
C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBTITL.fm
February 4, 2009 3:25 pm

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Beta Beta Beta Beta
IBM
Using UniOLEDB
UniVerse 10.3
February, 2009

ii Using UniOLEDB

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBTITL.fm
February 4, 2009 3:25 pm

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
IBM Corporation
555 Bailey Avenue
San Jose, CA 95141

Licensed Materials – Property of IBM

© Copyright International Business Machines Corporation 2008, 2009. All rights reserved.

AIX, DB2, DB2 Universal Database, Distributed Relational Database Architecture, NUMA-Q, OS/2, OS/390, and
OS/400, IBM Informix®, C-ISAM®, Foundation.2000 ™, IBM Informix® 4GL, IBM Informix® DataBlade® module,
Client SDK™, Cloudscape™, Cloudsync™, IBM Informix® Connect, IBM Informix® Driver for JDBC, Dynamic
Connect™, IBM Informix® Dynamic Scalable Architecture™ (DSA), IBM Informix® Dynamic Server™, IBM
Informix® Enterprise Gateway Manager (Enterprise Gateway Manager), IBM Informix® Extended Parallel Server™,
i.Financial Services™, J/Foundation™, MaxConnect™, Object Translator™, Red Brick® Decision Server™, IBM
Informix® SE, IBM Informix® SQL, InformiXML™, RedBack®, SystemBuilder™, U2™, UniData®, UniVerse®,
wIntegrate® are trademarks or registered trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company
Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of others.

This product includes cryptographic software written by Eric Young (eay@cryptosoft.com).

This product includes software written by Tim Hudson (tjh@cryptosoft.com).

Documentation Team: Claire Gustafson, Shelley Thompson, Anne Waite

US GOVERNMENT USERS RESTRICTED RIGHTS

Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Table of Contents

:\Prog
ebrua

Table of
Contents

 Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Chapter 1 Introduction to UniOLEDB
Introduction . 1-4

The Data Challenge 1-4
The Data Solution 1-5

Overview of OLE DB 1-6
Comparing OLE DB with ODBC 1-6
Exploiting OLE DB Technology 1-7
OLE DB Architecture 1-8

Overview of UniOLEDB 1-16
UniOLEDB Architecture 1-17
Supported OLE DB Functionality 1-20

Before You Use UniOLEDB. 1-21
Hardware and Software Requirements 1-21

Chapter 2 Setting Up UniOLEDB
Setting Up the UCI Configuration File 2-3

Chapter 3 Accessing UniData Data
Verifying That UniRPC Is Running 3-3

UCI Connection Timeout Configuration 3-4
Making UniData Accounts Accessible 3-6

Tracing Events 3-7
Presenting Data in OLE DB–Accessible Format 3-8

Data Types 3-8
Multivalued and Multi-Subvalued Data 3-8
Missing Values 3-9

Chapter 4 Accessing UniVerse Data
Accessing UniVerse Tables and Files 4-3

Tables . 4-3
ram Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBTOC.fm (bookTOC.template)
ry 4 2009 3:26 pm

iv Using
Files . 4-4
Multivalued Data 4-4
The TABLES Rowset 4-6

The UniVerse Server Administration Menu. 4-10
Making Files Visible to UniOLEDB Consumers 4-12

Making Files Visible 4-12
Restricting File Visibility 4-13
Updating the File Information Cache 4-14
Removing File Visibility 4-17
COLUMNS Rowset 4-18
Association Keys 4-19

Table and Column Names Containing Special Characters 4-22
Delimited Identifiers 4-22

Making UniVerse Data Meaningful to UniOLEDB 4-23
SQL Data Types 4-23
Length of Character String Data 4-25
Empty-Null Mapping 4-26
Validating and Fixing Tables and Files 4-26

Chapter 5 UniOLEDB Functionality
UniOLEDB Implementation Notes 5-3

General . 5-3
Data Source Objects 5-3
Session Objects 5-4
Command Objects 5-4
Rowset Objects 5-5
Error Objects 5-6

Supported Interfaces 5-7
UniOLEDB Properties 5-12

Data Source Information 5-13
Initialization 5-28
Rowset . 5-36
Session . 5-57

Data Type Support 5-58
Supported Data Types 5-58
Data Type Conversions 5-59

Error Support . 5-60
Method Return Codes 5-60

Transaction and SQL Support 5-62
Transaction Support 5-62
 UniOLEDB

SQL Support 5-62

Appendix A Examples of Consumer Source Code

Glossary
Table of Contents v

:\Prog
ebrua
1Administering UniData on Windows NT or Windows 2000
0

1
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Introduction to UniOLEDB
Introduction . 1-4
 The Data Challenge 1-4
 The Data Solution 1-5
Overview of OLE DB 1-6
 Comparing OLE DB with ODBC 1-6
 Exploiting OLE DB Technology 1-7
 OLE DB Architecture 1-8
Overview of UniOLEDB 1-16
 UniOLEDB Architecture 1-17
 Supported OLE DB Functionality 1-20
Before You Use UniOLEDB 1-21
 Hardware and Software Requirements. 1-21
les\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01TOC.fm
09 3:26 pm Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
This manual provides an overview of OLE DB technology and how the UniOLEDB
provider uses it to expose UniData and UniVerse extended relational data. This
manual also describes how to configure UniOLEDB, and it provides information
about the OLE DB functionality UniOLEDB supports. From this latter information,
developers can design OLE DB–based applications that can access and manipulate
data in UniData and UniVerse data stores.

For UniData, use this manual in conjunction with the Using VSG and the Schema API
manual. It describes:

Visual Schema Generator (VSG) – A Microsoft Windows–based Graphical
User Interface (GUI) tool for making data in UniData accessible to first
normal form (1NF) applications.
Schema API – An application programming interface (API) that consists of
a series of UniBasic subroutines designed to accomplish the same tasks as
VSG.

Note: IBM recommends that you use VSG to prepare files because it is easier and
faster to use than the Schema API. It performs several processes automatically. You
might want to use the Schema API if you have a large number of files or you deploy
data files with your applications.

For UniVerse, Chapter 4, “Accessing UniVerse Data,” describes making data in
UniVerse accessible to 1NF applications.

This manual is organized in the following way:

Chapter 1, “Introduction to UniOLEDB,” introduces you to key concepts
about OLE DB and UniOLEDB, and shows you how UniOLEDB fits in
with other components in an enterprise network. This chapter also provides
you with the hardware and software requirements for clients and servers that
use UniOLEDB.
Chapter 2, “Setting Up UniOLEDB,” describes how to set up the UCI
configuration file.
Chapter 3, “Accessing UniData Data,” describes how to make accounts in
UniData databases accessible to consumers and normalize multivalued and
multi-subvalued data in UniData.
Chapter 4, “Accessing UniVerse Data,” describes how to make data in the
schemas and accounts accessible to consumers.
Chapter 5, “UniOLEDB Functionality,” describes how UniOLEDB
supports OLE DB functionality.
 1-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01.fm
2/4/09

Beta
Appendix A, “Examples of Consumer Source Code,” provides sample
source code of consumer applications that can access data in UniData or
UniVerse data stores through UniOLEDB.
Glossary provides an alphabetic listing of words and concepts to help you
understand and use OLE DB and UniOLEDB.

This chapter consists of the following sections:

“Introduction”
“Overview of OLE DB”
“Overview of UniOLEDB”
“Before You Use UniOLEDB”
 1-3 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Introduction
OLE DB is a low-level interface that enables Universal Data Access (UDA),
Microsoft’s solution to data access challenges in today’s highly sophisticated and
versatile business data environments. UniOLEDB harnesses this technology to
provide applications in an enterprise network with direct access to UniData and
UniVerse data stores.

The Data Challenge
Today’s business decisions are based on vast and varied stores of information that
generally do not share the same characteristics and cannot be coordinated easily by
using traditional approaches. The need exists to manage diverse data that:

Are in different formats, both relational and non-relational.
Reside in different locations, both local and remote, and on a variety of
platforms.
Are accessed in essentially different ways.

Some examples of data stores that a business organization might want to access and
manipulate in a uniform way include:

1NF relational databases, such as Microsoft SQL Server, Oracle, and
Microsoft Access.
Extended (NF2) relational databases, such as UniData and UniVerse.
Nonrelational data stores, such as:

Spreadsheets.
Indexed-sequential access method (ISAM) files.
Custom business objects.
E-mail information, such as in Microsoft Exchange.
Document and graphics files.
Internet data.
 1-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01.fm
2/4/09

Beta
The Data Solution
Universal Data Access (UDA) is Microsoft’s solution for accessing data from diverse
sources in a way that addresses the challenges of traditional data access methods. It
provides a common set of interfaces that offer uniform access to any source of data,
wherever it resides. It enables the business to manipulate and manage the data
directly. OLE DB is a central part of UDA. It enhances and builds on the innovations
of Microsoft’s Open Database Connectivity (ODBC) interface, a precursor UDA
technology that offers uniform access to relational databases.

UniOLEDB takes advantage of OLE DB technology to expose data in UniData and
UniVerse databases to OLE DB–enabled client applications.

UniOLEDB is not built on top of UniData ODBC or UniVerse ODBC. It does not use
ODBC as a way to implement OLE DB. UniOLEDB is a native OLE DB provider
that takes advantage of OLE DB technology.
 1-5 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Overview of OLE DB
OLE DB is a part of Microsoft’s UDA solution for accessing information across an
enterprise network, regardless of type, format, or location. It benefits businesses and
application developers in the following ways:

Enables the development of applications that can access and manipulate
data from multiple heterogeneous sources simultaneously.
Provides common interfaces that enable diverse data stores to expose their
data homogeneously in a standard tabular form.
Partitions the functionality of database management systems into logical,
reusable, and interoperable components that are not directly part of the data
source itself, so they can be shared by applications and data sources across
the enterprise. These components, which encapsulate interfaces that manage
data access and data processing services (such as query processors, cursor
engines, and transaction managers), enable an application to use only the
database functionality it needs.

Comparing OLE DB with ODBC
The following table describes some of the primary differences between OLE DB and
ODBC.

OLE DB ODBC

Designed to access all types of data, both
relational (SQL sources) and nonrelational
(non-SQL sources).

Designed to access relational data only.

OLE DB is based on the Component Object
Model (COM) architecture, which enables
developers to create reusable and integrable
service components that encapsulate various
database services, such as cursor support and
query processing.

Because ODBC is not based on the COM
architecture (it is a Windows API), each
ODBC driver must include all the function-
ality it needs to interact with the data source.

OLE DB and ODBC Comparison
 1-6

Exploiting OLE DB Technology
Through common interfaces and reusable components, OLE DB enables businesses
to integrate the applications, tools, and database products that are best suited for their
purposes, regardless of vendor. IBM supports this effort through the development of
UniOLEDB, which enables applications in OLE DB–based enterprise networks to
access UniData and UniVerse data.

The following diagram shows an example of a data management application that uses
Microsoft’s ActiveX Data Objects (ADO), OLE DB interfaces, and other OLE DB–
compliant interface software to access data simultaneously from a variety of sources,
including UniData and UniVerse databases:

Data Management Application

ActiveX Data Objects (ADO)
OLE DB

OLE DB
Provider for
SQL Server

UniOLEDB
Provider

SQL
Server

UniData UniVerseMicrosoft
Exchange

Interfaces

Data Sources

MAPI
Provider

In this example, ADO functions as an application-level interface to OLE DB. ADO
is not dependent on any particular programming tools or languages. OLE DB
provides the underlying, system-level interfaces for data access. The ADO interface
is optional. The data management application could use a different application-level
interface, such as an SQL Server query processor, to access data. It also could use the
OLE DB interfaces directly.

OLE DB Architecture
The general OLE DB architecture consists of logical components that represent
functional aspects of traditional databases. The basic components include data
consumers, data providers, and service components, as the following diagram shows:

Consumer

Provider

Service
Component

Provider Provider

Data
Source

OLE DB

OLE DB

Data
Source

Data
Source

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01.fm
2/4/09

Beta
OLE DB provides a common set of object-oriented interfaces, which is the “wiring”
the various OLE DB components need to work seamlessly together. These cooper-
ating components produce and consume data that is exposed from data sources in the
form of rowsets. The rowset interface guarantees that data can be used across the
enterprise in a consistent and uniform way, regardless of its original source.

Consumers

An OLE DB consumer is an application that calls OLE DB interfaces to retrieve and
manipulate data. The consumer receives and sends data in the form of a standard
OLE DB rowset.

Examples of consumers include data management applications, such as Microsoft
SQL Server and Microsoft Access.

Providers

An OLE DB provider is a software component that uses OLE DB interfaces to
expose data to which consumers request access. The provider formats the exposed
data in a standard tabular form (the rowset) that all OLE DB components can
recognize. UniOLEDB serves as a provider.

Service Components
An OLE DB service component provides extended functionality the provider does
not support, such as advanced cursor and query processing features. Service compo-
nents lay on top of providers, and process and transport OLE DB data that come to
them. The Service Component Manager, which is a core component of UDA
products, calls interfaces in service components when a consumer requests OLE DB
functionality that the provider does not support.

Examples of service components include query processors, cursor engines, and trans-
action managers.
 1-9 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
OLE DB COM Objects

OLE DB consists of a comprehensive set of data access interfaces that are designed
according to a fundamental component architecture. This architecture specifies a set
of COM objects that enable application programs to access and manipulate data
stored in diverse data sources. Each object encapsulates a set of interfaces that define
its functions. Each interface includes one or more methods, each of which performs
a specific task.

The following diagram shows a generic OLE DB COM object and the interfaces and
methods it encapsulates:

Object Example

The rowset object is the most fundamental OLE DB object. It is made up of rows and
columns that contain data. In its basic form, a rowset object encapsulates the
following interface functions:

OLE DB COM Object

Interface
1

Interface
2

Method 1

Method 2
Method 3

Method 2Method 1
 1-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01.fm
2/4/09

Beta
The IAccessor interface provides methods for managing accessors on a
rowset, including methods for adding a reference count to an existing
accessor, creating an accessor from a set of bindings, and releasing an
accessor. An accessor describes how the consumer stores data in its buffer.
The provider uses the accessor information to transfer data to and from this
consumer buffer.
The IColumnsInfo interface exposes information about rowset columns,
such as column metadata (structural information, such as the type and length
of data in the column) and ordinals of columns.
The IConvertType interface exposes information about the types of data
conversions a rowset supports.
The IRowset interface provides methods for managing rowsets, including
those for adding a reference count to an existing row handle, fetching rows
sequentially, getting the data from those rows, and releasing rows.
The IRowsetInfo interface returns information about the properties a rowset
supports (including current property settings), obtains an interface pointer
to the command session or IOpenRowset interface that created the rowset,
or obtains an interface pointer to the rowset to which a bookmark applies.

Every rowset object must support these basic capabilities. Other rowset interfaces
support other capabilities, such as inserting, updating, and deleting rows from a
rowset.

Object Descriptions

The rowset is only one of several COM objects that define OLE DB. The following
table describes the various COM objects that consumers, providers, and service
components can use. For detailed descriptions of COM objects, see the Microsoft
OLE DB 2.0 Programmer’s Reference and Software Development Kit manual.
 1-11 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
OLE DB components can support all or a subset of the COM objects described in the
following table. At a minimum, an OLE DB provider must support data source,
session, and rowset objects. Beyond the minimum, UniOLEDB also supports
command and error objects.

Object Description

Data Source Provides a way for a consumer to connect to a specific data
source. The data source object is distinct from the data source,
which is the data the consumer wants to access, such as the data
in a file or database.
A data source object encapsulates interfaces and methods that
identify a specific provider and establish a connection to the
provider’s underlying data source.
An instance of a data source object is created when the consumer
calls the CoCreateInstance interface on the class ID assigned to
the provider.

Session Defines the scope and context of transactions that can be trans-
acted implicitly or explicitly.
Consumers can use session objects to generate rowsets from the
data source. Session objects also generate command objects and,
if supported, transaction objects.
In UniOLEDB, each session consumes a database connection.

Rowset Contains information in the form of a set of rows, each of which
has columns of data. The rowset is the central object that is
produced, shared, and consumed by OLE DB components. It
enables any data source, regardless of its type, to expose its data
in a standard format that any OLE DB component recognizes.
A provider can generate rowsets in either of the following ways:
By using the ICommand interface, a consumer can send a query,
which is a text command (such as an SQL statement), to a
provider that supports query processing.

COM Objects
 1-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01.fm
2/4/09

Beta
Object Description

A consumer can call the IOpenRowset::OpenRowset interface,
which enables the provider that does not support the ICommand
interface to expose data in the form of rowsets.
Service components also present data, such as query results, as
rowsets.
Other OLE DB methods, if supported, return results in the form
of the following specialized types of rowsets:
Schema Rowset – Contains structural information (metadata)
about a DBMS.
Index Rowset – Contains index information, which provides
access to DBMS data in a sequence of rows within a range of key
values. Some service components that perform query processing
implement this type of rowset.
View Object – Defines a subset of the rows and columns in a
rowset. View objects do not contain their own data.
Session or command objects generate rowsets.
UniOLEDB supports schema rowsets for UniData and
UniVerse, but does not support index rowsets or view objects.

Command Contains an SQL or CALL command.
The command object encapsulates interfaces and methods that
enable a provider to form, prepare, and execute data definition
language (DDL) or data manipulation language (DML)
commands (such as queries) that a consumer invokes. It also
includes command properties that control how the command
executes and determine how the resulting rowset behaves. The
command object represents the basic query processing services
that a typical data base management system (DBMS) provides.
A session object can generate one or more command objects.
Commands generate rowsets.

COM Objects
 1-13 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Error Contains extended error information beyond the return codes
and status information an OLE DB interface method typically
provides, such as error descriptions and the error’s SQL state
(SQLSTATE). OLE DB error objects are extensions of OLE
Automation error objects.

Enumerator Searches for and produces a descriptive list of all data source
objects and other enumerators that the enumerator recognizes.
Through an enumerator, a provider can expose all of the data
source objects that it potentially can access. From this list, a
consumer can choose the appropriate data source object to use to
connect to the target data source.
To create an enumerator, the consumer calls the
CoCreateInstance interface on the class ID assigned to the
enumerator.
Microsoft provides a root enumerator to all OLE DB consumers,
which lists all available data providers and other enumerators
that are listed in the client’s registry.
UniOLEDB does not support enumerator objects.

