAT_NAME = "Horror"/>
 <TAPES.F_CATS_MV CAT_NAME = "Drama"/>
 <TAPES.F_CATS_MV CAT_NAME = "Avant Garde"/>
</TAPES.F>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/23/94" DATE_DUE = "04/25/94"/>
 <TAPES.F_CATS-MV DATE_OUT = "04/24/94" DATE_DUE = "04/26/94"/>
</CUSTOMER.F_record>
</ROOT>
>

 11-52

:\Prog
ecem
11Administering UniData on Windows NT or Windows 2000
0

12
Chapter

ram Fi
ber 29

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Receiving an XML Document
with UniVerse SQL
Receiving an XML Document through UniVerse BASIC 12-2
 Defining Extraction Rules 12-2
 Defining the XPath. 12-4
 Extracting XML Data through UniVerse BASIC 12-12
 Displaying an XML Document through RetrieVe 12-17
 Displaying an XML Document through UniVerse SQL 12-21
les\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12TOC.fm
2008 10:44 am Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Receiving an XML Document through UniVerse
BASIC
XML documents are text documents, intended to be processed by an application,
such as a web browser. UniVerse enables you to receive and create XML documents,
and process them through UniVerse BASIC, UniVerse SQL, or RetrieVe.

You can receive an XML document, then read the document through UniVerse
BASIC, and execute UniVerse BASIC commands against the XML data.

The following example illustrates the UniVerse implementation of receiving XML
documents:

Defining Extraction Rules
You must define the extraction rules for each XML document you receive. This
extraction file defines where to start extracting data from the XML document, how
to construct UniVerse data file fields from the data, the name of the data file
dictionary to use, and how to treat a missing value.

Note: The extraction file can reside anywhere. We recommend that it reside in the
&XML& file, and have a file extension of .ext.

XML documents
DTDs

UniVerse
Database engine

UniVerse
database
tables

Data Flow Control Flow
 12-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
Extraction File Syntax

An extraction file has the following format:

<?XML version = “1.0”?>
<U2xml-extraction xmlns:U2xml=”http://www.ibm.com/U2-xml”>
 <!-- there must be one and only one <U2xml:extraction> element with
mode/start/dictionary -->
 <U2xml:extraction

start=”xpath_expression”
dictionary=”dict1 filename ...”
null=”NULL” | “EMPTY”

/>
<! -- there can be zero or multiple <U2xml:extraction> elements with
field/path/format -->
 <U2xml:field_extraction

field=”field name”
path=”xpath_expression”

/>

...

</U2xml_extraction>

The following tables describes the elements of the extraction file.

Element Description

XML version The XML version number.

Namespace The name of the namespace. A namespace is a unique identifier
that links an XML markup element to a specific DTD. They
indicate to the processing application, for example, a browser,
which DTD you are using.

start Defines the starting node in the XML file. This specifies where
UniVerse should begin extracting data from the XML file.

dictionary Specifies the UniVerse dictionary of the file name to use when
viewing the XML data.

Extraction File Elements
12-3 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Defining the XPath
Note: The examples in this section use the STUDENT.F and COURSES files. To
create these files, execute the MAKE.DEMO.FILES from the TCL prompt.

In XML, the XPath language describes how to navigate an XML document, and
describes a section of the document that needs to be transformed. It also enables you
to point to certain part of the document.

Note: For the full XPath specification, see http:/www.w3.org/TR/xpath.

At this release, UniVerse supports the following XPath syntax:

null Determines how to treat a missing node. If null is set to
“NULL,” a missing node will be result in the null value in the
resulting output. If null is set to EMPTY, a missing node will be
replaced with an empty string.

field The field name.

path The XPath definition for the field you are extracting.

Parameter Description

/ Node path divider.

. Current node.

.. Parent node.

@ Attributes

text() The contents of the element.

xmldata() The remaining, unparsed, portion of the selected node.

, Node path divider, and also specifies multivalue or multi-subvalued field.

Extraction File Parameters

Element Description

Extraction File Elements (Continued)
 12-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
Consider the following DTD and XML document:

<?xml version="1.0"?>
<!DOCTYPE ROOT[
<!ELEMENT ROOT (STUDENT_record*)>
<!ELEMENT STUDENT_record (STUDENT , Last_Name , CGA-MV*)>
<!ELEMENT STUDENT (#PCDATA) >
<!ELEMENT Last_Name (#PCDATA) >
<!ELEMENT CGA-MV (Term* , CGA-MS*)
<!ELEMENT Term (#PCDATA) >
<!ELEMENT CGA-MS (Crs__* , GD* , Course_Name*)>
<!ELEMENT Crs__ (#PCDATA) >
<!ELEMENT GD (#PCDATA) >
<!ELEMENT Course_Name (#PCDATA) >
]>

 <ROOT>
 <STUDENT_record>
 <STUDENT>424-32-5656</STUDENT>
 <Last_Name>Martin</Last_Name>
 <CGA-MV>
 <Term>SP94</Term>
 <CGA-MS>
 <Crs__>PY100</Crs__>
 <GD>C</GD>
 <Course_Name>Introduction to Psychology</Course_Name>
 </CGA-MS>
 <CGA-MS>
 <Crs__>PE100</Crs__>
 <GD>C</GD>
 <Course_Name>Golf - I </Course_Name>
 </CGA-MS>
 </CGA-MV>
 </STUDENT_record>
 <STUDENT_record>
 <STUDENT>414-44-6545</STUDENT>
 <Last_Name>Offenbach</Last_Name>
 <CGA-MV>
 <Term>FA93</Term>
 <CGA-MS>
 <Crs__>CS104</Crs__>
 <GD>D</GD>
 <Course_Name>Database Design</Course_Name>
 </CGA-MS>
 <CGA-MS>
 <Crs__>MA101</Crs__>
 <GD>C</GD>
 <Course_Name>Math Principles </Course_Name>
 </CGA-MS>
 <CGA-MS>
 <Crs__>FA100</Crs__>
 <GD>C</GD>
 <Course_Name>Visual Thinking </Course_Name>
 </CGA-MS>
12-5 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
 </CGA-MV>
 <CGA-MV>
 <Term>SP94</Term>
 <CGA-MS>
 <Crs__>CS105</Crs__>
 <GD>B</GD>
 <Course_Name>Database Design</Course_Name>
 <CGA-MS>
 <Crs__>MA102</Crs__>
 <GD>C</GD>
 <Course_Name>Introduction of Psychology</Course_Name>
 </CGA-MS>
 </CGA-MV>
 <STUDENT_record>
 <STUDENT>221-34-5665</STUDENT>
 <Last_Name>Miller</Last_Name>
 <CGA-MV>
 <Term>FA93</Term>
 <CGA-MS>
 <Crs__>EG110</Crs__>
 <GD>C</GD>
 <Course_Name>Engineering Principles</Course_Name>
 </CGA-MS>
 <CGA-MS>
 <Crs__>PY100</Crs__>
 <GD>B</GD>
 <Course_Name>Introduction to Psychology</Course_Name>
 </CGA-MS>
 </CGA-MV>
 <Term>SP94</Term>
 <CGA-MS>
 <Crs__>EG140</Crs__>
 <GD>B</GD>
 <Course_Name>Fluid Mechanics</Course_Name>
 </CGA-MS>
 <CGA-MS>
 <Crs__>MA221</Crs__>
 <GD>B</GD>
 <Course_Name>Calculus -- II</Course_Name>
 </CGA-MS>
 </CGA-MV>
 </STUDENT_record>
</ROOT>