Transaction Provides transaction functionality.
Session objects generate transaction objects.
UniOLEDB does not support transaction objects, but it does
support transaction processing as described in Chapter 5,
“UniOLEDB Functionality.”

Object Description

COM Objects (Continued)
 1-14

Object Interactions

The following diagram shows how the COM objects could be used:

This example illustrates the standard relationships between the various objects. The
enumerator identifies a data source object for a data source. The data source object
generates two sessions, each representing a connection to the data source.

From the first session, three rowsets are created by using the IOpenRowset interface
directly from the session (one rowset generates an error object), and two additional
rowsets are created by a text command that is enclosed in a command object. The
error object contains error information beyond the return codes and status infor-
mation COM objects generally provide.

From the second session, a rowset is created by using an enclosed text command, and
a transaction object is created that generates an error object.

Enumerator

Data Source Object

Session 1 Session 2

Rowset

Rowset

Rowset

Rowset Rowset
Transaction

Command Command Error

Rowset

Error

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Overview of UniOLEDB
OLE DB technology enables consumers to access and manipulate data from UniData
and UniVerse, which are extended relational databases that can store multiple values
in the column of a row. Because UniOLEDB expects data to be organized relationally
in first normal form (1NF), data in UniData and UniVerse must be presented in a
standard non-extended table format (normalized).

Although OLE DB 2.1 supports chaptered rowsets, UniOLEDB does not support
them at this time.

UniVerse dynamically normalizes its own data. For more information, see Chapter 4,
“Accessing UniVerse Data.”

UniData also normalizes its own data, but you must prepare the data for it to do so.
To prepare the data, you must use VSG, a GUI tool that generates schema on UniData
files, or the Schema API. For more information about using VSG or the Schema API,
see Using VSG and the Schema API.
 1-16

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01.fm
2/4/09

Beta
UniOLEDB Architecture
The following diagram shows a high-level view of a consumer application accessing
a data source through UniOLEDB:

UniOLEDB exposes the data in a UniData or UniVerse data store. It uses UCI, which
is an application programming interface (API) that UniOLEDB uses to access data in
UniData and UniVerse databases. UCI uses UniRPC, a library of calls developed by
IBM, to implement remote procedure calls. UniOLEDB passes the results back to the
consumer application in the form of a rowset.

Consumer Application

Data Source
(UniData or UniVerse)

UniOLEDB

OLE DB COM
Interfaces

UCI/UniRPC
 1-17 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
The following diagram shows a client accessing data from either a UniData or
UniVerse server. It reveals in greater detail how UniOLEDB fits in with other compo-
nents in a client/server configuration. UniOLEDB also can access UniData and
UniVerse servers concurrently:

Client

Server 1 Server 2

Consumer Application

OLE DB Service Component

UniOLEDB

UCI/UniRPC

OLE DB COM

OLE DB COM

udserver uvserver

UniData UniVerse
 1-18

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01.fm
2/4/09

Beta
The following table describes each component in the diagram.

Component Description

Consumer Application An OLE DB–compliant application that accesses and manipu-
lates OLE DB–accessible data sources. A UniOLEDB consumer
application can access either UniData or UniVerse data, or both
concurrently.

OLE DB COM A set of object-oriented interfaces that are based on the
Component Object Model (COM). It consists of objects that
encapsulate various aspects of traditional database functionality.
OLE DB COM enables OLE DB components (consumers,
providers, and service components) to interoperate and produce,
share, and consume data in the form of rowsets.

OLE DB Service
Component

An OLE DB component that encapsulates a service that creates
and consumes data through OLE DB interfaces. Third-party
OLE DB service components are consumers and providers of
data. They lay on top of UniOLEDB and provide enhanced and
specialized functionality. For example, the Microsoft Cursor
Service component provides scrollable cursor functionality for
UniOLEDB.

UniOLEDB The OLE DB provider, which exposes UniData and UniVerse
data to consumer applications.

UCI/UniRPC UCI is an application programming interface (API) that
UniOLEDB uses to access data in UniData and UniVerse
databases. UCI uses UniRPC, a library of calls developed by
IBM, to implement remote procedure calls.

udserver A UniData host-based server that interprets and processes data
requests from UniOLEDB by using UCI. The udserver service
can handle multiple consumer requests efficiently.

UniData An extended relational database.

uvserver A UniVerse host-based server that interprets and processes data
requests from UniOLEDB by using UCI. The uvserver service
can handle multiple consumer requests efficiently.

UniVerse An extended relational database.

Example Enterprise Network Components
 1-19 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Supported OLE DB Functionality
UniOLEDB supports minimum and base provider functionality, as defined in
Microsoft OLE DB provider leveling specifications, and several extended OLE DB
interfaces. For detailed information about UniOLEDB functionality, including
supported OLE DB interfaces and descriptions of their properties and behaviors, see
Chapter 5, “UniOLEDB Functionality.”
 1-20

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH01.fm
2/4/09

Beta
Before You Use UniOLEDB
Before consumers can access UniData or UniVerse through UniOLEDB, you must:

Meet the hardware and software requirements for the client and server
machines as provided under “Hardware and Software Requirements” on
page 1-21.
Install UniOLEDB on the client machine from the appropriate CD-ROM by
using the standard Microsoft Windows installation procedure.
Set up the UCI configuration file (uci.config) on the client machine. For
information, see Chapter 2, “Setting Up UniOLEDB.”
Make UniData or UniVerse accounts and their data accessible to OLE DB
consumers. For information, see Chapter 3, “Accessing UniData Data,” for
UniData, or Chapter 4, “Accessing UniVerse Data,” for UniVerse.

Hardware and Software Requirements
The following lists provide the hardware and software requirements for client and
server machines that use UniOLEDB.

Client Requirements

IBM-compatible personal computer (PC) attached to a network.
Either of the following operating systems:

Microsoft Windows 95 or later.
Microsoft Windows NT 4.0 (Service Pack #3) or later.

Approximately 21 MB of free disk space.
A minimum of 32 MB of random access memory (RAM).
TCP/IP.

Server Requirements

UNIX, Windows platform.
TCP/IP.
 1-21 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Either of the following IBM DBMSs:
UniData 5.1 or later (to determine platform availability of UniData 5.1,
contact your IBM account manager).
UniVerse 9.5.1D or later.
 1-22

:\Prog
ebrua
2
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Setting Up UniOLEDB
Setting Up the UCI Configuration File 2-3
les\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH02TOC.fm
09 3:26 pm

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
This chapter describes how to prepare a client machine to use UniOLEDB.

Install UniOLEDB from the appropriate CD-ROM by using the standard Microsoft
Windows installation procedure.
 2-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH02.fm
2/4/09

Beta
Setting Up the UCI Configuration File
An OLE DB consumer connects to UniOLEDB, which establishes connections to
remote data sources and sends database requests to one or more UniData or UniVerse
servers. Consumers access data sources that are mapped to UniData or UniVerse
accounts through entries in the UCI configuration file (uci.config) on the client
machine. This file contains connection parameters needed to route requests to the
appropriate UniData or UniVerse server.

When a consumer attempts to connect to a data source, UniOLEDB reads the UCI
configuration file to determine the host system, DBMS type, server name, and other
optional information.

The UCI configuration file that UniOLEDB uses is specified in the UciCfgFile key
in the system registry under \HKEY_LOCAL_MACHINE\SOFTWARE\IBM\UCI.

A consumer can access UniData or UniVerse databases residing on various operating
systems. Each configuration entry describes the physical attributes of a database in
sufficient detail to perform three tasks:

Establish communications.
Start a UniData or UniVerse server process.
Route query and update requests.

In uci.config on the client machine, you must define the UCI data sources to which
you want OLE DB consumers to connect. You can define the UCI data sources in
either of the following ways:

Use any text editor to modify the file.
Use the UCI Config Editor to manage data sources. For information about
defining data sources with the UCI Config Editor, and for information about
parameters in the UCI configuration file, see the Administrative Supplement
for Common APIs.
 2-3 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
The default configuration file shipped with UniData or UniVerse looks like this:

[ODBC DATA SOURCES]
<localuv>
DBMSTYPE = UNIVERSE
NETWORK = TCP/IP
SERVICE = uvserver
HOST = localhost

<localud>
DBMSTYPE = UNIDATA
NETWORK = TCP/IP
SERVICE = udserver
HOST = localhost

This default configuration file enables you to access a UniVerse or UniData database
on the same hardware platform as the one on which your application is running.

You can add as many of these entries as you want, each with a different data source
name.

To access a remote database on a different platform, you must add an entry to the
configuration file. For example, if the remote system you want to access is named
hq1 and the account path is /usr/myacct, make up a data source name such as corp1
and add the data source definition to uci.config as follows:

<corp1>
DBMSTYPE = UNIDATA
NETWORK = TCP/IP
SERVICE = udserver
HOST = hq1
ACCOUNT = /usr/myacct
USERNAME = myloginname

The ACCOUNT parameter can be set to any one of the following:

The full path to a UniData or UniVerse account.
A valid UniVerse schema name.
A valid UniData database name.

A UniData database name is valid if it appears as an entry in the ud_database file. For
UNIX systems, this file is located in the /usr/udnn/include path, where nn is the
release of UniData you are running. For Windows platforms, it is located in
\udthome\include. For examples of database entries in the ud_database file, see
Chapter 3, “Accessing UniData Data.”

Note: If you modify uci.config by using a text editor, make sure you surround the
equal signs with spaces.
 2-4

:\Prog
ebrua
2Administering UniData on Windows NT or Windows 2000
0

3
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Accessing UniData Data
Verifying That UniRPC Is Running 3-3
 UCI Connection Timeout Configuration 3-4
Making UniData Accounts Accessible 3-6
 Tracing Events 3-7
Presenting Data in OLE DB–Accessible Format 3-8
 Data Types 3-8
 Multivalued and Multi-Subvalued Data 3-8
 Missing Values 3-9
les\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH03TOC.fm
09 3:26 pm Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH03.fm
2/4/09

Beta
This chapter describes how to access data in UniData tables and files. You must
perform the following tasks:

Verify that the UniRPC daemon (for UNIX systems) or the UniRPC service
(for Windows platforms) is running.
Make UniData accounts accessible to consumers.
Present the data in UniData in a format that is accessible to consumers.
 3-2 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Verifying That UniRPC Is Running
When UniOLEDB requests a connection to the UniData UCI server, the UniRPC
facility starts the server (udserver) process, which runs on the machine where the
database resides. Before you use UniOLEDB, make sure that UniRPC is running.

On UNIX systems, you can verify whether UniRPC is running by entering the
following command:

ps -ef | grep unirpc

If you need to start UniRPC for UNIX, use the UniData startud command.

On Windows platforms, you can verify whether UniRPC is running by double-
clicking the Services icon on the Control Panel. The Services dialog box appears. If
UniRPC is running, it appears in the list of services with the status “Started.” If
UniRPC is not running, you can start it from the Services dialog box.

For both UNIX and Windows platforms, UniRPC is installed automatically when you
install UniData.

On UNIX systems, the UniRPC services file (unirpcservices) contains an entry that
is similar to the following:

udserver /usr/ud71/bin/udsrvd * TCP/IP 0 3600

The unirpcservices file is located, by default, on the UCI server in the
.../unishared/unirpc directory. This directory is located in a path that is parallel with
the udthome directory. For example, if the path to udthome is /disk1/udthome, the
path to the unirpcservices file is /disk1/unishared/unirpc.

On Windows platforms, the unirpcservices file is located on the UCI server in the
following default path:

x:\IBM\unishared\unirpc

where x is the drive on which the software is installed. It contains an entry that is
similar to the following:

udserver C:\usr\ud71\bin\udsrvd.exe * TCP/IP 0 3600
 3-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH03.fm
2/4/09

Beta
Your unishared directory might not be located in the default path. To determine its
actual location on UNIX systems, enter:

cat /.unishared

This provides the path for the unishared directory.

For Windows platforms, you can find the path for unishared by looking in the system
registry under \HKEY_LOCAL_MACHINE\SOFTWARE\IBM\unishared.

When the client system requests a connection to a UCI server, the local UniRPC
daemon or service uses the unirpcservices file to verify that the client can start the
requested server (in this case, udserver).

With the Server edition of UniData, each UniOLEDB connection to a UniData UCI
server consumes one UniData license. With the Workstation, Workgroup, or Enter-
prise edition of UniData, device licensing enables each client system to establish up
to ten connections to the UCI server from one device while consuming only one
database license — regardless of whether more than one user logon is used to make
the connections. For more information about device licensing, see Installing and
Licensing UniData Products and the Administrative Supplement for Common APIs.

UCI Connection Timeout Configuration
The sixty-minute default inactivity timeout value (3600) for UCI connections can be
too short. If users leave UniOLEDB connections open, but the connections remain
inactive for longer than sixty minutes, they could receive UniRPC error code 81015.
To increase this timeout value, use any text editor to modify the unirpcservices file
(for the path to this file, see “Verifying That UniRPC Is Running” on page 3-3).

Note: To edit the unirpcservices file, you must have root privileges on UNIX or
Administrator privileges on Windows platforms.

For example, to set the connection timeout delay to 24 hours, in the line starting with
udserver, change the right-most number to 864000 (the number of seconds in 24
hours). The line could appear as follows:

udserver /usr/ud72/bin/udsrvd * TCP/IP 0 864000
 3-4 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Making UniData Accounts Accessible
UniData databases are organized into accounts. A consumer connects to a UniData
account and can access the files there. You optionally can define the account as a
database in the ud_database file on the server machine. You also can include the
account path or database name in the UCI data source definition in the UCI configu-
ration file (uci.config). For information about setting up the UCI configuration file,
see Chapter 2, “Setting Up UniOLEDB.”

You also can specify the account path or database name each time you attempt to
connect to the account. In this case, you would not need to include the account path
or database name in the UCI configuration file. When you attempt to connect, you
are prompted to specify the full path to the account or the database name.

If you want to access an account that has a UDTHOME directory different than the
default UDTHOME directory, you must include a definition for that account in the
ud_database file on the server machine. For UNIX systems, this file is located in the
/usr/udnn/include path, where nn is the release of UniData you are running. For
Windows platforms, it is located in \udthome\include. You can find the path for
udthome by looking in the system registry under
\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\UniData\7.1. Use any text editor
to modify the ud_database file.

Note: To determine your default UniData home directory, use the UNIX env
command. The results of this command include the default setting for the UDTHOME
environment variable.

The following Windows example shows an entry in the ud_database file for a
database named db2:

DATABASE=db2
UDTHOME=d:\disk2\test71
UDTACCT=d:\disk2\test71\testacct.

In the ud_database file entry, the UDTHOME parameter is optional. You should
include it only when the UDTHOME directory is different than the default
UDTHOME directory.
 3-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH03.fm
2/4/09

Beta
Tracing Events
By using the tracing feature, you can create logs of events between clients and the
database through the server. Logs enable IBM support personnel to help troubleshoot
problems. You can define trace levels for database entries in the ud_database file.

The following table describes the valid trace levels and the associated information
that is written to the trace log.

The trace log is named udsrv_database.processID where database is the the database
name (for example, db2) and processID is the process number ID. By default, it is
located in your temporary directory (typically, /tmp for UNIX; x:\temp for Windows
platforms). For UNIX, you can find the location of the trace log file in the TMP
parameter in the udtconfig file under /usr/ud61/include.

The following UNIX example shows a tracing level setting for a database named
dbase3:

DATABASE=dbase3
UDTHOME=/disk1/ud71
UDTACCT=/home/bobm/bmtest
TRACE_LEVEL=3

Trace Level Description

0 Includes all fatal error information.

1 Includes all UCI commands in addition to the information provided by
trace level 0.

2 Includes parameter information and column descriptions in addition to
the information provided by trace levels 0 and 1.

3 Includes data values in addition to the information provided by trace
levels 0, 1, and 2.

Trace Levels
 3-6 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Presenting Data in OLE DB–Accessible Format
Data in UniData is organized differently from the way UniOLEDB expects it to be
organized. Two areas in which the data differs from what UniOLEDB expects are:

Data types
Multivalued and multi-subvalued data

Although OLE DB 2.1 supports chaptered rowsets, UniOLEDB does not support
them at this time.

Data Types
UniData does not define data types for data contained in its files. On the other hand,
UniOLEDB expects data types for all data. In addition, data in UniData can be of
variable length, but UniOLEDB expects data to have either a fixed or a maximum
length. To make the data look more like what UniOLEDB expects, you must use VSG
or Schema API.

Multivalued and Multi-Subvalued Data
UniOLEDB expects data to be organized in first normal form (1NF) format.
Although some files could be in 1NF format, which means that only one value is
stored in each column of each row, many UniData files have columns that store
multiple values in the columns of a row (NF2 format). To instruct UniData SQL to
present data in 1NF format, you must use VSG or Schema API.

VSG or Schema API creates views and subtables that present multivalued and multi-
subvalued data in 1NF format. These views and subtables do not duplicate data, but
merely instruct UniData SQL to normalize data before returning it to the application.
UniOLEDB passes the 1NF data to consumers in the form of rowsets.

Missing Values
To determine how UniData treats missing values for character-type data, set the
VCHAREMPTY variable in the uci.config file.
 3-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH03.fm
2/4/09

Beta
If VCHAREMPTY=ON, UniData does not convert empty (missing) values to
NULL. If VCHAREMPTY=OFF, UniData converts empty (missing) values to
NULL.

Visual Schema Generator and the Schema API

There are two ways to create 1NF views and subtables to instruct UniData SQL to
present data in UniData in an OLE DB–accessible format:

VSG
Schema API

VSG is a Windows-based graphical user interface (GUI) tool that makes UniData
files accessible to consumers through UniOLEDB. It enables you to create, delete,
and modify UniData SQL subtables and views. VSG also enables you to set ANSI
privileges (security) for tables, subtables, and views.

VSG guides data administrators through the process of defining the 1NF subtables
and views that represent the extended relations by visually presenting all available
configuration options. It also translates conversion specifications for UniData to SQL
data types. VSG performs logical error checking through every step of the schema
generation process.

The Schema API consists of a series of UniBasic subroutines designed to accomplish
the same normalization tasks as VSG.

IBM recommends that you use VSG to prepare files because it is easier and faster to
use than the Schema API. It performs several processes automatically. You might
want to use the Schema API if you have a large number of files (in this case, several
VSG processes take several minutes to complete) or you deploy data files with your
applications.

For more information about using VSG or the Schema API, see the Using VSG and
the Schema API manual.
 3-8 Using UniOLEDB

:\Prog
ebrua
3Administering UniData on Windows NT or Windows 2000
0

4
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Accessing UniVerse Data
Accessing UniVerse Tables and Files 4-3
 Tables . 4-3
 Files . 4-4
 Multivalued Data 4-4
 The TABLES Rowset 4-6
The UniVerse Server Administration Menu 4-10
Making Files Visible to UniOLEDB Consumers 4-12
 Making Files Visible 4-12
 Restricting File Visibility 4-13
 Updating the File Information Cache 4-14
 Removing File Visibility 4-17
 COLUMNS Rowset 4-18
 Association Keys 4-19
Table and Column Names Containing Special Characters 4-22
 Delimited Identifiers 4-22
Making UniVerse Data Meaningful to UniOLEDB 4-23
 SQL Data Types 4-23
 Length of Character String Data 4-25
 Empty-Null Mapping 4-26
 Validating and Fixing Tables and Files 4-26
les\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04TOC.fm
09 3:26 pm Administering UniData on Windows NT or Windows 2000

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
This chapter describes how to access data in UniVerse tables and files. The following
data is always accessible to a UniOLEDB client connected to a UniVerse account:

All UniVerse tables on the system.
All non-SQL UniVerse files defined in the VOC file of the current account.

In this chapter, the word tables refers to UniVerse tables defined by the CREATE
TABLE statement and views defined by the CREATE VIEW statement. The word
files refers to non-SQL UniVerse files that are defined by the CREATE.FILE
command. The term UniOLEDB table refers to any table or file, real or virtual, that
is accessible to UniOLEDB.

Before a consumer attempts to connect to a UniVerse data source, the UniRPC
daemon (for UNIX systems) or the UniRPC service (for Windows platforms) must
be running on the server system.

The UniVerse system must be defined as a data source on the client machine in the
UCI configuration file. For information about setting up data sources, see Chapter 2,
“Setting Up UniOLEDB”
 4-2

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
Accessing UniVerse Tables and Files
An OLE DB consumer connects to a UniVerse account (which can be a schema) and
can access all tables on the system and all files defined in the VOC file of that
account.

Sometimes an OLE DB consumer connected to UniVerse gets a list of UniOLEDB
tables by requesting a TABLES rowset. This rowset lists:

All tables on the system.
Files defined in the current account’s VOC file that have been made visible
to OLE DB.
Virtual tables (dynamically normalized multivalued data) within the above.

We will refer to the UniOLEDB tables listed in the TABLES rowset as “visible” to
OLE DB consumers. Although all SQL tables on the system are by definition visible,
non-SQL files that have not been made visible are not included in the TABLES
rowset. For information about how to make files visible in an account, see “Making
Files Visible to UniOLEDB Consumers” on page 4-12.

Tables
When connected to a UniVerse account, an OLE DB consumer can access all tables
on the system. If connected to a UniVerse schema, the consumer can reference tables
in that schema by using unqualified table names in SQL statements. All other tables
on the system can be referenced using table names qualified by the appropriate
schema name.

Example 1

The consumer is connected to schema HR. If table EMPLOYEES is in schema HR,
it can be referenced simply as EMPLOYEES. If view EMPLOYEES is in schema
DENVER, it must be referenced as DENVER.EMPLOYEES.
 4-3 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Example 2

The consumer is connected to account SALES that is not a schema. In this case, table
EMPLOYEES (in schema HR) and view EMPLOYEES (in schema DENVER) must
be referenced as HR.EMPLOYEES and DENVER.EMPLOYEES respectively.

Files
An OLE DB consumer can access files that are defined in the VOC file of the account
to which the consumer is connected. Because some OLE DB applications are written
to access only tables listed in the TABLES rowset, as a practical matter UniVerse files
may not be usable unless they have been made visible for that account.

For example, if a consumer connects to an account whose files have been made
visible, all files defined in the account’s VOC file, except for system files (such as
&SAVEDLISTS&) and UV/Net files, are visible. The consumer can reference the
files using the file names in the VOC. The account does not need to be a schema.

On the other hand, if a consumer connects to an account whose files have not been
made visible, no files appear in the TABLES rowset. However, the consumer can still
access files defined in the account’s VOC file if the consumer is programmed to
bypass the contents of the TABLES rowset.

Multivalued Data
UniOLEDB expects data to be organized relationally in first normal form (1NF).
Although some UniVerse tables and files are in first normal form, which means only
one value is stored in each column of each row, many UniVerse tables and files have
columns that store multiple values.

UniVerse always presents multivalued data to UniOLEDB in first normal form
(1NF), and UniOLEDB passes it to consumers in the form of rowsets. UniVerse
automatically normalizes its tables and files by a process called “dynamic normal-
ization.” This means that a file containing multivalued data appears to UniOLEDB
as several 1NF tables, each consisting of singlevalued data only.
 4-4

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
Example

The table ORDERS is defined with columns ORDERNUM, CUSTNUM, DATE,
PART, and QTY. PART and QTY are multivalued and make up an association called
ITEMS. The association key is PART. Suppose this table contains the following
orders.

This file appears to OLE DB as two 1NF tables called ORDERS and
ORDERS_ITEMS. The ORDERNUM column is the ORDERS key.

The ORDERNUM and PART columns are the two columns that make up the
ORDERS_ITEMS key.

The TABLES Rowset
An OLE DB consumer can request a TABLES rowset that includes all tables and
visible files. For each table and visible file, this rowset includes schema name, table
name, and table type. Table type can be TABLE, VIEW, or SYSTEM TABLE.

ORDERNUM CUSTNUM DATE PART QTY

99101 12345 5/25/99 HINGE 200

BOLT 650

99102 98765 6/10/99 BOLT 50

ORDERS Table

ORDERNUM CUSTNUM DATE

99101 12345 5/25/99

99102 98765 6/10/99

ORDERS 1NF Table

ORDERNUM PART QTY

99101 HINGE 200

99101 BOLT 650

99102 BOLT 50

ORDERS 1NF Table
 4-5 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Example 1

Suppose the consumer is connected to a UniVerse account that is not a schema, and
suppose the account contains two files called EMPS and DEPTS. EMPS and DEPTS
are not tables. EMPS has one multivalued column called DEPENDENTS, and
DEPTS has no multivalued columns. Files in this account have been made visible.

Suppose there is another UniVerse account whose files have been made visible,
which contains a file called OTHERFILE.

If the consumer requests the TABLES rowset, it includes the following information.

This shows that:

Any files listed in the TABLES rowset must be in the account to which the
consumer is connected (OTHERFILE does not show up).
Files listed in the TABLES rowset have a null value for the schema name.
A multivalued column appears as a separate dynamically-normalized table
whose type is TABLE and whose name is composed of the original file’s
name followed by an underscore and the name of the column.

Example 2

Suppose the above account is made into a schema named USA. Suppose two tables
called CITIES and STATES are then created where CITIES has only singlevalued
columns and STATES has an association called COUNTIES.

Schema Name Table Name Table Type

<null value> EMPS TABLE

<null value> EMPS_DEPENDENTS TABLE

<null value> DEPTS TABLE

Example 1: TABLES Rowset Information
 4-6

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
The TABLES rowset now includes the following returned information.

This shows that:

Tables have a schema name, unlike files.
An association appears as a dynamically-normalized table whose type is
TABLE and whose name is composed of the original file’s name followed
by an underscore and the name of the association.

Example 3

Suppose an SQL view called STATEVIEW is created in another schema (called
JOESCHEMA) with the following SQL statement:

CREATE VIEW STATEVIEW AS SELECT * FROM USA.STATES;

While still connected to the original account, the consumer sees the following infor-
mation returned in the TABLES rowset.

Schema Name Table Name Table Type

<null value> EMPS TABLE

<null value> EMPS_DEPENDENTS TABLE

<null value> DEPTS TABLE

USA CITIES TABLE

USA STATES TABLE

USA STATES_COUNTIES TABLE

Example 2: TABLES Rowset Information

Schema Name Table Name Table Type

<null value> EMPS TABLE

<null value> EMPS_DEPENDENTS TABLE

<null value> DEPTS TABLE

USA CITIES TABLE

Example 3: TABLES Rowset Information
 4-7 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
This shows that:

Tables and views in other schemas appear in the TABLES rowset.
Views and their dynamically-normalized associations and multivalued
columns have the table type VIEW.

Example 4

Suppose the account JOESCHEMA mentioned above contains a UniVerse file called
JOEFILE that has not been made visible. Suppose an OLE DB consumer connects to
JOESCHEMA and requests the TABLES rowset. This rowset includes the following
information.

This shows:

Files in other accounts (such as EMPS) do not appear in the TABLES
rowset.
Files in the account the consumer is connected to (such as JOEFILE) do not
appear if they have not been made visible.

USA STATES TABLE

USA STATES_COUNTIES TABLE

JOESCHEMA STATEVIEW VIEW

JOESCHEMA STATEVIEW_COUNTIES VIEW

Schema Name Table Name Table Type

USA CITIES TABLE

USA STATES TABLE

USA STATES_COUNTIES TABLE

JOESCHEMA STATEVIEW VIEW

JOESCHEMA STATEVIEW_COUNTIES VIEW

Example 4: TABLES Rowset Information

Schema Name Table Name Table Type

Example 3: TABLES Rowset Information (Continued)
 4-8

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
Example 5

The UniVerse SQL catalog tables also appear in the TABLES rowset. Their table type
is SYSTEM TABLE.

Schema Name Table Name Table Type

CATALOG UV_ASSOC SYSTEM TABLE

CATALOG UV_COLUMNS SYSTEM TABLE

CATALOG UV_COLUMNS_ACOL_NO SYSTEM TABLE

CATALOG UV_COLUMNS_AMC SYSTEM TABLE

CATALOG UV_SCHEMA SYSTEM TABLE

CATALOG UV_TABLES SYSTEM TABLE

Example 5: TABLES Rowset Information
 4-9 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
The UniVerse Server Administration Menu
You can use the UniVerse Server Administration menu on the server system to
perform certain administrative functions that may facilitate access to your UniVerse
data from UniOLEDB consumers. These functions include making UniVerse files in
an account visible to UniOLEDB, and detecting data anomalies in a table or file.
Tasks described later in this chapter use selections that appear on this menu.

To display the menu:

1. Log on to the server system as root on UNIX or as an Administrator on
Windows platforms.

2. Invoke UniVerse and log to the HS.ADMIN account. This account is in a
subdirectory named HS.ADMIN in the UV account directory.

3. Type the command: HS.ADMIN.

The UniVerse Server Administration menu appears.

 UniVerse Server Administration

 1. List activated accounts
 2. Show UniVerse ODBC Config configuration for an account
 3. Activate access to files in an account
 4. Deactivate access to files in an account
 5. Run HS.SCRUB on a File/Table
 6. Update File Information Cache in an account

 Which would you like? (1 - 6)

 4-10

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
1. To exit the menu, press ENTER.
The following table describes the selections that appear on the UniVerse
Server Administration menu.

Menu Selection Description

1. List activated accounts Lists UniVerse accounts whose files have been made
visible to UniOLEDB. When a consumer is
connected to such an account, the account’s files are
included in the TABLES rowset.

2. Show UniVerse ODBC Config
configuration for an account

Does not apply to UniOLEDB.

3. Activate access to files in an
account

Makes files in a UniVerse account visible to
UniOLEDB so that when a consumer is connected to
this account, its files are included in the TABLES
rowset.

4. Deactivate access to files in an
account

Removes UniOLEDB-visibility from files in a
UniVerse account. This reverses the actions of
making files visible.

5. Run HS.SCRUB on a File/Table Analyzes the data in a table or file, and lets you
optionally correct anomalous data.

6. Update File Information Cache
in an account

Updates this account’s .hs_fileinfo file to reflect the
current state of all files in the account.

UniVerse Server Administration Menu Selections
 4-11 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Making Files Visible to UniOLEDB Consumers
There are several types of UniOLEDB consumers, including:

Consumers programmed to deal with known tables and data on a specific
UniVerse server.
Consumers that let an interactive user specify what tables to access on the
server, expecting the user to know the names of the tables to process.
Consumers that use the TABLES rowset to determine what tables can be
accessed. An example of this type of consumer might be a general-purpose
tool that lists the TABLES rowset on users’ screens and lets them choose
one of the listed tables to process.

For consumers in the first two categories, there is no need to make files visible in
UniVerse accounts on the server.

For consumers in the last category, it is necessary to make files visible unless all of
the data of interest is stored in UniVerse tables. This is because files that are not tables
are not included in the TABLES rowset unless the consumer is connected to an
account whose files have been made visible.

Making Files Visible
To make files in a UniVerse account visible to UniOLEDB consumers:

1. On the UniVerse Server Administration menu, choose the third selection
(Activate access to files in an account).

2. When prompted, enter either the full path of the UniVerse account (on
Windows platforms, start with the drive letter, such as D:) or the account
name as listed in the UV.ACCOUNT file.

3. Repeat steps 1 and 2 for each account whose files you want to make visible.
4. To exit the UniVerse Server Administration menu, press ENTER.

The process of making files visible does the following:

Scans the dictionaries of all nonsystem files named in the VOC, finding all
associations and unassociated multivalued columns.
Writes an @EMPTY.NULL X-record in each file dictionary.
 4-12

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
Writes S or M in field 5 of A- and S-descriptors.
Creates Q-pointers in the VOC for files comprising multiple data files.
Creates an HS_FILE_ACCESS file in the account.
Creates a file information cache (.hs_fileinfo) under the account’s directory,
which contains a compressed list of all 1NF file names in the account and is
used by the UniOLEDB provider to rapidly construct the TABLES rowset
whenever a consumer requests it to do so.
Updates the UV.ACCOUNT file to indicate that the files in the account have
been made visible.

Restricting File Visibility
When you make an account’s files visible to UniOLEDB, the HS_FILE_ACCESS
file is created in the account, as stated in the previous section. This file contains
records for non-SQL files referenced by F- and Q-pointers in the account’s VOC file.
the following table shows the format and initial contents of the HS_FILE_ACCESS
file.

You can edit the HS_FILE_ACCESS file to control which files in the account are
visible to UniOLEDB consumers.

The IDs of records in the HS_FILE_ACCESS file are the names of the files whose
access you want to control. Each record has one field (ACCESS), which contains one
of the following values:

READ_WRITE
READ

FILENAME (Record ID) ACCESS (Field 1)

HS_DEFAULT
&DEVICE&
.
.
.
VOC
VOCLIB

READ_WRITE
NONE
.
.
.
NONE
NONE

Initial Contents of HS_FILE_ACCESS
 4-13 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
NONE

If the ACCESS field for some file is set to READ, this is treated the same as
READ_WRITE for UniOLEDB.

The HS_FILE_ACCESS file contains a special record called HS_DEFAULT that
controls default access to all files in the account. When you first make files visible,
the HS_DEFAULT record is set to READ_WRITE and the records for UniVerse sys-
tem files (APP.PROGS, BASIC.HELP, ERRMSG, UV.ACCOUNT, DICT.DICT,
NEWACC, and so forth) are set to NONE (no access).

To remove visibility from a few selected files and leave all the rest visible to
UniOLEDB, add a record to HS_FILE_ACCESS for each restricted file, with the
ACCESS field set to NONE.

To make just a few files in an account visible to UniOLEDB, change the ACCESS
field in the HS_DEFAULT record from READ_WRITE to NONE, and then add
selected files whose ACCESS field is READ_WRITE.

If you change the contents of the HS_FILE_ACCESS file, you must then update the
file information cache in order for your changes to take effect. For information about
updating the file information cache, see the next section.

Updating the File Information Cache
After an account’s files have been made visible, if the following types of change are
made to the account’s files, the changes are not automatically reflected in the
TABLES rowset:

Adding, changing, or deleting F- or Q-pointers in the VOC file.
Creating or deleting UniVerse files.
Adding, changing, or deleting associations or unassociated multivalued
column definitions in file dictionaries.
Restricting access to selected files by changing the contents of the
HS_FILE_ACCESS file.

These types of change are not reflected in the TABLES rowset until the account’s file
information cache is updated.

You can update the file information cache using the UniVerse Server Administration
menu or the HS.UPDATE.FILEINFO command.
 4-14

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
To update the file information cache using the menu:

1. On the UniVerse Server Administration menu, choose the sixth selection
(Update File Information Cache in an account).

2. When prompted, enter either the full path of the UniVerse account (on
Windows platforms, start with the drive letter, for example, D:) or enter the
account name as listed in the UV.ACCOUNT file.

3. Repeat steps 1 and 2 for each account you want to update.
4. To exit the UniVerse Server Administration menu, press ENTER.

To update the file information cache using the HS.UPDATE.FILEINFO command:

1. Log to the desired UniVerse account.
2. At the system prompt, enter the command HS.UPDATE.FILEINFO.

The process of updating an account’s file information cache does the
following:

Scans the dictionaries of all nonsystem files named in the VOC, finding
all associations and unassociated multivalued columns.
Rewrites the file information cache (.hs_fileinfo) under the account’s
directory, based on the above dictionary information and on the
contents of the HS_FILE_ACCESS file.

The file information cache is for internal use only and should not be modified. Any
changes to the cache can cause unpredictable behavior and can make UniVerse files
in the account inaccessible to consumers.

Example

Suppose account MYACCOUNT contains the following files:

STATES, which has an association called CITYZIPS.
EMPS, which has multivalued (unassociated) columns DEPENDENTS and
PHONES.
OCEANS, which has only singlevalued columns.
 4-15 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
After the files in this account are made visible, the TABLES rowset lists the
following tables.

Suppose you now make the following changes in MYACCOUNT:

Delete file STATES.
Remove column DEPENDENTS from the dictionary of EMPS.
Create a VOC entry called EMPLOYEES that refers to the same data
file and file dictionary as does EMPS.
Create a new file CONTINENTS that has only singlevalued columns.
Add a record to HS_FILE_ACCESS, whose key is OCEANS and
whose ACCESS field is set to NONE.

These changes are not immediately reflected in the TABLES rowset, but after
MYACCOUNT’s file information cache is updated, the TABLES rowset lists the
following information.