 This document could be displayed as a tree, as shown in the following example:
 12-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
document

version
declaration

Comment ROOT

STUDENT_

LAST_ CGA-MVSTUDENT

STUDENT_

LAST_ CGA-MV

TERM

STUDENT

TERM

Course Grade Name Course Grade Name

CGA-MSCGA-MS

CGA-MV CGA-MV

TERM TERM

Course Grade Name Course Grade Name

CGA-MSCGA-MS

record record

NAMENAME
12-7 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
In the previous example, each element in the XML document appears in a box. These
boxes are called nodes when using XPath terminology. As shown in the example,
nodes are related to each other. The relationships in this example are:

The document node contains the entire XML document.
The document node contains three children: the version declaration, the
comment node, and the ROOT node. These three children are siblings.
The ROOT node contains two STUDENT nodes, which are children of
ROOT, and are siblings of each other.
The STUDENT node contains three nodes: the ID, NAME, and CGA-MV.
These nodes are children of the STUDENT node, and are siblings of each
other.
The CGA-MV node contains TERM nodes and CGA-MS nodes. These
nodes are children of the CGA-MV node, and are siblings of each other.
Finally, the CGA-MS node contains three nodes: the Course, Grade, and
Name nodes. These three nodes are children of the CGA-MS node, and are
siblings of each other.

When you define the XPath in the extraction file, you must indicate how to treat these
different nodes.

Defining the Starting Location

The first thing to define in the extraction file is the starting node in the XML
document from which you want to begin extracting data. In our example, we want to
start at the STUDENT_record node. You can also define the dictionary file to use
when executing RetrieVe LIST statements or UniVerse SQL SELECT statements
against the data.

The following example illustrates how to specify the STUDENT_record node as the
starting node, and use the STUDENT dictionary file:

<file_extraction start = “ROOT/STUDENT_record ” dictionary =
“STUDENT”/>

If you want to start the extraction at the CGA-MV node, specify the file extraction
node as follows:

<file_extraction start = “ROOT/STUDENT_record/CGA-MV” dictionary =
“STUDENT”/>
 12-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
Specifying Field Equivalents

Next, you specify the rules for extracting fields from the XML document. In this
example, there are six fields to extract (@ID, NAME, TERM, COURSE, GRADE
and NAME).

Extracting Singlevalued Fields

The following example illustrates how to define the extraction rule for two singl-
evalued fields:

<field_extraction field = “@ID” path = “STUDENT/text()”,/>
<field_extraction field = “LNAME” path = “Last_Name/text()”,/>

In the first field extraction, the @ID value in the UniVerse record will be extracted
from the STUDENT node. The text in the STUDENT node will be the value of @ID.

In the next field extraction rule, the LNAME field will be extracted from the text
found in the Last_Name node in the XML document.

Extracting Multivalued Fields

To access multivalued data in the XML document, you must specify the location path
relative to the start node (full location path).

UniVerse uses the “/” character to specify levels of the XML document. The “/” tells
the xmlparser to go to the next level when searching for data.

Use a comma (“,”) to tell the xmlparser where to place marks in the data.

The following example illustrates how to define the path for a multivalued field
(SEMESTER) in the XML document:

<field_extraction field “SEMESTER” path = “CGA-MV,Term/text()” />

In this example, the value of the SEMESTER field in the UniVerse data file will be
the text in the Term node. The “/” in the path value specifies multiple levels in the
XML document, as follows:

1. Start at the CGA-MV node in the XML document.
2. From the CGA-MV node, go to the next level, the Term node.
3. Return the text from the Term node as the first value of the SEMESTER

field in the UniVerse data file.
12-9 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
4. Search for the next CGA-MV node under the same STUDENT, and extract
the text from the Term node belonging to that CGA-MV node, and make it
the next multivalue. The comma tells the xmlparser to get the node
preceding the command for the next sibling.

5. Continue processing all the CGA-MV nodes belonging to the same parent.

The SEMESTER field will appear in the following manner:

Term<Value mark>Term<Value Mark>...

Extracting Multisubvalued Fields

As with multivalued fields, UniVerse uses the “/” character to specify levels of the
XML document. The “/” tells the xmlparser to go to the next level when searching
for data.

Use the comma (“,”) to define where to place marks in the data. You can specify 2
levels of marks, value marks and subvalue marks.

Consider the following example of a field extraction XPath definition:

<field_extraction field = “COURSE_NBR” path = “CGA-MV, CGA-MS,
Course_Name/ text()” />

In this case, the resulting data will appear as follows:

<Value Mark>Course_Name <subvalue mark>Course_Name<subvalue
mark>Course_Name...<Value Mark>...

Suppose the XPath definition contains another level of data, as shown in the next
example:

<field_extraction field = “COURSE_NBR” path = “CGA-MV/CGA-MS/
Course_Name/Comment/text()”/>

You must determine where you want the marks to appear in the resulting data. If you
want Comment to represent the multi-subvalue, begin inserting commas after CGA-
MS, since the Comment is three levels below CGA-MS.

<field_extraction field = “COURSE_NBR” path = “CGA-MV/CGA-MS,
Course_Name,Comment/text()” />

Suppose we add yet another level of data to XPath definition:

<field_extraction field = “COURSE_NBR” path = “CGA-MV/CGA-MS,
Course_Name,Comment,activities/text()” />
 12-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
This is not a valid XPath, since there are more than three levels of XML data. If you
want your data to have subvalue marks between Comment and activities, change the
XPath definition as follows:

<field_extraction field = “COURSE_NBR” path = “CGA-MV/CGA-MS/
Course_Name,Comment,activities/text()” />

The “/” and the “,” characters are synonymous when defining the navigation path,
UniVerse still uses the “/” AND the “,” to define the navigation path of the data, but
only the “,” to determine the location of the marks in the resulting data.

Like multivalued fields, you must start at the XPath with the parent node of the
multivalue.

The next example illustrates how to extract data for a multi-subvalued field:

<field_extraction field = “COURSE_NBR” path = “CGA-MV, CGA-MS,
Crs__/text()” />

The COURSE_NBR field in the UniVerse data file will be extracted as follows:

1. Start at the CGA-MV node in the XML document, under the start node
(ROOT/STUDENT_record).

2. From the first CGA-MV node, go to the next level, the CGA-MS node.
3. From the first CGA-MS node, go to the Crs__ node. Return the text from

the Crs__node, and make that text the first multi-subvalue of
COURSE_NBR.