Schema Name Table Name Table Type

<null value> STATES TABLE

<null value> STATES_CITYZIPS TABLE

<null value> EMPS TABLE

<null value> EMPS_DEPENDENTS TABLE

<null value> EMPS_PHONES TABLE

<null value> OCEANS TABLE

TABLES Rowset for MYACCOUNT

Schema Name Table Name Table Type

<null value> EMPS TABLE

<null value> EMPS_PHONES TABLE

<null value> EMPLOYEES TABLE

<null value> EMPLOYEES_PHONES TABLE

<null value> CONTINENTS TABLE

Updated TABLES Rowset for MYACCOUNT
 4-16

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
Removing File Visibility
To make files in a UniVerse account invisible to UniOLEDB:

1. On the UniVerse Server Administration menu, choose the fourth selection
(Deactivate access to files in an account).

2. When prompted, enter either the full path of the UniVerse account (on
Windows platforms, start with the drive letter, for example, D:) or the
account name as listed in the UV.ACCOUNT file.

3. Repeat steps 1 and 2 for each account whose files you want to make
invisible.

4. To exit the UniVerse Server Administration menu, press ENTER.

Making files invisible does the following:

Deletes the HS_FILE_ACCESS file in the account.
Deletes the file information cache (.hs_fileinfo) under the account’s
directory.
Updates the UV.ACCOUNT file to indicate that files in this account are not
visible.
 4-17 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Accessing Columns in UniVerse Tables and Files
As explained earlier, NF2 data in UniVerse appears as 1NF tables to an OLE DB
consumer. All columns defined in the dictionaries of these NF2 files (including tables
and views) can be accessed. In addition to stored-data columns, I-descriptors and
correlatives can be accessed (as read-only columns) by an OLE DB consumer.

Some OLE DB consumers are written as general-purpose programs that determine a
list of visible columns by requesting a COLUMNS rowset. The COLUMNS rowset
for any visible 1NF table describes all columns returned by the following statement:

SELECT * FROM tablename;

Columns other than those returned in the COLUMNS rowset may be accessible by
OLE DB consumers because "SELECT *" does not always return all columns
defined in the dictionary.

COLUMNS Rowset
A UniOLEDB consumer can request a COLUMNS rowset, which provides a list of
column characteristics. Each row in the COLUMNS rowset includes the following
information:

Schema name
Table name
Column name
Column position
Data type
Precision
Scale

For UniVerse tables, and for associations and unassociated multivalued columns in
them, columns listed in the COLUMNS rowset are defined by the dictionary’s
@SELECT phrase (if it exists), or are defined as the columns created by CREATE
TABLE (and possibly modified by ALTER TABLE) if there is no @SELECT phrase.
 4-18

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
For files, and for associations and unassociated multivalued columns within them,
columns listed in the COLUMNS rowset are defined by the dictionary’s @SELECT
phrase (if it exists). If there is no @SELECT phrase, the contents of the COLUMNS
rowset are defined by the dictionary’s @ phrase (if it exists). If neither an @SELECT
phrase nor an @ phrase exists, only the record ID (@ID) appears in the COLUMNS
rowset.

For more information about the @SELECT and @ phrases, see UniVerse Adminis-
tration for DBAs.

Association Keys
UniVerse tables have primary keys. UniVerse files have record IDs. Primary keys and
record IDs are unique identifiers for each row (record) of data in a table or file.

Because UniOLEDB shows associations and unassociated multivalued columns as
1NF tables, they also require a set of unique identifiers that serve as primary keys.
These keys are called association keys.

When you create a UniVerse table or file, you can define one or more association
columns as the association key, but you do not have to. If you do not, UniVerse SQL
generates a virtual column called @ASSOC_ROW containing unique values that,
combined with the primary keys or record IDs of the base table, become the associ-
ation keys for the 1NF table generated from the association.

For detailed information about defining association keys, see UniVerse SQL Admin-
istration for DBAs and the UniVerse SQL Reference.

Example

The file EMPS is defined with columns EMPNUM, NAME, DEPTNUM, DEPEN-
DENTS, and PHONES, where DEPENDENTS and PHONES are unassociated
multivalued columns. Suppose this file contains the following employees.

EMPNUM NAME DEPTNUM DEPENDENTS PHONES

4456 GONZALES 97 SUSAN 555-876-4041

FREDERICA

4901 HURLBUT 58 555-245-1000

EMPS File
 4-19 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
This table will appear to OLE DB as three 1NF tables called EMPS,
EMPS_DEPENDENTS, and EMPS_PHONES.

The EMPS 1NF table has column EMPNUM as its key.

The EMPS_DEPENDENTS 1NF table has a key consisting of two columns:
EMPNUM and @ASSOC_ROW.

555-245-1456

6511 RICHARDS 58 HELEN 400-765-4321

ALFRED 400-765-9010

SAMUEL

EMPNUM NAME DEPTNUM

4456 GONZALES 97

4901 HURLBUT 58

6511 RICHARDS 58

EMPS NF1 Table

EMPNUM DEPENDENTS @ASSOC_ROW

4456 SUSAN 1

4456 FREDERICA 2

6511 HELEN 1

6511 ALFRED 2

6511 SAMUEL 3

EMPS_DEPENDENTS 1NF Table

EMPNUM NAME DEPTNUM DEPENDENTS PHONES

EMPS File
 4-20

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
The EMPS_PHONES 1NF table also has a two-column key consisting of EMPNUM
and @ASSOC_ROW.

EMPNUM PHONES @ASSOC_ROW

4456 555-876-4041 1

4901 555-245-1000 1

4901 555-245-1456 2

6511 400-765-4321 1

6511 400-765-9010 2

EMPS_PHONES 1NF Table
 4-21 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Table and Column Names Containing Special
Characters
Some UniVerse table and column names can contain special characters such as period
(.) or at-sign (@). These names can cause difficulty with some OLE DB consumers
unless they are enclosed in double quotation marks.

Delimited Identifiers
UniVerse supports an ANSI-SQL feature called "delimited identifiers." This means
that any identifier (table name, column name, index name, constraint name, and so
forth) can be enclosed in double quotation marks to avoid ambiguity in the syntax of
an SQL statement. This is particularly useful in the case of UniVerse table and
column names that contain the period (.) character.

The following example shows a SELECT statement that contains column and table
names delimited by double-quotation marks:

SELECT "MY.COLUMN" FROM SCHEMAX."MY.TABLE";
 4-22

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
Making UniVerse Data Meaningful to
UniOLEDB
This section describes things you may need to do on the UniVerse server to make
particular kinds of UniVerse data meaningful to UniOLEDB consumers:

Define SQL data types for data in UniVerse files.
Define the length of character string data in UniVerse files.
Set up empty-null mapping.
Validate and fix data in data files and dictionaries that cause SQL and
UniOLEDB problems.

SQL Data Types
To fine-tune or define data type, precision, and scale values for columns and
I-descriptors in files, you can edit the DATATYPE field of the corresponding
dictionary entry (field 8 in D- and I-descriptors, field 6 in A- and S-descriptors). This
is especially important for character data in which the display width defined in the
dictionary may be much larger or smaller than the largest data values in the file. The
HS.SCRUB utility can automatically make these adjustments based on the data
found. For more information about HS.SCRUB, see “Validating and Fixing Tables
and Files” on page 4-26.
 4-23 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
If the DATATYPE field is empty, UniVerse determines a column’s SQL data type by
examining its conversion code and format specifications. The UniVerse server
reports this SQL data type to OLE DB consumers in the COLUMNS rowset. If the
UniVerse-generated SQL data type is inappropriate for the actual data in the column,
you can specify the correct SQL data type in the DATATYPE field of the column’s
dictionary entry. For some data types, the SQL data type syntax is different between
dictionary specifications and UniVerse SQL statements (for example, CREATE
TABLE) as noted in the following table. Square brackets indicate optional
parameters.

Note the syntactic differences regarding the use of parentheses and commas.

The DATE, DOUBLE PRECISION, INT [EGER], REAL, SMALLINT, and TIME
data type syntax is identical for dictionaries and UniVerse SQL.

You can specify the SQL data type for any column, real or virtual, in a UniVerse file.
You need not specify the SQL data type for any column of a table defined by the
CREATE TABLE or CREATE VIEW statement, but you may want to specify the
SQL data type for other columns in the table (such as I-descriptors) that are not
defined in the SICA. You cannot modify the SQL data type for columns defined in
the SICA, and UniVerse ignores the dictionary definitions for these columns. For
more information about the SICA and UniVerse tables, see UniVerse SQL Adminis-
tration for DBAs manual and the UniVerse SQL User Guide.

Length of Character String Data
In UniOLEDB, every character column has either a fixed length or a maximum
length. This column length is called its precision and is reported in the COLUMNS
rowset.

Dictionary Syntax UniVerse SQL Syntax Notes

CHAR [ACTER] [,n] CHAR [ACTER] [(n)] n = number of characters

DEC [IMAL] [,p[,s]] DEC [IMAL] [(p[,s])] p = precision s = scale

FLOAT[,p] FLOAT[(p)] p = precision

NUMERIC[,p[,s]] NUMERIC[(p[,s])] p = precision s = scale

VARCHAR[, n] VARCHAR[(n)] n = number of characters

SQL Data Type Syntax
 4-24

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
The precision of a character column is determined from one of the following:

For a columns in a UniVerse file, the precision is defined by the data type
specified in the DATATYPE field of the column’s dictionary definition. If
the data type is not defined, the FORMAT field of the dictionary defines the
precision.
For a column defined by a CREATE TABLE or ALTER TABLE statement,
the precision is defined by the column definition, which is stored in the
table’s SICA.
For a column in a view, the precision is defined by the CREATE VIEW
statement or by the precision of the column specified by the SELECT
statement that creates the view.
For a column added to a table’s dictionary (such as an I-descriptor), the
precision is defined by the data type specified in the DATATYPE field of the
column’s dictionary definition. If the data type is not defined, the FORMAT
field of the dictionary defines the precision.

You can use the HS.SCRUB utility to examine a file’s data and write appropriate data
types in the DATATYPE field of the dictionary definitions for character-string
columns. For information about HS.SCRUB, see “Validating and Fixing Tables and
Files” on page 4-26.

The actual number of characters in a UniVerse character column can be greater than
its precision. UniOLEDB retrieves such extra characters, up to a limit. The number
of bytes of character data that UniOLEDB retrieves from a character column is the
smallest of:

The number of bytes of data the column actually contains.
The number of bytes of data that UCI can fetch. This is controlled by the
UCI configuration parameters MAXFETCHBUFF and
MAXFETCHCOLS, defined in the uci.config file.

If your fetch buffer is not large enough to hold all the character data that UniOLEDB
retrieves, UniOLEDB generates a truncation warning.

The actual number of characters in a UniVerse character column can be less than its
precision. Unlike some DBMSs, UniVerse does not automatically pad CHAR(n)
columns on the right with spaces. If you insert the value "abc " (with two trailing
spaces) into a CHAR(10) column, the column contains only five characters, not 10.
 4-25 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Your application and data source must agree on a consistent way to treat trailing
spaces in a CHAR(n) column. Generally, it is better to treat CHAR(n) columns as if
they were VARCHAR columns with no space padding.

Empty-Null Mapping
UniVerse files use empty strings in much the same way tables use null values. Unfor-
tunately, empty strings in numeric or date columns cause data conversion errors in
UniOLEDB, making these columns almost inaccessible to some consumers. To make
files with empty values accessible to consumers, the UniVerse server provides
empty-null mapping, converting empty values in UniVerse files to null values in
UniOLEDB application buffers, and vice versa.

To turn on empty-null mapping for a UniVerse table or file, add an X-descriptor
named @EMPTY.NULL to the dictionary. To turn off empty-null mapping, delete the
@EMPTY.NULL entry from the dictionary.

The third selection (Activate access to files in an account) on the UniVerse Server
Administration menu enables empty-null mapping in all files in the account by
creating @EMPTY.NULL dictionary entries.

Validating and Fixing Tables and Files
Use the HS.SCRUB utility to scan data in a table or file and fix data and dictionary
problems that can cause SQL and UniOLEDB difficulties. The HS.SCRUB utility
does the following:

Reports data anomalies.
Saves a select list of record IDs of problem records.
Writes appropriate data types in the DATATYPE field of the dictionary’s
column definitions.
Adjusts dictionary entries to accommodate bad data, such as nonnumeric
values in numeric, date, and time columns, which can lead to adjusting the
column type to CHARACTER.
Adds an @EMPTY.NULL record to the dictionary.
Adds an @SELECT record to the dictionary.
Fixes the data in the file, optionally saving a copy of the original file.
 4-26

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH04.fm
2/4/09

Beta
The @EMPTY.NULL Record

HS.SCRUB adds an @EMPTY.NULL record to the table or file dictionary if all the
following conditions are met:

The dictionary does not already include an @EMPTY.NULL record.
The data contains empty values.
Modification of the dictionary is enabled (FIX, AUTOFIX, AUTOFIX
DICT).

For information about empty-null mapping, see “Empty-Null Mapping” on page 4-
26.

The @SELECT Record

HS.SCRUB adds an @SELECT record to the file dictionary (but not to a table
dictionary) if both of the following conditions are met:

The dictionary does not already include an @ or @SELECT record.
Modification of the dictionary is enabled (FIX, AUTOFIX, AUTOFIX
DICT).

For information about @SELECT records, see UniVerse SQL Administration for
DBAs.

Running the HS.SCRUB Utility

To run the HS.SCRUB utility, choose the fifth selection (Run HS.SCRUB on a
File/Table) on the UniVerse Server Administration menu, or use the HS.SCRUB
command described in the next section.

If you use the Run HS.SCRUB on a File/Table selection, you are prompted to enter
either the full path of the UniVerse account (for Windows platforms, start with the
drive letter, such as D:) or the account name as listed in the UV.ACCOUNT file. Press
ENTER to see a list of UniVerse accounts whose files have been made visible to
OLE DB.

Next you are prompted to enter the name of the table or file you want to analyze or
change. After you enter a file name, you are prompted to enter the mode of operation.
Enter one of the following at the Mode prompt:

To generate a report without modifying the table or file, press ENTER
 4-27 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
FIX
AUTOFIX
AUTOFIX DICT
AUTOFIX DATA

The next subsection describes these modes.

Using the HS.SCRUB Command

To use the HS.SCRUB command, log to the UniVerse account containing the table
or file you want to analyze.

The syntax of the HS.SCRUB command is as follows:

 HS.SCRUB filename [FIX | AUTOFIX [DICT | DATA]]
where filename is the name of the file or table to analyze.

The following table describes each parameter of the syntax.

When neither FIX nor AUTOFIX is specified, HS.SCRUB only reports anomalies.
No data or dictionary items are modified.

Parameter Description

FIX Puts HS.SCRUB in interactive mode, in which you are prompted to
resolve any anomalies following the analysis.

AUTOFIX Puts HS.SCRUB in automatic mode; anomalies are corrected with the
default action that would have been presented to the user. If you do not
specify DICT or DATA with the AUTOFIX option, HS.SCRUB
resolves anomalies in both the data file or table and its dictionary.

DICT Indicates that HS.SCRUB resolves only those anomalies associated
with the file’s or table’s dictionary.

DATA Indicates that HS.SCRUB resolves only those anomalies associated
with the file’s or table’s data.

HS.SCRUB Parameters
 4-28

:\Prog
ebrua
4Administering UniData on Windows NT or Windows 2000
0

5
Chapter

ram Fi
ry 4 20

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
UniOLEDB Functionality
UniOLEDB Implementation Notes 5-3
 General . 5-3
 Data Source Objects 5-3
 Session Objects 5-4
 Command Objects 5-4
 Rowset Objects 5-5
 Error Objects 5-6
Supported Interfaces. 5-7
UniOLEDB Properties 5-12
 Data Source Information 5-13
 Initialization 5-28
 Rowset . 5-36
 Session . 5-57
Data Type Support 5-58
 Supported Data Types 5-58
 Data Type Conversions 5-59
Error Support . 5-60
 Method Return Codes 5-60
Transaction and SQL Support 5-62
 Transaction Support 5-62
 SQL Support. 5-62
les\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05TOC.fm
09 3:26 pm Administering UniData on Windows NT or Windows 2000

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
This chapter describes various aspects of UniOLEDB functionality. For more infor-
mation about functionality described in this chapter, such as specific interfaces or
properties, and how to develop applications with OLE DB, see the Microsoft
OLE DB 2.0 Programmer’s Reference and Software Development Kit manual.
 5-2 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
UniOLEDB Implementation Notes
The following notes describe various aspects of how UniOLEDB is implemented.

General
UniOLEDB is a read/write release that supports minimum OLE DB
provider functionality and some extended interfaces. UniOLEDB exposes
interfaces to consumers that connect to and access data from one or more
UniData or UniVerse databases. It supports creating sessions, commands,
and rowsets.
UniOLEDB is deployed as an in-process server dynamic link library (DLL)
that loads into the address space of the consumer.
UniOLEDB supports the COM free-threading model, which provides for
optimum speed and safety. The threading model specified in the registry for
UniOLEDB is “Both,” which allows single, apartment, and free-threaded
consumers to access data directly.
UniOLEDB does not support index and table definitions, which enable
consumers to create, modify, and drop tables and indexes on the data source.

Data Source Objects
UniOLEDB supports multiple instances of data source objects. It can work
simultaneously with an arbitrary combination of sessions in which each
session instance encapsulates a connection to either a UniData or UniVerse
account.
To create an instance of the data source object, the consumer uses the
UniOLEDB class ID (IBM.UniOLEDB) with the OLE CoCreateInstance
function. The resulting data source object exposes the OLE DB initial-
ization interfaces that enable the consumer to connect to UniData and
UniVerse databases.
A connection continues until the consumer calls IDBInitialize::Uninitialize
or all references to data source initialization interfaces are released.
UniOLEDB does not support the persistence of data source objects.
 5-3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
Session Objects
Each data source allows multiple session objects to be created. Each session
represents a logical connection to the database and serves as the single-level
transaction context.
All command objects that UniOLEDB creates from a specific session
participate in the local transaction of the session. UniOLEDB does not
support coordinated or distributed transactions across multiple sessions. It
also does not support nested transactions.
A session continues until the consumer releases all references to the session
object. When a session terminates, the connection closes.
Rather than creating and releasing session objects continually, it is more
efficient for the consumer to maintain a reference to at least one interface of
the session object, which causes it to remain active at a minimal level.

Command Objects
Sessions support multiple command object instances. Any SQL statement
the UniData or UniVerse engine (whichever one to which you are
connected) supports can be executed as a command object. In particular,
both UniData and UniVerse support at least the ANSI92_ENTRY level
definition of SQL. For more information about SQL support, see “SQL
Support” on page 5-62. In addition, UniOLEDB supports CALL
commands.

Note: UniOLEDB does not support data definition language (DDL) statements sent
to UniData.

UniOLEDB supports prepared commands and parameters, which are
variables in text commands that can be used in conjunction with prepared
commands. A consumer prepares a command to execute it multiple times.
Because prepared commands are resource intensive, IBM recommends that
a consumer should use them only if the command will be executed multiple
times.
UniOLEDB does not support multiple-rowset results.
UniOLEDB does not support the use of catalog names in text commands. A
catalog is a database that contains one or more schemas. A schema is a
group of related tables and files contained in a UniVerse account directory
and listed in the SQL catalog. Schemas do not apply to UniData.
 5-4 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Rowset Objects
UniOLEDB supports the IOpenRowset::OpenRowset interface.
UniOLEDB can update rowsets only through the Microsoft Cursor Engine
service component, which converts rowset updates to SQL statements. The
ICommand interface runs the SQL statements. Consumers also can update
UniData or UniVerse data directly by using SQL through the ICommand
interface.
The Microsoft Cursor Engine service component supports scrollable
UniOLEDB rowsets.
UniOLEDB does not expose index rowsets through the IRowsetIndex
interface. For optimum efficiency, IBM follows Microsoft’s recommen-
dation that consumers of SQL providers primarily should use the
ICommand interface to access data and rely on the query processor in the
SQL provider to optimize data access.
UniOLEDB supports the following types of schema rowsets:

COLUMNS
PROVIDER_TYPES
SCHEMATA (for UniVerse only)
TABLES

UniOLEDB does not support resynchronizing rows in a rowset with those
in the data source.
UniOLEDB does not support bulk-copy rowsets.
UniOLEDB does not support chaptered rowsets.
UniOLEDB does not support consumer access to binary large objects
(BLOBs) that are retrieved as storage objects through the
ISequentialStream, IStream, IStorage, and ILockBytes interfaces.
UniOLEDB does not notify a consumer about any changes to rowsets.

Error Objects
UniOLEDB data source, session, command, and rowset objects support the
ISupportErrorInfo interface because they expose interfaces that return error
objects. For information about how UniOLEDB implements error objects,
see “Error Support” on page 5-60.
 5-5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
Supported Interfaces
The following table describes the interfaces that UniOLEDB supports. Interfaces are
grouped according to COM object type (for example, data source objects).

Each interface listed in the table includes one or more methods to perform the tasks
that are described in the Description column. For more detailed descriptions of the
interfaces and how they can be used, see the Microsoft OLE DB 2.0 Programmer’s
Reference and Software Development Kit manual.

Interface Description

Interfaces for data source objects:

IDBCreateSession Creates a new session from a data source object.

IDBInitialize Initializes a data source object, or uninitializes it.

IDBProperties Enumerates, sets, or gets values of properties on a
data source object, or gets a list of all properties
UniOLEDB supports.

IPersist Retrieves the persisted information on a data source
object.

ISupportErrorInfo Indicates whether a specific OLE DB interface that
is exposed by a data source object supports
OLE DB error objects.

Interfaces for session objects:

IDBCreateCommand Creates a new command from a session.

IDBSchemaRowset Exposes information about the structure of a data
source (metadata).

IGetDataSource Obtains an interface pointer to the data source
object that created the session.

IOpenRowset Creates a simple rowset of all rows in a table.

ISessionProperties Sets properties in the Session property group, or
returns information about the properties a session
supports, including their current settings.

Interfaces Supported by UniOLEDB
 5-6 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
ISupportErrorInfo Indicates whether a specific OLE DB interface that
is exposed by a session object supports OLE DB
error objects.

ITransaction Commits, aborts, or obtains information about
manual-commit transactions.

ITransactionLocal Starts, commits, or aborts local manual-commit
transactions. ITransactionLocal inherits from
ITransaction.

Interfaces for command objects:

IAccessor Provides methods for managing accessors on a
command, including methods for adding a
reference count to an existing accessor, creating an
accessor from a set of bindings, and releasing an
accessor.

IColumnsInfo Exposes certain information about columns of a
rowset or a prepared command, such as column
metadata and ordinals of columns.

IColumnsRowset Exposes complete information about columns in a
rowset. UniOLEDB supports this interface through
the Microsoft Cursor Engine service component.

ICommand Provides methods for managing commands,
including methods for cancelling a command,
executing a command, and returning an interface
pointer to a session that created the command.

ICommandPrepare Validates and optimizes a current command, which
results in a command execution plan, or discards a
current command execution plan.

ICommandProperties Sets properties in the Rowset property group, or
returns a list of rowset properties that currently are
requested for a rowset.

ICommandText Sets or returns the text command of a command
object.

Interface Description

Interfaces Supported by UniOLEDB (Continued)
 5-7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
ICommandWithParameters Encapsulates the parameters of a command, or sets
and obtains information about the parameters and
their native data types.

IConvertType Exposes information about the types of data
conversions a command supports.

ISupportErrorInfo Indicates whether a specific OLE DB interface that
is exposed by a command object supports OLE DB
error objects.

Interfaces for rowset objects:

IAccessor Provides methods for managing accessors on a
rowset, including methods for adding a reference
count to an existing accessor, creating an accessor
from a set of bindings, and releasing an accessor.

IColumnsInfo Exposes certain information about rowset columns,
such as column metadata and ordinals of columns.

IConvertType Exposes information about the types of data
conversions a rowset supports.

IRowset Provides methods for managing rowsets, including
methods for adding a reference count to an existing
row handle, fetching rows sequentially, getting the
data from those rows, and releasing rows.

IRowsetChange Provides methods for managing rowsets, including
methods for updating values of columns in existing
rows, deleting existing rows, and inserting new
rows. UniOLEDB supports this interface through
the Microsoft Cursor Engine service component.

IRowsetFind Finds a row in a rowset that matches the criteria a
consumer specifies. UniOLEDB supports this
interface through the Microsoft Cursor Engine
service component.

IRowsetIdentity Indicates the identity of a row instance, and tests by
comparison whether two row handles refer to the
same row instance.

Interface Description

Interfaces Supported by UniOLEDB (Continued)
 5-8 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
IRowsetInfo Returns information about the properties a rowset
supports (including their current settings) or obtains
an interface pointer to the command session that
created the rowset.

IRowsetLocate Fetches arbitrary rows of a rowset. Methods also
enable a consumer to compare bookmarks and
retrieve hash values for bookmarks the consumer
specifies. UniOLEDB supports this interface
through the Microsoft Cursor Engine service
component.

IRowsetScroll Locates the approximate position of a row in a
rowset, or fetches rows starting from a fractional
position in a rowset. UniOLEDB supports this
interface through the Microsoft Cursor Engine
service component.

IRowsetUpdate Indicates that the rowset is in delayed update mode.
If a rowset exposes IRowsetUpdate, it is in delayed
update mode. The methods in IRowsetChange do
not transmit changes to the data source immedi-
ately, and the changes are pending until the
consumer calls IRowsetUpdate::Update. If a rowset
does not expose IRowsetUpdate, it is in immediate
update mode. UniOLEDB supports this interface
through the Microsoft Cursor Engine service
component.

ISupportErrorInfo Indicates whether a specific OLE DB interface that
is exposed by a rowset object supports OLE DB
error objects.

Interfaces for error objects:

IErrorLookup Provides methods for retrieving error information
based on the return code and the error number
UniOLEDB specifies. Information can include
error message text and source, the path of the Help
file, and the context ID of the topic that explains the
error.

Interface Description

Interfaces Supported by UniOLEDB (Continued)
 5-9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
UniOLEDB Properties
UniOLEDB defines properties for the following OLE DB property groups:

Data Source Information (DBPROPSET_DATASOURCEINFO)
Initialization (DBPROPSET_DBINIT)
Rowset (DBPROPSET_ROWSET)
Session (DBPROPSET_SESSION)

The tables in this section describe each property UniOLEDB supports. Each
description includes a general OLE DB description of the property and information
about how UniOLEDB defines it. For more detailed descriptions of the properties
and how a provider can use them, see the Microsoft OLE DB 2.0 Programmer’s
Reference and Software Development Kit manual.

UniOLEDB does not support any properties other than those described in the
following tables.
 5-10 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta

r

Data Source Information
The following table describes the properties UniOLEDB supports in the Data Source
Information property group.

Property
Variant
Type Description

DBPROP_ACTIVESESSIONS VT_I4 General: The Active Sessions
property indicates the maximum
number of sessions that can exist
concurrently.
UniOLEDB: The property is set
to zero (0), which means that the
number of sessions that can exist
concurrently are limited by serve
licensing.
R/W: Read only.

DBPROP_ASYNCTXNABORT VT_BOOL General: The Asynchable Abort
property indicates whether a
consumer can terminate transac-
tions asynchronously.
UniOLEDB: The property is set
to VARIANT_ FALSE.
R/W: Read only.

DBPROP_ASYNCTXNCOMMIT VT_BOOL General: The Asynchable
Commit property indicates
whether a consumer can commit
transactions asynchronously.
UniOLEDB: The property is set
to VARIANT_FALSE.
R/W: Read only.

Data Source Information Properties
 5-11

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta

.

DBPROP_BYREFACCESSORS VT_BOOL General: The Pass By Ref
Accessors property indicates
whether the provider supports
reference accessors for rows and
parameters. The provider creates
them from a set of bindings if the
DBACCESSOR_PASSBYREF
flag is set in
IAccessor::CreateAccessor.
UniOLEDB: The property is set
to VARIANT_FALSE.
R/W: Read only.

DBPROP_COLUMNDEFINITION VT_I4 General: The Column Definition
property indicates the valid
clauses for the column definition
UniOLEDB: The property is set
to
DBPROPVAL_CD_NOTNULL,
which means that UniOLEDB can
create columns that are not NULL
valued.
R/W: Read only.

DBPROP_CONCATNULLBEHAVIOR VT_I4 General: The NULL Concate-
nation Behavior property
indicates how the data source
handles concatenating character
data type columns that are NULL
valued with those that are not
NULL valued.
UniOLEDB: The property is set
to DBPROPVAL_CB_NULL,
which means that the result is
NULL valued.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-12 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta

r

DBPROP_DATASOURCENAME VT_BSTR General: The Data Source Name
property indicates the name of the
data source, which the provider
uses during the connection
process.
UniOLEDB: The property is set
to the name of the data source.
B/W: Read only.

DBPROP_DATASOURCEREADONLY VT_BOOL General: The Read-Only Data
Source property indicates whethe
the data source is read-only.
UniOLEDB: The property is set
to VARIANT_FALSE, which
means that the UniData or
UniVerse database is updatable.
R/W: Read only.

DBPROP_DBMSNAME VT_BSTR General: The DBMS Name
property indicates the name of the
data management product the
provider has accessed.
UniOLEDB: For UniData, the
property returns “UniData.” For
UniVerse, the property returns
“UniVerse.”
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-13

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta

t

DBPROP_DBMSVER VT_BSTR General: The DBMS Version
property indicates the version of
the data management product the
provider has accessed.
UniOLEDB: The property
returns the version in the form
##.##.#### in which the first two
digits are the major version, the
second two digits are the minor
version, and the remaining four
digits are the release version.
For example, the value returned
for UniData release 5.2 would be
“05.02.0000”. The value returned
for UniVerse release 9.6 would be
“09.06.0000”.
R/W: Read only.

DBPROP_DSOTHREADMODEL VT_I4 General: The Data Source Objec
Threading Model property
indicates the threading model the
provider supports for the data
source object.
UniOLEDB: The property is set
to
DBPROPVAL_RT_FREETHRE
ADwhich means that the data
source object supports the free-
threading model.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-14 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta

t

.

DBPROP_GROUPBY VT_I4 General: The GROUP BY
Support property indicates how
columns in a GROUP BY clause
relate to the nonaggregated
columns in the select list.
UniOLEDB: For UniData, the
property is set to
DBPROPVAL_GB_EQUALS_
SELECT, which means that the
GROUP BY clause must include
all the nonaggregated columns
that are in the select list. It canno
include any other columns.
For UniVerse, the property is set
to
DBPROPVAL_GB_CONTAINS
_ SELECT, which means that the
GROUP BY clause must include
all the nonaggregated columns
that are in the select list. It can
include columns that are not in the
select list.
R/W: Read only.

DBPROP_IDENTIFIERCASE VT_I4 General: The Identifier Case
Sensitivity property indicates how
SQL identifiers handle case types
(uppercase, lowercase, and mixed
case characters).
UniOLEDB: The property is set
to
DBPROPVAL_IC_SENSITIVE,
which means that SQL identifiers
are case sensitive and are stored in
the system catalog in mixed case
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-15

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta

DBPROP_MAXINDEXSIZE VT_I4 General: The Maximum Index
Size property indicates the
maximum number of bytes the
provider allows in the combined
columns of an index.
UniOLEDB: For UniData, the
property is set to zero (0) because
no specific limit exists. For
UniVerse, it is set to 254.
R/W: Read only.

DBPROP_MAXROWSIZE VT_I4 General: The Maximum Row
Size property indicates the
maximum length of a single table
row.
UniOLEDB: The property is set
to zero (0) because no specific
limit exists.
R/W: Read only.

DBPROP_
MAXROWSIZEINCLUDESBLOB

VT_BOOL General: The Maximum Row
Size Includes BLOB property
indicates whether the maximum
row size the DBPROP_
MAXROWSIZE property returns
includes the length of all BLOB
data.
UniOLEDB: The property is set
to VARIANT_FALSE.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-16 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta

,

r

s

s

t
DBPROP_MAXTABLESINSELECT VT_I4 General: The Maximum Tables
In SELECT property indicates the
maximum number of tables the
provider allows in the FROM
clause of a SELECT statement.
UniOLEDB: For UniData, the
property is set to 7. For UniVerse
it is set to zero (0) because no
specific limit exists.
R/W: Read only.

DBPROP_MULTIPLEPARAMSETS VT_BOOL General: The Multiple Paramete
Sets property indicates whether
the provider supports multiple
parameter sets.
UniOLEDB: The property is set
to VARIANT_FALSE.
R/W: Read only.

DBPROP_MULTIPLERESULTS VT_I4 General: The Multiple Results
property indicates whether the
provider supports multiple result
objects, which are used to retrieve
multiple results. It also indicates
the restrictions the provider place
on them.
UniOLEDB: The property is set
to DBPROPVAL_MR_
NOTSUPPORTED, which means
that UniOLEDB does not suppor
them.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-17

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta

e

DBPROP_MULTITABLEUPDATE VT_BOOL General: The Multi-Table Updat
property indicates whether the
provider can update rowsets
obtained from multiple tables.
UniOLEDB: The property is set
to VARIANT_FALSE.
R/W: Read only.

DBPROP_NULLCOLLATION VT_I4 General: The NULL Collation
Order property indicates the
position in a list at which the
NULLs are sorted.
UniOLEDB: For UniData, the
property is set to
DBPROPVAL_NC_LOW, which
means that NULLs are sorted in
the lower portion of the list. For
UniVerse, it is set to
DBPROPVAL_NC_HIGH, which
means that NULLs are sorted in
the higher portion of the list.
R/W: Read only.

DBPROP_
ORDERBYCOLUMNSINSELECT

VT_BOOL General: The ORDER BY
Columns in Select List property
indicates whether the consumer
must include the columns in an
ORDER BY clause in the select
list.
UniOLEDB: The property is set
to VARIANT_FALSE.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-18 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta

DBPROP_
OUTPUTPARAMETERAVAILABILITY

VT_I4 General: The Output Parameter
Availability property indicates the
time at which output parameter
data becomes available to the
consumer.
UniOLEDB: The property is set
to DBPROPVAL_OA_
ATEXECUTE, which means that
output parameter data is available
immediately after
ICommand::Execute returns.
R/W: Read only.

DBPROP_PREPAREABORTBEHAVIOR VT_I4 General: The Prepare Abort
Behavior property indicates how
terminating a transaction affects
prepared commands.
UniOLEDB: The property is set
to DBPROPVAL_CB_
PRESERVE, which means that
terminating a transaction
preserves prepared commands.
The consumer does not need to
prepare the commands again to
run them again.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-19

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta

,

s

DBPROP_
PREPARECOMMITBEHAVIOR

VT_I4 General: The Prepare Commit
Behavior property indicates how
committing a transaction affects
prepared commands.
UniOLEDB: The property is set
to
DBPROPVAL_CB_PRESERVE
which means that committing a
transaction preserves prepared
commands. The consumer does
not need to prepare the command
again to run them again.
R/W: Read only.

DBPROP_PROCEDURETERM VT_BSTR General: The Procedure Term
property indicates the name the
data source vendor uses for the
term “procedure”. Application
development tools use this term to
build user interfaces.
UniOLEDB: The property is set
to “Procedure”.
R/W: Read only.

DBPROP_PROVIDERNAME VT_BSTR General: The Provider Name
property indicates the full file
name of the provider.
UniOLEDB: The property is set
to UNIOLEDB.DLL.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-20 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta

l

DBPROP_PROVIDEROLEDBVER VT_BSTR General: The OLE DB Version
property indicates the version of
OLE DB the provider supports.
UniOLEDB: The property
returns the version in the form
##.## in which the first two digits
are the major version and the fina
two digits are the minor version.
For example, UniOLEDB
supports OLE DB release 2.1, so
the value returned would be
“02.01”.
R/W: Read only.

DBPROP_PROVIDERVER VT_BSTR General: The Provider Version
property indicates the version of
the provider.
UniOLEDB: The property
returns the version in the form
##.##.#### in which the first two
digits are the major version, the
second two digits are the minor
version, and the remaining four
digits are the release version. For
example, the value returned for
UniOLEDB release 1.0 could be
“01.00.0000”.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-21

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta

,

s

DBPROP_QUOTEDIDENTIFIERCASE VT_I4 General: The Quoted Identifier
Sensitivity property indicates how
SQL quoted identifiers handle
case types (uppercase, lowercase
and mixed case characters).
UniOLEDB: The property is set
to DBPROPVAL_IC_
SENSITIVE, which means that
SQL quoted identifiers are case
sensitive.
R/W: Read only.