4. Go back to the CGA-MS node, and search the siblings of the CGA-MS
nodes to see if there are any more CGA-MS nodes of the same name. If any
are found, return the Crs__/text() under these nodes, and make them the next
multi-subvalues of COURSE_NBR.

5. Go back to the CGA-MV node and search for siblings of the CGA-MS node
that have the same CGA-MV node name. If any are found, repeat steps 3 and
4 to get the values for these CGA-MV nodes, and make them multivalues.

The COURSE_NBR field will look like this:

<Field Mark>Crs__text() value under 1st CGA-MS node of 1st CGA-MV
node<multi-subvalue mark>Crs__text() under 2nd CGA-MS node of 1st CGA-MV
node<multi-subvalue mark>...<multivalue mark>Crs__text() under 1st CGA-MS
node of the 2nd CGA-MV node<multi-subvalue mark>Crs__text() under 2nd CGA-
MS node of the 2nd CGA-MV node<multi-subvalue mark>Crs__text() value under
the 3rd CGS-MS node of the 2nd CGA-MV node>...<Field Mark>
12-11 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following example illustrates the complete extraction file for the above
examples:

 <U2XML_extraction>
 <file_extraction start = "/ROOT/STUDENT_record" dictionary =
"D_MYSTUDENT"
 <!--field extraction rule in element mode-->
 <field_extraction field = "@ID" path = "STUDENT/text()"/>
 <field_extraction field = "LNAME" path = "Last_Name/text()"/>
 <field_extraction field = "SEMESTER" path = "CGA-MV/Term/text()"/>
 <field_extraction field = "COURSE_NBR" path = "CGA-MV, CGA-MS,
Crs__/text"/>
 <field_extraction field = "COURSE_GRD" path = "CGA-MV, CGA-MS,
GD/text()"/>
 <field_extraction field = "COURSE_NAME" path = "CGA-MV, CGA-MS,
Course_Name/text()"/>
 </U2XML_extraction>

Extracting XML Data through UniVerse BASIC
Complete the following steps to access the XML data through UniVerse BASIC:

1. Familiarize yourself with the elements of the DTD associated with the XML
data you are receiving.

2. Create the extraction file for the XML data.
3. Prepare the XML document using the UniVerse BASIC PrepareXML

function.
4. Open the XML document using the UniVerse BASIC OpenXMLData

function.
5. Read the XML data using the UniVerse BASIC ReadXMLData function.
6. Close the XML document using the UniVerse BASIC CloseXMLData

function.
7. Release the XML document using the UniVerse BASIC ReleaseXML

function.

Preparing the XML Document

You must first prepare the XML document in the UniVerse BASIC program. This
step allocates memory for the XML document, opens the document, determines the
file structure of the document, and returns the file structure.

Status=PrepareXML(xml_file,xml_handle)
 12-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
The following table describes each parameter of the syntax.

Example

The following example illustrates use of the PrepareXML function:

STATUS = PrepareXML(“&XML&/MYSTUDENT.XML”,STUDENT_XML)
IF STATUS=XML.ERROR THEN

STATUS = XMLError(errmsg)
PRINT “error message “:errmsg
STOP “Error when preparing XML document “

END

Opening the XML Document

After you prepare the XML document, open it using the OpenXMLData function.

Status=OpenXMLData(xml_handle,xml_data_extraction_rule,
xml_data_handle)

Parameter Description

xml_file The path to the file where the XML document resides.

xml_handle The return value. The return value is the UniVerse BASIC
variable for xml_handle. Status is one of the following return
values:
XML.SUCCESS Success
XML.ERROR Error

PrepareXML Parameters
12-13 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

Example

The following example illustrates use of the OpenXMLData function:

status = OpenXMLData(“STUDENT_XML”,
“&XML&/MYSTUDENT.ext”,STUDENT_XML_DATA)
If status = XML.ERROR THEN

STOP “Error when opening the XML document. “
END
IF status = XML.INVALID.HANDLE THEN

STOP “Error: Invalid parameter passed.”
END

Reading the XML Document

After opening the XML document, read the document using the ReadXMLData
function. UniVerse BASIC returns the XML data as a dynamic array.

Status=ReadXMLData(xml_data_handle, rec)

Parameter Description

xml_handle The XML handle generated by the PrepareXML() function.

xml_data_extraction_
rule

The path to the XML extraction rule file.

xml_data_handle The XML data file handle. The following are the possible
return values:
XML.SUCCESS Success.
XML.ERROR Failed
XML.INVALID.HANDLE Invalid XML handle

OpenXMLData Parameters
 12-14

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
The following table describes each parameter of the syntax.

After you read the XML document, you can execute any UniVerse BASIC statement
or function against the data.

Example

The following example illustrates use of the ReadXMLData function:

MOREDATA=1
LOOP WHILE (MOREDATA=1)

status = ReadXMLData(STUDENT_XML,rec)
IF status = XML.ERROR THEN

STOP “Error when preparing the XML document. “
END ELSE IF status = XML.EOF THEN

PRINT “No more data”
MOREDATA = 0

END ELSE
PRINT “rec = “:rec

END
REPEAT

Closing the XML Document

After you finish using the XML data, use CloseXMLData to close the dynamic array
variable.

Status=CloseXMLData(xml_data_handle)

where xml_data_handle is the name of the XML data file handle created by the
OpenXMLData() function.

Parameter Description

xml_data_handle A variable that holds the XML data handle created by the
OpenXMLData function.

rec A mark-delimited dynamic array containing the extracted data.
Status if one of the following:
XML.SUCCESS Success
XML.ERROR Failure
XML.INVALID.HANDLE 2 Invalid xml_data_handle
XML.EOF End of data

ReadXMLData Parameters
12-15 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The return value is one of the following:

XML.SUCCESS Success
XML.ERROR Failure
XML.INVALID.HANDLE2 Invalid xml_data_handle

Example

The following example illustrates use of the CloseXMLData function:

status = CloseXMLData(STUDENT_XML)

Releasing the XML Document

Finally, release the dynamic array variable using the ReleaseXML function.

ReleaseXML(XMLhandle)
where XMLhandle is the XML handle created by the PrepareXML() function.
ReleaseXML destroys the internal DOM tree and releases the associated memory.