DBPROP_
ROWSETCONVERSIONSONCOMMAND

VT_BOOL General: The Rowset
Conversions On Command
property indicates whether a
consumer that calls
IConvertType:: CanConvert can
inquire on a command about
conversions supported on rowset
the command creates.
UniOLEDB: The property is set
to VARIANT_TRUE.
R/W: Read only.

DBPROP_SCHEMATERM VT_BSTR General: The Schema Term
property indicates the name the
data source vendor uses for the
term “schema”. Application
development tools use this term to
build user interfaces.
UniOLEDB: The property is set
to “Schema”.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-22 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta

t

t

.

DBPROP_SCHEMAUSAGE VT_I4 General: The Schema Usage
property indicates the types of tex
commands that will support
schema names.
UniOLEDB: For UniData, the
property is set to zero (0) because
UniData does not support schema
names in text commands. For
UniVerse, it is set to
DBPROPVAL_SU_DML_
STATEMENTS, which means tha
schema names are supported in
DML statements only.
R/W: Read only.

DBPROP_SORTONINDEX VT_BOOL General: The Sort On Index
property indicates whether the
provider supports SetSortOrder.
UniOLEDB: The property is set
to VARIANT_FALSE.
R/W: Read only.

DBPROP_SQLSUPPORT VT_I4 General: The SQL Support
property indicates the level at
which the provider supports SQL
UniOLEDB: The property is set
to DBPROPVAL_SQL_
ANSI92_ENTRY.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-23

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta

s
t

.
DBPROP_SUBQUERIES VT_I4 General: The Subquery Support
property indicates the predicates
in text commands that support
subqueries.
UniOLEDB: The property is set
to include all of the following
DBPROPVAL_SQ_ values:
COMPARISON
EXISTS
IN
QUANTIFIED
CORRELATEDSUBQUERIES
CORRELATEDSUBQUERIES
indicates that all predicates that
support subqueries also support
correlated subqueries.
R/W: Read only.

DBPROP_SUPPORTEDTXNDDL VT_I4 General: The Transaction DDL
property indicates whether the
provider supports DDL statement
in transactions and to what exten
it supports them.
UniOLEDB: The property is set
to DBPROPVAL_TC_DML,
which means that transactions can
contain Data Manipulation
Language (DML) statements only
Transactions that contain DDL
statements cause errors.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-24 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta

s

DBPROP_SUPPORTEDTXNISOLEVELS VT_I4 General: The Isolation Levels
property indicates the transaction
isolation levels the provider
supports.
UniOLEDB: The property is set
to include all of the following
DBPROPVAL_TI_ values:
READUNCOMMITTED
BROWSE
CURSORSTABILITY
READCOMMITTED
REPEATABLEREAD
SERIALIZABLE
ISOLATED
R/W: Read only.

DBPROP_SUPPORTEDTXNISORETAIN VT_I4 General: The Isolation Retention
property indicates the transaction
isolation retention levels the
provider supports.
UniOLEDB: The property is set
to DBPROPVAL_TR_
DONTCARE, which means that
the transaction can preserve or
dispose of isolation context acros
a retaining commit or abort.
R/W: Read only.

DBPROP_TABLETERM VT_BSTR General: The Table Term
property indicates the name the
data source vendor uses for the
term “table”. Application devel-
opment tools use this term to build
user interfaces.
UniOLEDB: The property is set
to “Table”.
R/W: Read only.

Property
Variant
Type Description

Data Source Information Properties (Continued)
 5-25

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
Initialization
The following table describes the properties UniOLEDB supports in the Initialization
property group (including authentication and initialization properties).
 5-26 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Property
Variant
Type Description

DBPROP_AUTH_CACHE_AUT
HINFO

VT_BOOL General: The Cache Authentication
authentication property indicates
whether the data source object can
cache sensitive authentication infor-
mation, such as a password.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

DBPROP_AUTH_ENCRYPT_PA
SSWORD

VT_BOOL General: The Encrypt Password
authentication property indicates
whether the consumer requires the
provider to send the password to the
data source object in an encrypted form.
This property specifies a stronger form
of masking than
DBPROP_AUTH_MASK_
PASSWORD specifies.
UniOLEDB: The property is set to
VARIANT_FALSE because
UniOLEDB does not support sending
passwords in an encrypted form.
R/W: Read only.

DBPROP_AUTH_INTEGRATED VT_BSTR General: The Integrated Security
authentication property indicates the
name of the authentication service the
server uses. This service identifies the
users who use identities an authenti-
cation domain provides.
UniOLEDB: The property is set to an
empty string, which means that the
server should use its own authentication
process.
R/W: Read only.

Initialization Properties
 5-27

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_AUTH_MASK_PASS
WORD

VT_BOOL General: The Mask Password authenti-
cation property indicates whether the
consumer requires the provider to send
the password to the data source object
in a masked form.
UniOLEDB: The property is set to
VARIANT_FALSE because
UniOLEDB does not support sending
passwords in a masked form.
R/W: Read only.

DBPROP_AUTH_PASSWORD VT_BSTR General: The Password authentication
property indicates the password the
provider should use when it connects to
the data source.
UniOLEDB: The password must be set
by using IDBProperties::SetProperties
before calling IDBInitialize::Initialize.
R/W: Read/write.

DBPROP_AUTH_PERSIST_ENC
RYPTED

VT_BOOL General: The Persist Encrypted
authentication property indicates
whether the consumer requires the data
source object to persist sensitive
authentication information, such as a
password, in an encrypted form.
UniOLEDB: the property is set to
VARIANT_FALSE because
UniOLEDB does not support persisting
sensitive authentication information in
an encrypted form.
R/W: Read only.

Property
Variant
Type Description

Initialization Properties (Continued)
 5-28 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_AUTH_PERSIST_SEN
SITIVE_ AUTHINFO

VT_BOOL General: The Persist Security Info
authentication property indicates
whether the data source object can
persist sensitive authentication infor-
mation, such as a password, with other
authentication information.
UniOLEDB: The property is set to
VARIANT_FALSE, which means that
the data source object will not persist
sensitive authentication information.
R/W: Read only.

DBPROP_AUTH_USERID VT_BSTR General: The User ID authentication
property indicates the user ID the
provider should use to connect to the
data source.
UniOLEDB: The user ID must be set
by using IDBProperties::SetProperties
before calling IDBInitialize::Initialize.
R/W: Read/write.

DBPROP_INIT_ASYNCH VT_I4 General: The Asynchronous
Processing initialization property
indicates the type of asynchronous
processing that is performed on the data
source.
UniOLEDB: The property is not set,
which means that
IDBInitialize::Initialize does not return
initialization information until the data
source is initialized completely.
R/W: Read only.

Property
Variant
Type Description

Initialization Properties (Continued)
 5-29

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_INIT_DATASOURCE VT_BSTR General: The Data Source initial-
ization property indicates the name of
the data source to which to connect.
UniOLEDB: The data source name
must be set by using IDBProperties::
SetProperties before calling
IDBInitialize::Initialize. The data
source name must be the name of a UCI
data source in the UCI configuration
file (uci.config).
R/W: Read/write.

DBPROP_INIT_HWND VT_I4 General: The Window Handle initial-
ization property indicates the window
handle to use if the data source object
needs to prompt for additional
information.
UniOLEDB: The window handle must
be set by using IDBProperties::
SetProperties before calling
IDBInitialize::Initialize.
R/W: Read/write.

DBPROP_INIT_IMPERSONATI
ON_ LEVEL

VT_I4 General: The Impersonation Level
initialization property indicates the
level of impersonation the server can
use to impersonate the client.
UniOLEDB: The property is set to zero
(0) because UniOLEDB does not
support impersonation levels.
R/W: Read only.

Property
Variant
Type Description

Initialization Properties (Continued)
 5-30 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_INIT_LCID VT_I4 General: The Locale Identifier initial-
ization property indicates the preferred
locale ID (LCID) for the consumer.
UniOLEDB: The property is set to
MAKELANGID(LANG_ENGLISH,
SUBLANG_ENGLISH_US), which
means that the US English locale is
preferred.
R/W: Read only.

DBPROP_INIT_LOCATION VT_BSTR General: The Location initialization
property indicates the location of the
data source to which to connect. The
location is the name of the account. If
specified, the account name overrides
the one that appears in the UCI config-
uration file (uci.config).
UniOLEDB: The location must be set
by using IDBProperties::SetProperties
before calling IDBInitialize::Initialize.
R/W: Read/write.

DBPROP_INIT_MODE VT_I4 General: The Mode initialization
property indicates access permissions.
UniOLEDB: The mode must be set by
using IDBProperties::SetProperties
before calling IDBInitialize::Initialize.
R/W: Read/write.

Property
Variant
Type Description

Initialization Properties (Continued)
 5-31

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_INIT_PROMPT VT_I2 General: The Prompt initialization
property indicates whether to prompt
the user during initialization and under
what conditions.
UniOLEDB: By default, the property is
set to DBPROMPT_NOPROMPT,
which means that the user should not be
prompted. It can be reset to any of the
following DBPROMPT_ values:
PROMPT
COMPLETE
COMPLETEREQUIRED
R/W: Read/write.

Property
Variant
Type Description

Initialization Properties (Continued)
 5-32 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_INIT_PROTECTION_
LEVEL

VT_I4 General: The Protection Level initial-
ization property indicates the level of
data protection as the data moves from
the client to the server.
UniOLEDB: The property is set to
DB_PROT_LEVEL_NONE, which
means that no data authentication
occurs.
R/W: Read only.

DBPROP_INIT_PROVIDERSTRI
NG

VT_BSTR General: The Extended Properties
initialization property indicates
extended connection information that is
specific to the provider.
UniOLEDB: The property is set to an
empty string, which means that
UniOLEDB does not have connection
information it needs to specify.
R/W: Read only.

DBPROP_INIT_TIMEOUT VT_I4 General: The Connect Timeout initial-
ization property indicates the amount of
time, in seconds, to wait before initial-
ization times out.
UniOLEDB: Beginning at UniVerse
10.2, the UniOLEDB provider supports
the connection timeout property.
R/W: Read/write.

Property
Variant
Type Description

Initialization Properties (Continued)
 5-33

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
Rowset
The following table describes the properties UniOLEDB supports in the Rowset
property group.

Property Variant Type Description

DBPROP_
ABORTPRESERVE

VT_BOOL General: The Preserve On Abort
property indicates whether the rowset
remains active after an abort that
preserves occurs for a transaction.
UniOLEDB: The property is set to
VARIANT_FALSE, which means that
the only operations allowed on a rowset
if an abort or an abort that preserves
occurs are:
Releasing row and accessor handles.
Releasing the rowset.
R/W: Read only.

DBPROP_APPENDON
LY

VT_BOOL General: The Append-Only Rowset
property indicates whether a rowset
that is opened will be empty initially
and, therefore, will be populated only
by the rows that are inserted in it.
UniOLEDB: The property is set to
VARIANT_FALSE, which means that
UniOLEDB does not support opening
an append-only rowset.
R/W: Read only.

Rowset Properties
 5-34 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Property
Variant
Type Description

DBPROP_
BLOCKINGSTORAGEOBJECTS

VT_BOOL General: The Blocking Storage
Objects property indicates whether
storage objects could prevent using
other methods on the rowset.
UniOLEDB: The property is set to
VARIANT_TRUE. After
UniOLEDB creates a storage object,
but before it releases the object,
methods other than those used on the
storage object could return
E_UNEXPECTED.
R/W: Read only.

DBPROP_BOOKMARKS VT_BOOL General: The Use Bookmarks
property indicates whether the
rowset supports bookmarks.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to
VARIANT_FALSE. It can be set to
VARIANT_ TRUE. The property
will be set automatically to
VARIANT_TRUE if the consumer
sets any of the following DBPROP_
values to VARIANT_TRUE:
IROWSETLOCATE
LITERALBOOKMARKS
ORDEREDBOOKMARKS
When the property is set to
VARIANT_ TRUE, column zero (0)
is the bookmark for the rows.
Getting this column obtains a
bookmark value that can be used to
reposition to the row.
R/W: Read/write.

Rowset Properties
 5-35

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_BOOKMARKSKIPPED VT_BOOL General: The Skip Deleted
Bookmarks property indicates
whether the rowset allows IRowset-
Locate::GetRowsAt,
IRowsetScroll::Approximate-
Position, or IRowsetFind::FindN-
extRow to continue if any of the
following conditions are true:
A bookmark row was deleted.
It is a row to which the consumer
does not have access privileges.
It is no longer a member of the
rowset.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: The property is set to
VARIANT_FALSE, which means
the IRowsetLocate::GetRowsAt,
IRowsetScroll::Approximate-
Position, or IRowsetFind::FindN-
extRow interface returns
DB_E_BADBOOKMARK if any of
the above conditions are true.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-36 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_BOOKMARKTYPE VT_I4 General: The Bookmark Type
property indicates the type of
bookmark (numeric or key value)
the rowset supports.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: The property is set to
DBPROPVAL_BMK_NUMERIC,
which means the rowset supports the
numeric bookmark type. Numeric
bookmarks are not based on the
values of a row’s columns, but on a
row property, such as the absolute
position of a row in a rowset or a row
ID that the storage assigned to a
tuple when it was created.
R/W: Read only.

DBPROP_CACHEDEFERRED VT_BOOL General: The Cache Deferred
Columns property indicates whether
the provider caches the values of
deferred columns.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

DBPROP_
CANFETCHBACKWARDS

VT_BOOL General: The Fetch Backwards
property indicates whether the
rowset can fetch backward from the
specified row.
UniOLEDB: The property is set to
VARIANT_FALSE. The cRows
parameter in IRowset::GetNex-
tRows,
IRowsetLocate::GetRowsAt, and
IRowsetScroll::GetRowsAtRatio
cannot be a negative value.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-37

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_CANHOLDROWS VT_BOOL General: The Hold Rows property
indicates whether the rowset allows
the consumer to fetch additional
rows, or change the next fetch
position, while holding previously
fetched rows with pending changes.
UniOLEDB: The property is set to
VARIANT_FALSE, which means
the rowset requires pending changes
to be transmitted to the data source
and all rows to be released before
fetching additional rows, inserting
new rows, or changing the next fetch
position.
R/W: Read only.

DBPROP_
CANSCROLLBACKWARDS

VT_BOOL General: The Can Scroll Backward
property indicates whether the
provider supports backward
scrolling for rowsets.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to
VARIANT_FALSE. It can be set to
VARIANT_TRUE. The property
will be set automatically to
VARIANT_TRUE if
DBPROP_IROWSETLOCATE is
set to VARIANT_TRUE.
R/W: Read/write.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-38 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_
CHANGEINSERTEDROWS

VT_BOOL General: The Change Inserted
Rows property indicates whether the
consumer can set data values in row
columns (IRowsetChange::SetData)
or delete rows in newly inserted
rows (IRowsetChange::
DeleteRows). A newly inserted row
is one for which an insertion has
been transmitted to the data source
(not a pending insert row).
UniOLEDB: The property is set to
VARIANT_TRUE.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
R/W: Read only.

DBPROP_COLUMNRESTRICT VT_BOOL General: The Column Privileges
property indicates whether the
provider restricts access to specific
columns.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

DBPROP_COMMANDTIMEOUT VT_I4 General: The Command Time Out
property indicates the amount of
time in seconds to wait before a
command times out.
UniOLEDB: Beginning at
UniVerse 10.2, UniOLEDB
supports the command timeout
property.
R/W: Read/write.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-39

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_COMMITPRESERVE VT_BOOL General: The Preserve On Commit
property indicates whether the
rowset remains active after a
commit that preserves occurs.
UniOLEDB: The property is set to
VARIANT_FALSE, which means
that the only operations UniOLEDB
allows on a rowset after a commit or
commit that preserves occurs are:
Releasing row and accessor handles.
Releasing the rowset.
R/W: Read only.

DBPROP_DEFERRED VT_BOOL General: The Defer Column
property indicates whether the
column data is fetched only when an
accessor is used on the column.
UniOLEDB: The property is set to
VARIANT_FALSE, which means
the column data is fetched when the
row that contains it is fetched.
R/W: Read only.

DBPROP_
DELAYSTORAGEOBJECTS

VT_BOOL General: The Delay Storage Object
Updates property indicates whether
the storage objects also will be used
in delayed update mode when the
rowset is in delayed update mode.
UniOLEDB: The property is set to
VARIANT_FALSE because
UniOLEDB does not support
storage objects.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-40 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_IACCESSOR VT_BOOL General: The IAccessor property
indicates whether the rowset
supports the IAccessor interface.
UniOLEDB: The property is set to
VARIANT_TRUE.
R/W: Read only.

DBPROP_ICOLUMNSINFO VT_BOOL General: The IColumnsInfo
property indicates whether the
rowset supports the IColumnsInfo
interface.
UniOLEDB: The property is set to
VARIANT_TRUE.
R/W: Read only.

DBPROP_ICONVERTTYPE VT_BOOL General: The IConvertType
property indicates whether the
rowset supports the IConvertType
interface.
UniOLEDB: The property is set to
VARIANT_TRUE.
R/W: Read only.

DBPROP_IMMOBILEROWS VT_BOOL General: The Immobile Rows
property indicates whether the
rowset will not reorder inserted or
updated rows.
UniOLEDB: The property is set to
VARIANT_TRUE. For
IRowsetChange:: InsertRow,
inserted or updated rows will be
positioned at the end of the rowset.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-41

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_IROWSET VT_BOOL General: The IRowset property
indicates whether the rowset
supports the IRowset interface.
UniOLEDB: The property is set to
VARIANT_TRUE.
R/W: Read only.

DBPROP_IROWSETCHANGE VT_BOOL General: The IRowsetChange
property indicates whether the
rowset supports the IRowsetChange
interface.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to
VARIANT_FALSE. It can be set to
VARIANT_TRUE.
R/W: Read/write.

DBPROP_IROWSETFIND VT_BOOL General: The IRowsetFind property
indicates whether the rowset
supports the IRowsetFind interface.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to
VARIANT_FALSE. It can be set to
VARIANT_TRUE.
R/W: Read/write.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-42 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_IROWSETIDENTITY VT_BOOL General: The IRowsetIdentity
property indicates whether the
rowset supports the IRowsetIdentity
interface.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to
VARIANT_FALSE. It can be set to
VARIANT_TRUE.
R/W: Read/write.