Getting Error Messages

Use the XMLError function to get the last error message.,

XMLError(errmsg)

Where errmsg is the error message string, or one of the following return values:

XML.SUCCESS Success
XML.ERROR Failure
 12-16

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
Example

The following example illustrates a UniVerse BASIC program that prepares, opens,
reads, closes, and releases an XML document:

INCLUDE UNIVERSE.INCLUDE XML.H
STATUS=PrepareXML("&XML&/MYSTUDENT.XML",STUDENT_XML)
IF STATUS=XML.ERROR THEN
 STATUS = XMLError(errmsg)
 PRINT "error message ":errmsg
 STOP "Error when preparing XML document "
 END

STATUS =
OpenXMLData(“STUDENT_XML”,“&XML&/MYSTUDENT.ext”,STUDENT_XML_DATA)

IF STATUS = XML.ERROR THEN
 STOP "Error when opening the XML document. "
END

IF STATUS = XML.INVALID.HANDLE THEN
 STOP "Error: Invalid parameter passed." END

MOREDATA=1
 LOOP WHILE (MOREDATA=1)
 STATUS=ReadXMLData(STUDENT_XML_DATA,rec)
 IF STATUS = XML.ERROR THEN
 STOP "Error when preparing the XML document. "
 END ELSE IF STATUS = XML.EOF THEN
 PRINT "No more data"
 MOREDATA = 0
 END ELSE
 PRINT "rec = ":rec
 PRINT "rec = ":rec
 END
REPEAT
STATUS = CloseXMLData(STUDENT_XML_DATA)
STATUS = ReleaseXML(STUDENT_XML)

Displaying an XML Document through RetrieVe
You can display the contents of an XML file through RetrieVe by defining an
extraction file, preparing the XML document, then using LIST to display the
contents.
12-17 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Preparing the XML Document

Before you execute the LIST statement against the XML data, you must first prepare
the XML file using the PREPARE XML command.

PREPARE.XML xml_file xml_data

xml_file is the path to the location of the XML document.

xml_data is the name of the working file you assign to the XML data.

The following example illustrates preparing the MYSTUDENT.XML document:

PREPARE.XML "&XML&/MYSTUDENT.XML" STUDENT_XML
PREPARE.XML successful.

Listing the XML Data

Use the RetrieVe LIST command with the XMLDATA option to list the XML data.

LIST XMLDATA xml_data “extraction_file” [fields]

The following table describes each parameter of the syntax.

Parameter Description

XMLDATA xml_data Specifies to list the records from the xml_data you prepared.

extraction_file The full path to the location of the extraction file. You must
surround the path in quotation marks.

fields The fields from the dictionary you specified in the extraction file
that you want to display.

LIST Parameters for Listing XML Data
 12-18

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
When you list an XML document, RetrieVe uses the dictionary you specify in the
extraction file. The following example lists the dictionary records for the
MYSTUDENT dictionary:

>LIST DICT MYSTUDENT

DICT MYSTUDENT 10:25:32am 19 Oct 2001 Page 1

 Type &
Field......... Field. Field........ Conversion.. Column......... Output
Depth &
Name.......... Number Definition... Code........ Heading........ Format
Assoc..

@ID D 0 MYSTUDENT 10L S
LNAME D 1 Last Name 15T S
SEMESTER D 2 Term 4L M
CGA
COURSE_NBR D 3 Crs # 5L M
CGA
COURSE_GRD D 4 GD 3L M
CGA

5 records listed.

The fields in the dictionary record must correspond to the position of the fields in the
XML extraction file. In the following extraction file, @ID is position 0, LNAME is
position 1, SEMESTER is position 2, COURSE_NBR is position 3, COURSE_GRD
is position 4, and COURSE_NAME is position 5. The dictionary of the
MYSTUDENT file matches these positions.
12-19 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following example illustrates listing the fields from the MYSTUDENT XML
document, using the MYSTUDENT.EXT extraction file:

LIST XMLDATA STUDENT_XML "&XML&/MYSTUDENT.EXT" LNAME SEMESTER COURSE_NBR
COURSE
_GRD COURSE_NAME 11:58:01am 19 Oct 2001 PAGE 1
MYSTUDENT. Last Name...... Term Crs # GD. Course
Name..............

424-32-565 Martin SP94 PY100 C Introduction to
Psycholog
6 y
 PE100 C Golf - I
414-44-654 Offenbach FA93 CS104 D Database Design
5
 MA101 C Math Principals
 FA100 C Visual Thinking
 SP94 CS105 B Database Design
 MA102 C Algebra
 PY100 C Introduction to
Psycholog
 y
221-34-566 Miller FA93 EG110 C Engineering Principles
5
 MA220 B Calculus- I
 PY100 B Introduction to
Psycholog
 y
 SP94 EG140 B Fluid Mechanics
 EG240 B Circut Theory
 MA221 B Calculus - II

978-76-667 Muller FA93 FA120 A Finger Painting
6
 FA230 C Photography Principals
 HY101 C Western Civilization
 SP94 FA121 A Watercorlors
 FA231 B Photography Practicum
 HY102 I Western Civilization -
15
 00 to 1945
521-81-456 Smith FA93 CS130 A Intro to Operating
System
4 s
 CS100 B Intro to Computer
Science
 PY100 B Introduction to
Psycholog
 y
 SP94 CS131 B Intro to Operating
System
 s
 CS101 B Intro to Computer
Science
 PE220 A Racquetball
291-22-202 Smith SP94 FA100 B Visual Thinking
1
6 records listed.
>

 12-20

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
Release the XML Document

When you finish with the XML document, release it using the RELEASE.XML.

RELEASE.XML xml_data

Displaying an XML Document through UniVerse SQL
You can display an XML document through UniVerse SQL using the SELECT
statement.

Preparing the XML Document

Before you execute the SELECT statement against the XML data, you must first
prepare the XML file using the PREPARE XML command.

PREPARE.XML xml_file xml_data

xml_file is the path to the location of the XML document.

xml_data is the name of the working file you assign to the XML data.

The following example illustrates preparing the MYSTUDENT.XML document:

PREPARE.XML "&XML&/MYSTUDENT.XML" STUDENT_XML
PREPARE.XML successful.

Listing the XML Data

Use the UniVerse SQL SELECT command with the XMLDATA option to list the
XML data.

SELECT clause FROM XMLDATA xml_data extraction_file

[WHERE clause]
[WHEN clause [WHEN clause]...]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause]
[report_qualifiers]
[processing_qualifiers]
12-21 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
The following table describes each parameter of the syntax.

You must specify clauses in the SELECT statement in the order shown in the syntax.
You can use the SELECT statement with type 1, type 19, and type 25 files only if the
current isolation level is 0 or 1.

For a full discussion of the UniVerse SQL SELECT statement clauses, see the
UniVerse SQL Reference.

Parameter Description

SELECT clause Specifies the columns to select from the database.

FROM XMLDATA
xml_data

Specifies the XML document you prepared from which you
want o list data.

extraction_file Specifies the file containing the extraction rules for the XML
document.

WHERE clause Specifies the criteria that rows must meet to be selected.

WHEN clause Specifies the criteria that values in a multivalued column must
meet for an association row to be output.

GROUP BY clause Groups rows to summarize results.

HAVING clause Specifies the criteria that grouped rows must meet to be selected.

ORDER BY clause Sorts selected rows.

report_qualifiers Formats a report generated by the SELECT statement.

processing_qualifiers Modifies or reports on the processing of the SELECT statement.

SELECT Parameters
 12-22

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\sqldba\Ch12.fm
12/29/08
The following example illustrates displaying the XML document using the UniVerse
SQL SELECT statement:

>SELECT * FROM XMLDATA STUDENT_XML "&XML&/MYSTUDENT.EXT";
MYSTUDENT. Last Name...... Term Crs # Course Name..............
GD.

424-32-565 Martin SP94 PY100 Introduction to Psycholog C
6 y
 PE100 Golf - I C
414-44-654 Offenbach FA93 CS104 Database Design D
5
 MA101 Math Principals C
 FA100 Visual Thinking C
 SP94 CS105 Database Design B
 MA102 Algebra C
 PY100 Introduction to Psycholog C
 y
221-34-566 Miller FA93 EG110 Engineering Principles C
5
 MA220 Calculus- I B
 PY100 Introduction to Psycholog B
 y
 SP94 EG140 Fluid Mechanics B
 EG240 Circut Theory B
 MA221 Calculus - II B
978-76-667 Muller FA93 FA120 Finger Painting A
6
Press any key to continue...

MYSTUDENT. Last Name...... Term Crs # Course Name..............
GD.

 FA230 Photography Principals C
 HY101 Western Civilization C
 SP94 FA121 Watercorlors A
 FA231 Photography Practicum B
 HY102 Western Civilization - 15 I
 00 to 1945
521-81-456 Smith FA93 CS130 Intro to Operating System A
4 s
 CS100 Intro to Computer Science B
 PY100 Introduction to Psycholog B
 y
 SP94 CS131 Intro to Operating System B
 s
 CS101 Intro to Computer Science B
 PE220 Racquetball A
291-22-202 Smith SP94 FA100 Visual Thinking B
1

6 records listed.
>

12-23 UniVerse SQL Administration for DBAs

C:\Program
Files\Adobe\FrameMaker8\UniVerse
Release the XML Document

When you finish with the XML document, release it using the RELEASE.XML.

RELEASE.XML xml_data
 12-24

@

:\Program Files\Adobe\Fram
0 3\sqldba\SqldbaIX doc

Index

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
Index
Symbols
&XML& file 11-4

creating 11-27
/etc/passwd 2-3
@ASSOC_KEY.mvname

X-descriptor 5-20, 5-42, 6-4, 6-20
@ASSOC_ROW keyword 5-20, 5-42
@EMPTY.NULL X-descriptor 6-5,

6-16
@INSERT phrase 6-5
@KEY phrase 6-4, 6-21
@KEY_SEPARATOR

X-descriptor 6-4, 6-21
@SELECT phrase 5-41, 6-5, 6-15, 6-

20, 6-21, 6-24

A
accessing databases 8-3
accounts

UniVerse 1-18, 2-3, 2-4
updating 2-5

UNIX 2-3
updating 2-5
UV 1-6

ADD ASSOC clause 5-24
INSERT option 5-25

ADD clause 5-23
ADD COLUMN clause 5-23
ADD CONSTRAINT clause 5-24
ADD SYNONYM clause 5-24
adding

associations 5-24
column synonyms 5-24
columns 5-23
table constraints 5-24

triggers 5-32
ALTER privilege 8-8
ALTER TABLE statement

ADD clause 5-23
ALTER clause 5-26
DROP clause 5-26

ANSI (American National Standards
Institute)

SQL standard 1-2, 1-4
approximate number data category 1-

13, 5-15, 6-5
ASSOC field 6-4
ASSOCIATION clause

and associated multivalued
columns 5-19

using 5-19
association keys 5-19, 5-25
association phrase 6-4
association rows 5-18
associations 1-3, 1-17, 5-18, 5-24

adding 5-24
and dynamic normalization 5-20
and multivalued columns 5-18
and multivalued fields 6-10
behavior 6-13
dropping 5-26
Pick 5-20, 5-21

attribute-centric mapping mode 11-4
attribute-centric mode

creating XML documents from
multiple files 11-32

processing UniVerse SQL
statements 11-29

attribute-centric XML document
creating 11-16
eMaker8\UniVerse

g
10.3\sqldba\SqldbaIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
B
B-tree files 5-6
BASIC programs 9-4

and transaction processing 9-5
BIT data type 1-13, 7-8
bit strings

data category 1-13, 5-17
BIT VARYING data type, see

VARBIT data type

C
CALL statement 3-4
called procedures 3-4
CASCADE keyword and DROP

TABLE statement 5-28
CHAR data type 1-13, 5-9, 7-8
CHARACTER data type, see CHAR

data type
character strings 1-13

data category 5-16, 6-5
empty string 5-10

CHARACTER VARYING data type,
see VARCHAR data type

characters, special 3-4
check constraints 7-9
CHECK keyword 7-9
column constraints 5-17

and column definitions 5-17
CHECK 7-9
dropping 5-26
NOT EMPTY 7-7
NOT NULL 7-7
ROWUNIQUE 7-6
UNIQUE 7-5

column headings 5-11
column names 5-8
column specifications 5-7–5-18
column synonyms 5-18
columns 1-17

adding 5-23
associating multivalued 5-18
changing default values 5-26
converting data 5-12
data structure and form 5-10
default values 5-18
defining 5-7
defining headings 5-11

defining multivalued 5-11
defining single-valued 5-11
formatting output with FMT 5-11
referenced 7-11
referencing 7-11

command processor 1-3, 1-17, 3-3
concurrency control 9-11
concurrent access 9-11–9-15

and dirty reads 9-11
and locks 9-13
and lost updates 9-11
and nonrepeatable reads 9-11
and phantom discrepancies 9-11

CONNECT command 3-5
CONNECT privilege 1-12, 2-6, 8-4

and database access 8-6
consistency integrity 7-3
constraints, see column constraints,

table constraints
CONV keyword

and data categories 5-14
output format specification 5-12

conversion types 6-7
CONVERT.SQL command 3-5, 6-19

conversion example 6-24–6-27
editing facility 6-22
operations of 6-21
using interactively 6-22

converting
column data 5-12
files to tables 6-24–6-27

CREATE INDEX statement 5-31
CREATE TABLE statement 6-19, 6-

24, 6-25, 6-26
CREATE TRIGGER statement 5-32
creating

&XML& file 11-4, 11-27
attribute-centric XML document 11-

16
attribute-centric XML document

from multiple files 11-32
element-centric XML document 11-

19
element-centric XML document from

multiple files 11-38
indexes 5-31
mapping file 11-7
mixed-mode XML document 11-21
schemas 4-2–4-5

tables 5-3–5-22
defining columns 5-7

XML document from multiple files
using mapping file 11-47

XML document from multiple files
with DTD 11-44

XML document from multiple files
with multivalues 11-40

XML document from RetrieVe 11-4
XML document with DTD 11-25
XML document with UniVerse