DBPROP_IROWSETINFO VT_BOOL General: The IRowsetInfo property
indicates whether the rowset
supports the IRowsetInfo interface.
UniOLEDB: The property is set to
VARIANT_TRUE.
R/W: Read only.

DBPROP_IROWSETLOCATE VT_BOOL General: The IRowsetLocate
property indicates whether the
rowset supports the IRowsetLocate
interface.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to
VARIANT_FALSE. It can be set to
VARIANT_TRUE.
R/W: Read/write.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-43

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_IROWSETSCROLL VT_BOOL General: The IRowsetScroll
property indicates whether the
rowset supports the IRowsetScroll
interface.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to
VARIANT_FALSE. It can be set to
VARIANT_TRUE.
R/W: Read/write.

DBPROP_IROWSETUPDATE VT_BOOL General: The IRowsetUpdate
property indicates whether the
rowset supports the IRowsetUpdate
interface.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to
VARIANT_FALSE. It can be set to
VARIANT_TRUE.
R/W: Read/write.

DBPROP_ISUPPORTERRORINFO VT_BOOL General: The ISupportErrorInfo
property indicates whether the
rowset supports the ISupportEr-
rorInfo interface.
UniOLEDB: By default, the
property is set to VARIANT_TRUE.
It can be set to VARIANT_FALSE.
R/W: Read/write.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-44 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_LITERALBOOKMARKS VT_BOOL General: The Literal Bookmarks
property indicates whether
bookmarks can be compared
literally (compared as a sequence of
bytes).
UniOLEDB: The property is set to
VARIANT_FALSE, which means
that bookmarks can be compared
only by using
IRowsetLocate::Compare.
R/W: Read only.

DBPROP_LITERALIDENTITY VT_BOOL General: The Literal Row Identity
property indicates whether the
consumer can compare two row
handles by using a binary
comparison to determine whether
they point to the same row.
UniOLEDB: The property is set to
VARIANT_TRUE.
R/W: Read only.

DBPROP_MAXOPENROWS VT_I4 General: The Maximum Open
Rows property indicates the
maximum number of rows that can
be active concurrently.
UniOLEDB: The property is set to
zero (0), which means that no limit
exists for the number of rows that
can be active concurrently.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-45

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_MAXPENDINGROWS VT_I4 General: The Maximum Pending
Rows property indicates the
maximum number of rows that can
have pending changes concurrently.
UniOLEDB: The property is set to
zero (0) because UniOLEDB does
not support pending changes.
R/W: Read only.

DBPROP_MAXROWS VT_I4 General: The Maximum Rows
property indicates the maximum
number of rows that can be returned
in a rowset.
UniOLEDB: The property is set to
zero (0), which means that no limit
exists on the number of rows that
can be returned in a rowset.
R/W: Read only.

DBPROP_MEMORYUSAGE VT_I4 General: The Memory Usage
property estimates the amount of
memory the rowset can use.
UniOLEDB: The property is set to
zero (0), which means that there are
no specific limits on memory for a
rowset to use.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-46 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_
ORDEREDBOOKMARKS

VT_BOOL General: The Bookmarks Ordered
property indicates whether the
provider can compare bookmarks to
determine the relative position of
their associated rows in the rowset.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: The property is set to
VARIANT_FALSE, which means
that UniOLEDB can compare
bookmarks for equality only. The
value of the
DBPROP_LITERALBOOKMARK
S property determines whether
UniOLEDB can compare
bookmarks byte-by-byte or must
compare them by using
IRowsetLocate::Compare.
R/W: Read only.

DBPROP_OTHERINSERT VT_BOOL General: The Others’ Inserts
Visible property indicates whether
the rowset can see rows inserted by
a consumer other than the consumer
of the rowset.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-47

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_
OTHERUPDATEDELETE

VT_BOOL General: The Others’ Changes
Visible property indicates whether
the rowset can see updates or
deletions made by a consumer other
than the consumer of the rowset.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

DBPROP_OWNINSERT VT_BOOL General: The Own Inserts Visible
property indicates whether a rowset
can see its own inserts. This means
that if a consumer of a rowset inserts
a row, any consumer of the rowset
can see the inserted row the next
time it fetches a set of rows that
contain it.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-48 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_OWNUPDATEDELETE VT_BOOL General: The Own Changes Visible
property indicates whether the
rowset can see its own updates or
deletions. This means that if a
consumer of the rowset updates or
deletes a row, any consumer of the
rowset can see the update or deletion
the next time it fetches that row.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

DBPROP_QUICKRESTART VT_BOOL General: The Quick Restart
property indicates whether the
provider is able to quickly restart the
next fetch position (which means
IRowset::RestartPosition executes
relatively quickly) and does not
require the rowset to be created
again.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

DBPROP_
RETURNPENDINGINSERTS

VT_BOOL General: The Return Pending
Inserts property indicates whether
methods that fetch rows can return
pending insert rows.
UniOLEDB: The property is set to
VARIANT_FALSE.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-49

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_ROWRESTRICT VT_BOOL General: The Row Privileges
property indicates whether the
provider restricts access to specific
rows of a rowset.
UniOLEDB: The property is set to
VARIANT_FALSE, which means
UniOLEDB allows a consumer to
set data values for any row.
R/W: Read only.

DBPROP_ROWTHREADMODEL VT_I4 General: The Row Threading
Model property indicates the
threading model of the rowsets the
command creates.
UniOLEDB: The property is set to
DBPROPVAL_RT_FREETHREA
D, which means the rowsets support
the free-threading model.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-50 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
DBPROP_SERVERCURSOR VT_BOOL General: The Server Cursor
property indicates where the cursor
materializes.
UniOLEDB: The property is set to
VARIANT_TRUE, which means
UniOLEDB always uses server
cursors.
R/W: Read only.

DBPROP_STRONGIDENTITY VT_BOOL General: The Strong Row Identity
property indicates whether the
handles of newly inserted rows can
by compared successfully as
DBPROP_ LITERALIDENTITY
specifies. A newly inserted row is
one for which an insertion has been
transmitted to the data source (not a
pending insert row).
UniOLEDB: The property is set to
VARIANT_FALSE. The IRowsetI-
dentity::IsSameRow interface could
return DB_E_NEWLYINSERTED.
R/W: Read only.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-51

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
DBPROP_UPDATABILITY VT_I4 General: The Updatability property
indicates the methods the provider
supports on the IRowsetChange
interface.
UniOLEDB supports this property
only if it is used with the Microsoft
Cursor Engine service component.
UniOLEDB: By default, the
property is set to zero (0) if
DBPROP_ IRowsetChange is set to
VARIANT_ FALSE. If
DBPROP_IRowsetChange is set to
VARIANT_TRUE, this property is
set to
DBPROPVAL_UP_CHANGE,
which means that UniOLEDB
supports IRowsetChange::SetData.
R/W: Read/write.

Property
Variant
Type Description

Rowset Properties (Continued)
 5-52 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Session
The following table describes the properties UniOLEDB supports in the Session
property group.

Property
Variant
Type Description

DBPROP_SESS_
AUTOCOMMITISOLEVELS

VT_I4 General: The Autocommit Isolation Levels
session property indicates the transaction
isolation level the provider supports while in
auto-commit mode.
n UniOLEDB: By default, the property is set

to include both of the following
DBPROPVAL_TI_ values:

n READCOMMITTED

n CURSORSTABILITY

It can be set to any combination of the
following DBPROPVAL_TI_ values:
n READUNCOMMITTED

n BROWSE

n CURSORSTABILITY

n READCOMMITTED

n REPEATABLEREAD

n SERIALIZABLE

n ISOLATED

R/W: Read/write.

Session Properties
 5-53

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
Data Type Support
UniOLEDB represents UniData and UniVerse SQL data by using specific OLE DB
data types in rowsets and parameters. This section indicates the data types and
conversions UniOLEDB supports.

Supported Data Types
The following table shows the OLE DB data types UniOLEDB supports, and it
shows how they map to native UniData and UniVerse SQL data types. A dash (–)
indicates that a native UniData or UniVerse SQL data type does not exist for the
OLE DB data type. For UniData, the conversion code used for converting to the SQL
data type is shown in parentheses.

The supported OLE DB data types, along with their characteristics, are identified in
the PROVIDER_TYPES rowset.

OLE DB Data Type
UniOLEDB Supports

UniData SQL Data Type
(Conversion Code) UniVerse SQL Data Type

DBTYPE_I4 INTEGER (MD0) INT[EGER]

DBTYPE_R4 – REAL

DBTYPE_R8 FLOAT (MDn) FLOAT, REAL,
DOUBLE PRECISION

DBTYPE_STR VARCHAR
(no conversion code)

CHAR, VARCHAR

DBTYPE_DBTIME TIME (MT) TIME

DBTYPE_DBDATE DATE (D) DATE

DBTYPE_NUMERIC – NUMERIC

DBTYPE_DECIMAL – DEC[IMAL]

Supported Data Types and UniOLEDB Mappings
 5-54 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Data Type Conversions
UniOLEDB supports the following data type conversions:

Conversions in the default types used for columns and parameters as
returned by IColumnsInfo::GetColumnInfo or
ICommandWithParameters::GetParameterInfo.
Conversions to and from DBTYPE_WSTR if the conversion is defined by
OLE DB.

UniOLEDB uses the OLE DB Data Conversion Library (MSDADC.DLL) for
conversions.

The consumer can determine the specific conversions UniOLEDB supports by
calling IConvertType::CanConvert and indicating the source and target data types.
 5-55

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
Error Support
This section provides information about how UniOLEDB supports error handling.
UniOLEDB complies with OLE DB error-handling standards. For more detailed
information about error issues presented in this section, see the Microsoft OLE DB
2.0 Programmer’s Reference and Software Development Kit.

Method Return Codes
All UniOLEDB methods return codes that indicate the success or failure of the
method. All UniOLEDB return codes are of the type HRESULT, which means that
return codes are in a bit-packed structure. The return codes are divided into two
classes:

Success and warning codes
Error codes

Success and Warning Codes

UniOLEDB uses success and warning codes to indicate that a method completed
successfully or that an error occurred from which the method was able to recover.
These codes begin with S_ or DB_S_. If a method succeeds completely, the method
returns the code S_OK. If one warning condition occurs, the method returns the
appropriate warning code for that condition. If multiple warning conditions occur, the
method decides which warning code to return.

Error Codes

UniOLEDB uses error codes to indicate that a method did not complete successfully
and was unable to accomplish the task. These codes begin with E_ or DB_E_. If one
error condition occurs, the method returns the appropriate error code for that
condition. If a failure-specific error code is not available, the method returns the code
E_FAIL. If a method generates both errors and warnings, the method fails and returns
an error code.
 5-56 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
Arrays of Errors

Some methods perform tasks on multiple items or arrays of items. If such a method
successfully processes at least one item, it returns the code
DB_S_ERRORSOCCURRED. If a method does not successfully process any item
among the multiple items or in the array, it returns the code
DB_E_ERRORSOCCURRED.

A consumer also can request that these methods return arrays of DBROWSTATUS
values, which provide information about the specific warnings and errors that
occurred.

OLE DB Error Objects

UniOLEDB objects support the ISupportErrorInfo interface if they expose an inter-
face that can return OLE DB error objects. When any method fails, UniOLEDB cre-
ates error objects to describe the error. Each error object consists of one or more error
records, which contain error information such as the code returned by the method, the
class ID of the object that returned the error, and the ID of the interface that generated
the error.

When a new method starts, UniOLEDB uses the SetErrorInfo function to clear any
error object on the thread that was created by a previous method. UniOLEDB does
not expose the IErrorInfo interface, which retrieves information about the error
object itself.

UniOLEDB does not support the ISQLErrorInfo interface because it returns informa-
tion about the error severity and state of custom error objects, which UniOLEDB
does not implement.

Error Lookup Service

UniOLEDB implements an error lookup service that exposes the IErrorLookup
interface. The service retrieves and stores error information, such as error messages
and help file information, from a specific OLE DB error object.
 5-57

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBCH05.fm
2/4/09

Beta
Transaction and SQL Support
This section provides information about how UniOLEDB supports transactions and
SQL. For more detailed information about transaction issues presented in this
section, see the Microsoft OLE DB 2.0 Programmer’s Reference and Software Devel-
opment Kit.

Transaction Support
UniOLEDB supports one local level of transaction scope per session. Advanced
transaction features, such as nested and coordinated transactions, are not supported.

UniOLEDB supports all OLE DB transaction isolation levels except
ISOLATIONLEVEL_ CHAOS. Concurrent consumers can control transaction isola-
tion levels for a connection by using:

The DBPROP_SESS_AUTOCOMMITISOLEVELS session property,
which indicates the transaction isolation levels UniOLEDB will support for
auto-commit transactions. By default, UniOLEDB supports both
READCOMMITTED and CURSORSTABILITY levels.
The isoLevel parameter of ITransactionLocal::StartTransaction for local
manual-commit transactions.

The ITransactionLocal::StartTransaction interface begins a local manual-commit
transaction, and the transaction ends when a consumer calls either the ITrans-
action::Commit or the ITransaction::Abort interface.

SQL Support
Command objects can use SQL statements to create rowsets and manipulate data.
Any SQL statement the UniData or UniVerse engine (whichever one to which you
are connected) supports can be executed as a command object. In particular, both
UniData and UniVerse support at least the ANSI92_ENTRY level definition of SQL.

Note: UniOLEDB does not support data definition language (DDL) statements when
connected to UniData.
 5-58 Using UniOLEDB

C:\Program
Files\Adobe\FrameMaker8\UniVerse

Beta
UniOLEDB also supports parameters in SQL statement commands. For commands
that call procedures, UniOLEDB supports input, output, and input/output parameters.
When a consumer application executes a procedure call, output parameters are
returned to the application. For UniVerse, a procedure can return rowsets in addition
to parameters. In this case, output parameters are returned after the application
consumes all returned rowsets.
 5-59

:\Prog
/4/09
A
Appendix

Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
Examples of Consumer
Source Code
This appendix provides examples of consumer source code written by
using C++ and ADO/ASP.
ram Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm

Example of C++ Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
Example of C++ Source Code
The following program example shows the source code for a consumer developed by
using C++. The comments included in the example describe the tasks the consumer
performs.

// smaple.cpp

/*
Sample consumer for UniOLEDB

Application flow in OLE DB is similar to the application flow in
ODBC.
In both cases, the application:

1. Initializes OLE.
2. Connects to a data source object.
3. Creates and executes a command.
4. Processes the results.
5. Releases objects and uninitializes OLE.

*/

#include <iostream.h>

#include <windows.h> // MFC core and standard components

#include <oledb.h> // OLE DB include files
#include <oledberr.h>

// Global task memory allocator
IMalloc* g_pIMalloc = NULL;

// connection information
#define C_DATASOURCE OLESTR("udunix")
#define C_LOCATION OLESTR("oledbtest_ud")
#define C_USERNAME OLESTR("unidata")
#define C_PASSWORD OLESTR("******")

int main()
{
 IDBInitialize * pIDBInitialize = NULL;
 IRowset * pIRowset = NULL;
 const ULONG nProps = 5;
 IDBProperties * pIDBProperties;
 DBPROP InitProperties[nProps];
 DBPROPSET rgInitPropSet;
 HRESULT hr;
 ULONG i;
 A-2

Example of C++ Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
 /*
 In OLE DB, initialization of the environment is achieved
by a call to
 OleInitialize, which initializes the OLE library. This is
shown in the
 preceding code example. After the OLE library is
initialized, the proper
 data provider is loaded by the system according to its
class ID, and
 calls are made directly to the provider.
 */

 HINSTANCE hInst= ::GetModuleHandle(NULL);

 // Init OLE and set up the DLLs
 CoInitialize(NULL);

 // Get the task memory allocator.
 if (FAILED(CoGetMalloc(MEMCTX_TASK, &g_pIMalloc)))
 goto EXIT;

 /*
 The data source object exposes the IDBInitialize and
IDBProperties
 interfaces that contain the methods to connect to a data
source. The
 authentication information such as user ID, password, and
the name of the
 data source are specified as properties of the data source
object by
 calling IDBProperties::SetProperties. The method
 IDBInitialize::Initialize uses the specified properties to
connect to the
 data source.
 */

 // We have the file name, lets get the CLSID for the Check
Book Data
 // Provider so that an instance can be created.
 CLSID CLSID_UniOLEDB;

 if (CLSIDFromProgID(OLESTR("Ardent.UniOLEDB"),
&CLSID_UniOLEDB) != S_OK)
 {
 cerr << "ERROR. Unable to obtain class ID of UniOLEDB
provider." << endl;
 goto EXIT;
 }

 // Create an instance of the UniOLEDB provider
 CoCreateInstance(CLSID_UniOLEDB, NULL, CLSCTX_INPROC_SERVER,
 IID_IDBInitialize,
(void**)&pIDBInitialize);
A-3 Using UniOLEDB

Example of C++ Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
 if (pIDBInitialize == NULL)
 {
 cerr << "ERROR. Failed to create UniOLEDB provider
instance." << endl;
 goto EXIT;
 }

 /*
 Getting and Setting Properties

 Properties are used in OLE DB to specify options, such as
initialization
 information on the data source object or supported
properties of a rowset,
 as well as to discover properties of certain objects, such
as the
 updatability of a rowset. Properties in OLE DB are similar
to the
 environment, connection, and statement attributes in ODBC,
with the
 following exceptions:

 In OLE DB, the provider can be queried for a list of all
supported
 properties. In OLE DB, properties are grouped into "Property
Groups."
 Property groups are identified by a GUID. This allows third
parties to
 define properties within their own property group, rather
than trying to
 reserve ranges within a single set of attribute values.

 Instead of setting and retrieving properties individually,
multiple
 properties can be set or retrieved from multiple groups in a
single call.
 This is done by building an array of property sets, where
each property set
 contains an array of property structures from a single
property group.

 Set or retrieve properties on a data source using
IDBProperties.
 Set or retrieve properties on a session using
ISessionProperties.
 Set or retrieve properties on a command using
ICommandProperties.
 Retrieve properties and information about a rowset using
IRowsetInfo.