SQL 11-27

D
data categories 1-12, 5-14, 6-5

approximate number 5-15, 6-5
bit string 5-17
character string 5-16, 6-5
CONVERT.SQL command’s

interpretation of 6-20
date 5-16, 6-5
integer 5-15, 6-5
scaled number 5-15, 6-5
time 5-16, 6-5

data files 1-17
definition 1-5

data integrity 7-2–7-21
and UniVerse SQL 7-3
using rules 7-9

data loader 5-43–5-48
data model

SQL 1-8
UniVerse 1-8

data types 1-12, 5-9
BIT 1-13, 7-8
CHAR 1-13, 7-8
and data categories 5-14
DATE 1-13, 7-8
DEC 1-14, 7-8
and domain integrity 7-8
DOUBLE PRECISION 1-14, 7-8
and empty strings 5-10
FLOAT 1-14, 7-8
grouping of 1-13
INT 1-14
NCHAR 1-14, 7-8
NUMERIC 1-14, 7-8
numeric 1-13
Index 2

@

g
10.3\sqldba\SqldbaIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
NVARCHAR 1-14, 7-8
REAL 1-14, 7-8
SMALLINT 1-14, 7-8
string 1-13
TIME 1-14, 7-8
VARBIT 1-14, 7-8
VARCHAR 1-14, 7-8

database privileges 1-12
CONNECT 1-12, 2-6, 8-4
DBA 1-12, 2-6
granting to others 8-6
levels 8-4
RESOURCE 1-12, 2-6
revoking 8-13

databases
access 8-3

and CONNECT privilege 8-6
and DBA privilege 8-7
and privileges 8-4, 8-6
and RESOURCE privilege 8-7

concepts 1-8
concurrent access 9-11–9-15
controlling access to 8-3
defining 4-2–4-5, 5-3–5-36
extended relational 1-2, 1-4
first-normal-form 1-4, 1-11
nonfirst-normal-form 1-4, 1-11
privileges 8-4, 8-6
recovery 9-7–9-9

and file backup 9-7, 9-8
and media recovery 9-7
and transaction logging 9-7
and warmstart recovery 9-10

security 8-2–8-15
structure 1-8, 2-5
users 8-3

date data category 1-13, 5-16, 6-5
DATE data type 1-13, 7-8
DBA privilege 1-12, 2-6

and database access 8-7
deadlocks 9-14

managing 9-14
DEC data type 1-14, 7-8
DECIMAL data type, see DEC data

type
default values 5-18

dropping 5-26
defining

associations 5-24

columns
data structure and form 5-10
data type 5-9
names 5-8

databases 4-2–4-5, 5-3–5-36
DELETE privilege 8-8
DELETE statement 2-6

and isolation levels 9-15
delimited identifiers 5-8
dependent relationships 7-11
dictionaries 1-17

definition 1-5
examining 5-35
modifying 5-38–5-42

directories, home 2-3
dirty reads 9-11
DISPLAYNAME keyword 5-11
DML statements 2-6
Document Object Model

definition 11-3
domain integrity 7-3, 7-7

and data types 7-8
DOUBLE PRECISION data type 1-

14, 5-9, 7-8
DROP ASSOC clause 5-26
DROP clause 5-26
DROP CONSTRAINT clause 5-26, 7-

21
DROP DEFAULT clause 5-26
DROP INDEX statement 5-31
DROP SCHEMA statement 4-5
DROP TABLE statement 5-28
DROP TRIGGER statement 5-33
dropping

associations 5-26
constraints 5-26
default values 5-26
indexes 5-31
integrity constraints 7-21
schemas 4-5
tables 5-28

referenced 5-28
triggers 5-33

DTD
creating XML document from

multiple files with 11-44
creating XML document with 11-25
definition 11-2

dynamic normalization 5-20, 5-25

E
element-centric mapping mode 11-5
element-centric mode

creating XML document from
multiple files 11-38

processing UniVerse SQL
statements 11-30

element-centric XML document
creating 11-19

empty strings and data types 5-10
empty-null mapping 6-5, 6-16, 6-17,

6-18
encoding

mapping file 11-11
END TRANSACTION statement 9-5
entity integrity 7-3, 7-4
environments

UniVerse 2-2
UNIX 2-2

executing
paragraphs 3-7
triggers 5-32

extended relational database 1-2, 1-4

F
field marks 3-4
fields 1-17

ASSOC 6-4
multivalued 6-8
S/M 6-4
single-valued 6-8
SQLTYPE 6-4, 6-6, 6-7, 6-21

file dictionaries, see dictionaries
file systems, UniVerse 2-5
file types

B-tree 5-6
static hashed 5-6

FILELOCK lock 9-13
files

/etc/passwd 2-3
B-tree 5-6
backup and database recovery 9-7
examining 5-34
naming 5-5
NEWACC 1-6
structure 1-5, 1-6
type 30 5-6
3 UniVerse SQL Administration for DBAs

g
10.3\sqldba\SqldbaIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
UniVerse 1-18, 2-5
VOC 1-6, 1-18, 2-4, 3-5

firing triggers 5-32
first normal form 1-9

databases 1-4, 1-11
FLOAT data type 1-14, 5-9, 7-8
FMT keyword 5-11
FOREIGN KEY keyword 7-13

versus REFERENCES constraint 7-
14

foreign keys 7-13
and dropping tables 5-28

format conversion utility 10-2
FORMAT.CONV command 10-2
formatting column output 5-11
FROM DICT clause 5-35

G
GRANT statement 8-6, 8-8

database privileges 8-6
overlapping 8-15
specifying recipient 8-11
specifying table privileges 8-8–8-11

granting
ALTER privilege 8-8
database privileges 8-6
DELETE privilege 8-8
INSERT privilege 8-9
multiple privileges 8-11
privileges 8-6
REFERENCES privilege 8-9
SELECT privilege 8-9
table privileges 8-7
UPDATE privilege 8-10
WITH GRANT OPTION clause 8-

12

H
help

online manuals 1-15
UniVerse online 1-15
Windows online 1-15

HELP command 1-15
home directory 2-3

I
I-descriptors, adding to tables 5-39
identifiers, delimited 5-8
importing transferred SQL tables 10-9
indexes 5-30

creating 5-31
dropping 5-31

INSERT FIRST keyword 5-25
INSERT IN keyword 5-25
INSERT LAST keyword 5-25
INSERT privilege 8-9
INSERT statement 2-6

and isolation levels 9-15
INT data type 1-14, 5-9, 7-8
integer data category 1-13, 5-15, 6-5
INTEGER data type, see INT data type
integrity 1-12

domain 7-3
semantic 7-3

integrity constraints 7-7–7-21
applying 7-7
dropping 7-21

ISOLATION LEVEL clause 9-14
isolation levels 9-14

K
keys

association 5-25
foreign 7-13
primary, see primary keys

keywords 1-17

L
LIST DICT command 5-35
LIST.SICA command 3-5, 5-35
listing stored sentences 3-6
LISTS command 3-6
loading data 5-43–5-48
locks

compatibility 9-12
deadlocks 9-14
transactions and 9-13
types 9-12, 9-13

login accounts, see user accounts
long names 5-6
lost updates 9-11

M
mapping file

attributes 11-9
conversion code considerations 11-

10
creating 11-7
creating XML document from

multiple files with 11-47
encoding 11-11
example 11-12
format 11-8
formatting considerations 11-10

mapping mode
attribute-centric 11-4
element-centric 11-5
mixed 11-7

mapping, empty-null 6-5, 6-16, 6-17,
6-18

media recovery 9-7
mixed mapping mode 11-7
mixed-mode XML document

creating 11-21
modifying

dictionaries 5-38–5-42
tables

adding 5-23
changing column default values 5-

26
modulo 5-7
moving SQL tables 10-3
multiple tables

processing for XML document 11-
29

multivalued columns
defining 5-11

multivalued fields 6-8
creating XML document from

multiple files with 11-40

N
naming files 5-5
NATIONAL CHAR data type, see

NCHAR data type
NATIONAL CHAR VARYING data

type, see NVARCHAR data type
NATIONAL CHARACTER data type,

see NCHAR data type
Index 4

@

g
10.3\sqldba\SqldbaIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
NATIONAL CHARACTER
VARYING data type, see
NVARCHAR data type

NCHAR data type 1-14, 7-8
NCHARVARYING data type, see

NVARCHAR data type
nested tables 1-4, 1-8, 5-24
NEWACC files 1-6
NO.ISOLATION isolation level 9-14
nonfirst-normal form 1-8

databases 1-4, 1-11
nonrepeatable reads 9-11
NOT EMPTY test 7-7
NOT NULL test 7-7
NUMERIC data type 1-14, 5-9, 7-8

see also DEC data type
numeric data types 1-13

and empty strings 5-10
NVARCHAR data type 1-14, 7-8

O
online help 1-15

see also HELP command
Online Library, see UniVerse: Online

Library
operating system and UniVerse 1-5
overlapping GRANT statements,

revoking 8-15

P
paragraphs 1-7

executing 3-7
VOC entry 3-6

parent-child relationships 7-11
passwords 2-3, 2-4
phantom discrepancies 9-11
phrases 1-17

@INSERT 6-5
@KEY 6-4, 6-21
@SELECT 5-41, 6-5, 6-15, 6-20,

6-21, 6-24
association 6-4

Pick associations 5-20, 5-21
PRIMARY KEY keyword 7-13
primary keys 1-12, 1-17, 7-13

constraint 7-13
and unique values 7-4

PRINT.DICT command 5-35
privileges 1-12

database 1-12
and database access 8-4, 8-6
granting 8-6
revoking 8-13
view 8-5

programmatic SQL 9-4
and transaction processing 9-6

prompts, system 1-6

Q
Q-pointers 3-8

R
READ.COMMITTED isolation

level 9-14
READ.UNCOMMITTED isolation

level 9-14
READL locks, see shared record locks
READU locks, see update record locks
REAL data type 1-14, 5-9, 7-8
record IDs 2-5

definition 1-17
multipart key 6-9
unique key 1-5

records
see also rows
types in VOC file 3-6

recovery, see databases: recovery,
media recovery

referenced columns 7-11
referenced tables 7-11

dropping 5-28
REFERENCES column constraint

defining 7-14
versus FOREIGN KEY 7-14

REFERENCES privilege 8-9
referencing columns 7-11
referential constraints 7-11
referential cycles 7-15
referential integrity 7-3, 7-11–7-12
release level 2-5
RELLEVEL X record 2-5
REPEATABLE.READ isolation

level 9-14
RESOURCE privilege 1-12, 2-6

and database access 8-7
RESTRICT keyword 5-26
REVOKE statement 8-13

and WITH GRANT OPTION
clause 8-14

revoking
database privileges 8-13
table privileges 8-13

and overlapping GRANT
statements 8-15

and WITH GRANT OPTION
clause 8-14

rows 1-5, 1-17, 1-18
unique values in 7-5

ROWUNIQUE keyword 7-6

S
S/M field 6-4
Save (.S) command 3-6
scaled number data category 1-13, 5-

15, 6-5
schemas 1-18, 2-4, 2-5, 4-3

creating 4-2–4-5
dropping 4-5
structure 2-5, 4-3
and UniVerse accounts 4-5
updating 2-5

SELECT privilege 8-9
SELECT statement 2-6

and isolation levels 9-14
creating XML document with 11-27
processing multiple tables for XML

documents 11-29
SELECT statements

processing rules for XML
documents 11-29

semantic integrity 7-3, 7-7
see also domain integrity

sentence stack
description 3-3, 3-9
saving 3-9

sentences, stored 1-7
SERIALIZABLE isolation level 9-14
SET DEFAULT clause 5-26
SET TRANSACTION ISOLATION

LEVEL statement 9-14
SET.SQL command 3-5
5 UniVerse SQL Administration for DBAs

g
10.3\sqldba\SqldbaIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
SICA (security and integrity constraints
area) 1-5, 1-18, 5-38

examining 5-35
single-valued columns 5-11
single-valued fields 6-8
SMALLINT data type 1-14, 5-9, 7-8
special characters 3-4
SQL

ANSI standard 1-2, 1-4
and data integrity 7-3
data model 1-8
data types 7-8
databases and UniVerse 1-8
programmatic 9-4
statements, see statements
users 2-6

SQL catalog 1-18, 2-5, 4-3, 5-38
SQLTYPE field 6-4, 6-6, 6-7, 6-21
static hashed files 5-6
stored sentences

see also sentence stack
listing 3-6

string data types 1-13
strings, empty 5-10
subvalue marks 3-4
synonym, columns 5-18
system prompt 1-6

T
table constraints

adding 5-24
CHECK 7-9
dropping 5-26
FOREIGN KEY 7-13
PRIMARY KEY 7-13
referential 7-11

table privileges 8-4, 8-5
ALTER 8-8
DELETE 8-8
granting 8-7
INSERT 8-9
multiple 8-11
passing to others 8-12
REFERENCES 8-9
revoking 8-13
SELECT 8-9
specifying recipient of GRANT 8-11
UPDATE 8-10

tables 1-18, 5-28
adding associations 5-24
adding column synonyms 5-24
adding columns 5-23
adding I-descriptors 5-39
adding triggers 5-32
associations 5-24
creating 5-3–5-22
definition 1-5
dropping 5-28
dropping associations 5-26
dropping constraints 5-26
dropping default values 5-26
examining file dictionaries 5-35
examining table data files 5-34
examining table SICAs 5-35
implemented as UniVerse files 1-9
moving 10-3
nested 1-4
recovering 9-8
transferring across schemas 10-2
and UniVerse files 1-9
VOC entries for 1-5

time data category 1-13, 5-16, 6-5
TIME data type 1-14, 7-8
transaction logging

and database recovery 9-7, 9-8
setting up 9-8

transaction processing 9-6
in BASIC programs 9-5
and programmatic SQL 9-6
and UniVerse SQL 9-6

transactions 9-4–9-15
locks and 9-13

transferring tables across schemas 10-
2

triggers 5-32, 10-8
adding 5-32
dropping 5-33
executing 5-32

U
UCI (UniVerse Call Interface) 9-4
unique constraint 7-4–7-6
UNIQUE keyword 7-5
unique values

and primary keys 7-4
ROWUNIQUE keyword 7-6

UNIQUE keyword 7-5
UniVerse

command processor 1-17
data model 1-8
environments 2-2
Online Library 1-15
and the operating system 1-5
release level 2-5
and SQL databases 1-8