 The following table shows the property groups in OLE DB and
their GUIDs.
 A-4

Example of C++ Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
 Property groupProperty group identifier (GUID)
 --
 Column DBPROPFLAGS_COLUMN
 Data Source DBPROPFLAGS_DATASOURCE
 Data Source CreationDBPROPFLAGS_DATASOURCECREATE
 Data Source InformationDBPROPFLAGS_DATASOURCEINFO
 Data Source InitializationDBPROPFLAGS_DBINIT
 Index DBPROPFLAGS_INDEX
 Rowset DBPROPFLAGS_ROWSET
 Session DBPROPFLAGS_SESSION
 Table DBPROPFLAGS_TABLE

 The following structure contains an array of values of
properties from a
 single property set:

 typedef struct tagDBPROPSET
 {
 DBPROP __RPC_FAR* rgProperties; // Pointer to an
array of
 // DBPROP
structures.
 ULONG cProperties; // Count of
properties
 // (DBPROPS) in
the array.
 GUID guidPropertySet; // A GUID that
identifies the
 // property set
to which the
 // properties
belong.
 } DBPROPSET;

 The following structure contains information about a single
property:
 typedef struct tagDBPROP
 {
 DBPROPID dwPropertyID; // ID of
property within a
 // property set.
 DBPROPOPTIONS dwOptions; // Property is
required?
 // Optional?
 DBPROPSTATUS dwStatus; // Status
returned by the
 // provider
indicating success
 // or failure in
setting or
 // getting the
property.
 // Enumerated
values are:
A-5 Using UniOLEDB

Example of C++ Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
 //
DBPROPSTATUS_OK
 //
DBPROPSTATUS_NOTSUPPORTED
 //
DBPROPSTATUS_BADVALUE
 //
DBPROPSTATUS_BADOPTION
 //
DBPROPSTATUS_BADCOLUMN
 //
DBPROPSTATUS_NOTALLSETTABLE
 //
DBPROPSTATUS_NOTSET
 //
DBPROPSTATUS_NOTSETTABLE
 //
DBPROPSTATUS_CONFLICTING
 DBID colid; // Optional,
ordinal column
 // property
applies to. If the
 // property
applies to all
 // columns, colid
should be set
 // to DB_NULLID.
 VARIANT vValue; // Value of the
property.
 } DBPROP;
 */

 /*
 Application sets initialization properties on a data source
object. The
 code sets four properties within a single property group.
The general
 flow of control is:
 1. Allocate an array of property structures.
 2. Allocate an array of a single property set.
 3. Initialize common property elements for the
properties.
 4. Fill in the following properties:
 · Level of desired prompting (similar to
DriverCompletion
 argument in SQLDriverConnect)
 · Data source name (similar to DSN=
element of the ODBC
 connection string)
 · User name (similar to the UID= element
of the ODBC
 connection string)
 · Password (similar to the PWD= element of
the ODBC
 A-6

Example of C++ Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
 connection string)
 5. Set the property set to the array of properties
and specify
 that the properties are from the initialization
property group.
 6. Get the IDBProperties interface.
 7. Call SetProperties on the interface.
 */

 // Initialize common property options.
 for (i = 0; i < nProps; i++)
 {
 VariantInit(&InitProperties[i].vValue);
 InitProperties[i].dwOptions = DBPROPOPTIONS_REQUIRED;
 InitProperties[i].colid = DB_NULLID;
 }

 // Level of prompting that will be done to complete the
 // connection process
 InitProperties[0].dwPropertyID = DBPROP_INIT_PROMPT;
 InitProperties[0].vValue.vt = VT_I2;
 InitProperties[0].vValue.iVal = DBPROMPT_NOPROMPT;

 // Data source name
 InitProperties[1].dwPropertyID = DBPROP_INIT_DATASOURCE;
 InitProperties[1].vValue.vt = VT_BSTR;
 InitProperties[1].vValue.bstrVal =
SysAllocString(C_DATASOURCE);

 // User ID
 InitProperties[2].dwPropertyID = DBPROP_AUTH_USERID;
 InitProperties[2].vValue.vt = VT_BSTR;
 InitProperties[2].vValue.bstrVal = SysAllocString(C_USERNAME);

 // Password
 InitProperties[3].dwPropertyID = DBPROP_AUTH_PASSWORD;
 InitProperties[3].vValue.vt = VT_BSTR;
 InitProperties[3].vValue.bstrVal = SysAllocString(C_PASSWORD);

 // Location (Account Name)
 InitProperties[4].dwPropertyID = DBPROP_INIT_LOCATION;
 InitProperties[4].vValue.vt = VT_BSTR;
 InitProperties[4].vValue.bstrVal = SysAllocString(C_LOCATION);

 rgInitPropSet.guidPropertySet = DBPROPSET_DBINIT;
 rgInitPropSet.cProperties = nProps;
 rgInitPropSet.rgProperties = InitProperties;

 // Set initialization properties.
 pIDBInitialize->QueryInterface(IID_IDBProperties, (void**)
&pIDBProperties);
 hr = pIDBProperties->SetProperties(1, &rgInitPropSet);
A-7 Using UniOLEDB

Example of C++ Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
 SysFreeString(InitProperties[1].vValue.bstrVal);
 SysFreeString(InitProperties[2].vValue.bstrVal);
 SysFreeString(InitProperties[3].vValue.bstrVal);

 pIDBProperties->Release();

 if (FAILED(hr))
 {
 cerr << "ERROR. Set properties failed." << endl;
 goto EXIT;
 }

 // call method IDBInitialize::Initialize to connect to
 // the data source.
 if (FAILED(pIDBInitialize->Initialize()))
 {
 cerr << "ERROR. IDBInitialze->Initialize() failed."
<< endl;
 goto EXIT;
 }

 cout << "Connect OK." << endl;

EXIT:
 // Clean up and disconnect.
 if (pIRowset != NULL)
 pIRowset->Release();

 if (pIDBInitialize != NULL)
 {
 pIDBInitialize->Uninitialize();
 pIDBInitialize->Release();
 }

 if (g_pIMalloc != NULL)
 g_pIMalloc->Release();

 CoUninitialize();
 return (0);
}

 A-8

Example of ADO/ASP Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
Example of ADO/ASP Source Code
The following program example shows the source code for a consumer developed by
using ADO/ASP. The comments included in the example describe the tasks the
consumer performs.

/*
HTML code below displays a form that collects connection data
from user. When user hits the <submit> button, the asp page
"test1_do.asp" is executed to generate a results page from
the query.
*/
// FILE: test1.asp

<%@ Language=VBScript %>
<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
</HEAD>
<BODY>
<FORM action="test1_do.asp" id=FORM1 method=post name=FORM1>
<P>SQL Execute</P>
<P>
Location:
<INPUT id=location name=location>
Data Source:
<INPUT id=datasource name=datasource>
User Name:
<INPUT id=username
name=username>
Password:
<INPUT id=password name=password type=password>
</P>
<P>
SQL:
 <TEXTAREA id=sql name=sql style="HEIGHT: 127px; WIDTH:
470px">
</TEXTAREA></P>
<P><INPUT id=Submit name=Submit type=submit value=Submit></P>
<P> </P>
<P></P>
<P> </P></FORM>

</BODY>
</HTML>

/*
Here is the ASP page, test1_do.asp. This page executes a query in
response to user hitting <submit> button from the above HTML form.
*/
// FILE: test1_do.asp

<%@ Language=VBScript %>
<% ’ VI 6.0 Scripting Object Model Enabled %>
A-9 Using UniOLEDB

Example of ADO/ASP Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
<!--#include file="_ScriptLibrary/pm.asp"-->
<% if StartPageProcessing() Then Response.End() %>
<FORM name=thisForm METHOD=post>
<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
</HEAD>
<BODY>
<script LANGUAGE="JavaScript" RUNAT = "server">
function do_test()
{

// read form fields
var location1 = Request.Form("location");
var datasource1 = Request.Form("datasource");
var username1 = Request.Form("username");
var password1 = Request.Form("password");
var sql1 = Request.Form("sql");

// write back form fields to response page.
Response.Write("INPUTS:

");
Response.Write("Location:" + location1 + "
");
Response.Write("Data source:" + datasource1 + "
");
Response.Write("Username:" + username1 + "
");
Response.Write("Attempting connection...
");

// create a connection using UniOLEDB Provider
var Conn = Server.CreateObject("ADODB.Connection");
Conn.Provider = "Ardent.UniOLEDB";
var ConStr = "DATA SOURCE="+datasource1+";

LOCATION="+location1+"; USER ID="+username1+";
PASSWORD="+password1+";";

Conn.Open(ConStr);
Response.Write("Connect OK
");
Response.Write("Executing SQL...
");

// execute SQL Statement
var RecordsAffected = 0;
var Rs = Conn.Execute(sql1);

// write field names to response page
for(i = 0; i < Rs.Fields.Count; ++i)
{

Response.Write(Rs.Fields(i).Name);
Response.Write(" ");

}
Response.Write("
");

// write data to response page
while(!Rs.eof)
{

for(i = 0; i < Rs.Fields.Count; ++i)
{

Response.Write(Rs.Fields(i).Value);
Response.Write(" ");
 A-10

Example of ADO/ASP Source Code

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPA.fm
2/4/09

Beta
}
Response.Write("
");
Rs.MoveNext();

}

// Close record set
Rs.Close();

// Close connection
Conn.Close();

Response.Write("DisConnect OK
");
}

do_test();
</script>
<P> </P>

</BODY>
<% ’ VI 6.0 Scripting Object Model Enabled %>
<% EndPageProcessing() %>
</FORM>
</HTML>
A-11 Using UniOLEDB

Glossary

:\Prog
/4/09
Glossary
1NF First normal form.

1NF database A database that conforms to the 1NF type of data storage. Most data-
bases are 1NF databases; as such, they have only singlevalued attri-
butes. Oracle is a 1NF database. See also first normal form (1NF).

1NF table A first-normal-form table. See also first normal form (1NF).

1NF mapping A mechanism that enables data stored in UniData and UniVerse files to
be viewed (read-only mapping) or updated (updatable mapping) by
applications that operate on 1NF data. The applications assume that the
data conforms to the 1NF model in which all attribute values are
atomic. See also first normal form (1NF).

accessor A collection of information that describes how to transfer data to and
from a consumer’s buffer. See also consumer.

Active Server
Pages (ASP)

A scripting environment in which you can combine HTML, scripts, and
reusable ActiveX server components to create web pages.

ActiveX Data
Objects (ADO)

An application-level interface that can be used to access diverse types
of data regardless of how the data is structured. ADO can function as
an interface to OLE DB, and OLE DB provides the system-level inter-
faces for uniform data access. Together with OLE DB and ODBC,
ADO is a main component of Microsoft’s Universal Data Access
(UDA) specification. See also interface, OLE DB, and Universal Data
Access (UDA).

ADO ActiveX Data Objects.
ram Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
American
National
Standards
Institute (ANSI)

A United States organization charged with developing national information technol-
ogy standards for programming languages, electronic data interchange (EDI), tele-
communications, and the physical characteristics of various data storage media.

ANSI American National Standards Institute.

API Application programming interface.

application
program

A user program that issues function calls to submit statements and retrieve results,
and then processes those results.

application
programming
interface (API)

A set of function calls that provide services to application programs.

ASP Active Server Pages.

association A group of related multivalued columns in a table. The first value in any association
column corresponds to the first value of every other column in the association, the
second value corresponds to the second value, and so forth. An association can be
thought of as an extended table. See also multivalued columns.

association key The values in one or more columns of an association that uniquely identify each row
in the association. If an assoication does not have keys, the @ASSOC_ROW key-
word can generate unique association row identifiers. See also association and key.

association row A sequence of related data values in an association. A row in an extended table. See
also association and row.

binary large
object (BLOB)

A collection of complex binary data (such as digitized audio, video, image, and sound
information) stored in a database.

BLOB Binary large object.

client A computer system or program that uses the resources and services of another system
or program (called a server). See also server.

A process that uses resources provided by a local or remote server process.

column A vertical row of cells that contain the same kind of information, such as names or
phone numbers. A column is another name for field. See also row and table.

catalog An object that contains one or more schemas. See also object and schema.
2 Using UniOLEDB

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta
COLUMNS
rowset

An OLE DB rowset that includes columns in all UniOLEDB-visible tables. For Uni-
Verse tables, columns in the COLUMNS rowset are defined by the dictionary’s
@SELECT phrase, or are defined as the columns created by CREATE TABLE if
there is no @SELECT phrase. For files and for associations and unassociated multi-
valued columns within them, columns in the COLUMNS rowset are defined by the
dictionary’s @SELECT phrase, or by the @ phrase if the @SELECT phrase does not
exist. If neither an @SELECT phrase nor an @ phrase exists, only the record ID
(@ID) appears in the COLUMNS rowset. See also association, column, multivalued
column, rowset, table, UniOLEDB-
visible table, and UniVerse table.

COM Component Object Model.

COM object An object that complies with the Component Object Model (COM). See also Com-
ponent Object Model (COM) and object.

command
object

An OLE DB object that encapsulates a command. See also encapsulation and
OLEDB object.

component An object or program that performs a specific task and is designed to interact easily
with other components or applications. For example, the OLE DB architecture con-
sists of consumers, providers, and service components that interoperate based on
common interfaces. See also consumer, provider, and service component.

Component
Object Model
(COM)

A component architecture that enables programmers to develop objects that are
accessible by any COM-compliant application. COM enables objects to communi-
cate with other objects. See also component and object.

consumer An application that calls OLE DB interfaces to retrieve and manipulate data. See also
interface, provider, and service component.

cursor A virtual pointer to the set of result rows produced by a query. A cursor points to the
“current row” of the result set, one row of data at a time, and advances one row at a
time. See query and row.

data definition
language (DDL)

A language used to define data and its relationships to other data. This information is
used to create the data structure in a database.

data
manipulation
language (DML)

A language used to store, retrieve, modify, and erase data from a database.

data provider A provider that exposes data directly. See also consumer and service component.
Glossary 3

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
data source The data a consumer wants to access. Contrast with data source object.

data source
object

An OLE DB object that connects to a data source. Contrast with data source. See also
OLE DB object.

data type A classification of a particular type of information (for example, date, decimal,
numeric, or string).

database A collection of information that conforms to a common structure with a format
defined by the metadata. It is operated on (stored, modified, retrieved) by a database
management system, and it can be concurrently accessed by multiple users under the
protection of data sharing and concurrency rules provided by the DBMS. See also
metadata and database management system (DBMS).

database
management
system (DBMS)

A software system that enables you to create, store, organize, modify, and extract
information in a database. It also controls access to the information. See also data-
base, relational database management system (RDBMS) and extended relational
database.

DBMS Database management system.

DDL Data definition language.

DLL Dynamic link library.

DML Data manipulation language.

dynamic link
library (DLL)

A collection of functions linked together into a unit that can be distributed to appli-
cation developers. When the program runs, the application attaches itself to the DLL
when the program calls one of the DLL functions.

dynamic
normalization

A UniVerse mechanism that lets DML statements access an association of multival-
ued columns or an unassociated multivalued column as a 1NF table. See also 1NF
table, association, data manipulation language (DML), first normal form (1NF),
multivalued column, and normalization.

encapsulation The process of combining data and methods, which manipulate the data, to create an
object. An object’s data can be hidden from external methods. See also method and
object.

enumerator
object

An OLE DB object that searches for data sources and other enumerators. See also
OLE DB object.

error object An object that contains detailed information about an error. See also OLE DB error
object and OLE DB object.
4 Using UniOLEDB

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta
extended
relational
database

A database that uses a three-dimensional file structure that supports multivalued or
multi-subvalued data within extended tables, and extensible, variable-length data for-
mats. This enables a single file (table) to contain the information that otherwise
would be scattered among several interrelated files in a 1NF database. See also data-
base, database management system (DBMS), and relational database management
system (RDBMS).

field See column.

first normal form
(1NF)

The name of a kind of relational database that can have only one value for each row
and column position (or cell). Contrast with nonfirst-normal form (NF2).

graphical user
interface (GUI)

A user interface that enables users to interact with a computer application by using
images and text. See also interface.

GUI Graphical user interface.

handle A value that uniquely and unambiguously identifies an entity, such as a row or an
accessor. See also accessor and row.

interface The connection and interaction between hardware, software, and the user. In includes
the languages, codes, and messages a program uses to communicate with other pro-
grams and hardware.

A description of a set of possible uses of an object. It describes a set of requests to
which an object can respond meaningfully. See also object.

Isolation level A mechanism for separating a transaction from other transactions that run concur-
rently so that no transaction affects any of the others. See also transaction.

key A data value used to locate a row. See also row.

metadata Data that describes data, such as how it is collected and formatted.

method Code that is executed against the object’s data when the object receives a request. See
also object.

multivalued
column

A column that can contain more than one value for each row in a table. See also col-
umn, multi-subvalued column, and singlevalued column.

multi-subvalued
column

A multivalued column in which each value in the column can contain additional val-
ues, called subvalues, for each row in a table. For illustrative purposes, consider a
manufacturing plant that creates an assembled piece (value), which is made up of
assemblies (multivalues) that consist of several parts (multi-subvalues). See also col-
umn, multivalued column, and singlevalued column.
Glossary 5

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
nested
transaction

A transaction that begins while another transaction is active. See also transaction.

NF2 Nonfirst-normal form.

NF2 database A database that conforms to the extended relational model. This model enables you
to store data in a variety of attributes: singlevalued, multivalued, and multi-subval-
ued. This model avoids data redundancy. UniData and UniVerse are NF2 databases.
Contrast with 1NF database.

nonfirst-normal
form (NF2)

The name of a kind of relational database that can have more than one value for a row
and column position (or cell). Contrast with first normal form (1NF).

normalization In relational database management, a process that organizes complex data into simple
rows and columns in which each cell has one value only. Normalization usually
involves dividing a table into two or more tables and defining a relationship between
them. See also first normal form (1NF) and nonfirst-
normal form (NF2).

object A self-contained entity that consists of data and the methods that manipulate the data
when the object receives a request. See also method.

Object Linking
and Embedding
(OLE)

Microsoft’s component architecture for object-oriented programming. See also
object.

object-oriented
programming

A type of programming that combines data structures with functions to create objects
that are reusable. See also object.

ODBC Open Database Connectivity.

OLE Object Linking and Embedding.

OLE DB A set of object-oriented interfaces that are based on the Component Object Model
(COM). It consists of objects that encapsulate various aspects of traditional database
functionality. OLE DB COM enables OLE DB components (consumers, providers,
and service components) to interoperate and produce, share, and consume data in the
form of rowsets. Together with ODBC and ADO, OLE DB is a main component of
Microsoft’s Universal Data Access (UDA) specification. See also interface, compo-
nent, Component Object Model (COM), and