UniVerse accounts 1-18, 2-4
updating 2-5

UniVerse Call Interface, see UCI
UniVerse commands

CONVERT.SQL 3-5, 6-19
FORMAT.CONV 10-2

UniVerse files and tables 1-9
UniVerse SQL 1-4

creating XML document with 11-27
xml limitations 11-30

UniVerse system prompt 1-6
UniVerse users 2-6
UNIX 1-3

and UniVerse 1-5
environments 2-2
filenames 5-5
user accounts 2-3

UPDATE privilege 8-10
UPDATE statement 2-6

and isolation levels 9-15
user accounts 2-3
user name 2-3, 2-4
users

and database access 8-3
SQL 2-6
UniVerse 2-6

UV account 1-6
UV_ASSOC table 4-3
UV_COLUMNS table 4-3
UV_SCHEMA table 4-3
UV_TABLES table 4-3
UV_USERS table 4-3
UV_VIEWS table 4-3

V
value marks 3-4
VARBIT data type 1-14, 7-8
VARCHAR data type 1-14, 7-8
verbs, definition 1-7
Index 6

@

g
10.3\sqldba\SqldbaIX.doc

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
VERIFY.SQL command 3-5
views

privileges 8-5
and table privileges 8-5

VOC file 1-6, 1-18, 2-4, 3-5
adding to 1-6
entry types 3-6
paragraphs 3-6
Q-pointers 3-8
table definitions 1-5
X-descriptors 5-20

W
warmstart recovery 9-10
Windows NT 1-3

and UniVerse 1-5
Windows NT

help 1-15
WITH GRANT OPTION keyword

granting 8-12
revoking 8-14

X
X-descriptors

@ASSOC_KEY.mvname 5-20, 5-
42, 6-4, 6-20

@EMPTY.NULL 6-5, 6-16
@KEY_SEPARATOR 6-4, 6-21

XML
limitations in UniVerse SQL 11-30

XML document
creating from RetrieVe 11-4
valid 11-3
well-formed 11-3

XML documents
SELECT statement processing

rules 11-29
7 UniVerse SQL Administration for DBAs

	Online Guide

	Table of Contents

	Preface
	Organization of This Manual
	UniVerse Documentation
	Related Documentation
	API Documentation

	The UniVerse Environment
	Main Features
	The UniVerse Command Processor
	UniVerse SQL
	Other UniVerse Utilities and Processors

	The Operating System and UniVerse
	UniVerse Tables
	The VOC File
	UniVerse SQL Statements and Commands

	UniVerse and SQL Databases
	Database Concepts and Structures
	Data Models
	UniVerse Tables and Files

	Using UniVerse Help
	UniVerse Online Library
	Windows Help
	UniVerse Command Line Help

	Review of Terms
	The Sample Database

	Users, UniVerse Accounts, and Schemas
	User Accounts
	UniVerse Accounts
	Schemas
	Schema Structure

	SQL Users
	Setting the SQL Environment for a Session

	The Command Processor and the VOC File
	The Command Processor
	Special Character Interpretation
	Called Procedures

	The VOC File
	Some VOC Entry Types

	UniVerse Sentence Stack

	Creating and Dropping Schemas
	What Is a Schema?
	The SQL Catalog

	Creating a Schema
	Dropping a Schema

	Creating, Modifying, and Dropping Tables
	Creating a Table
	Naming a Table
	Defining the File Type
	Defining a Column
	Associations and Multivalued Columns

	Modifying a Table
	Adding Columns, Table Constraints, and Associations
	Removing Constraints, Associations, and Default Values
	Changing a Column’s Default Value

	Dropping a Table
	Dropping a Table with a Dependent View
	Dropping a Referenced Table

	Indexes
	Dropping an Index

	Using Triggers on a Table
	Adding a Trigger
	Enabling and Disabling Triggers
	Dropping a Trigger

	Listing Information About a Table
	Examining a Table’s Dictionary
	Examining a Table’s SICA
	Examining a Table’s SQL Catalog Information

	Modifying Table Dictionaries
	Adding I-Descriptors to the Table Definition
	Changing the Default Set of Displayed Columns
	Defining a Stable Unassociated Multivalued Column

	Loading Data into a Table

	UniVerse Files and SQL
	How File Dictionaries Affect SQL
	Data Types of Fields
	Singlevalued or Multivalued Fields
	Multipart Record IDs
	Association Definition
	Association Behavior
	Visible Fields (Stored and Computed)

	Converting a UniVerse File to a Table
	The CONVERT.SQL Command
	Using CONVERT.SQL
	CONVERT.SQL Example

	Ensuring Data Integrity
	Data Integrity and UniVerse SQL
	Entity Integrity
	Unique Values and Primary Keys
	Checking for Uniqueness (UNIQUE)
	Checking for Unique Multivalues in Each Row (ROWUNIQUE)

	Semantic or Domain Integrity
	Testing for NOT NULL and NOT EMPTY
	Data Types and Domains
	Rules (CHECK)

	Referential Constraints
	Referential Integrity

	Removing Integrity Constraints

	Maintaining Database Security
	Controlling Access to Your Database
	Users
	Database Objects
	Privileges

	Granting Privileges
	Granting Database Privileges
	Granting Table Privileges

	Revoking Privileges
	Revoking Database Privileges
	Revoking Table Privileges
	REVOKE and WITH GRANT OPTION
	REVOKE and Overlapping GRANTs

	Transactions, Recovery, and Concurrent Access
	Transaction Processing
	Transaction Processing and UniVerse SQL

	Database Recovery
	File Backup
	Transaction Logging
	Media Recovery
	Warmstart Recovery

	Concurrent Access
	Locks
	Isolation Levels

	Transferring Tables Across Schemas
	Preparing to Export SQL Tables
	Conversion File Formats

	Physically Transferring Exported SQL Tables
	Resolving Conflicts in the New Schema
	Importing Transferred SQL Tables
	Errors in Importing

	Deleting Exported Tables from the Old Schema

	Creating an XML Document with UniVerse SQL
	XML for IBM UniVerse
	Document Type Definitions
	The Document Object Model (DOM)
	Well-Formed and Valid XML Documents

	Creating an XML Document from RetrieVe
	Create the &XML& File
	Mapping Modes
	Creating a Mapping File
	How Data is Mapped
	Mapping Example
	Creating an XML Document
	Examples

	Creating an XML Document with UniVerse SQL
	Create the &XML& File
	Processing Rules for UniVerse SQL SELECT Statements
	XML Limitations in UniVerse SQL
	Examples

	Receiving an XML Document with UniVerse SQL
	Receiving an XML Document through UniVerse BASIC
	Defining Extraction Rules
	Defining the XPath
	Extracting XML Data through UniVerse BASIC
	Displaying an XML Document through RetrieVe
	Displaying an XML Document through UniVerse SQL

	Index

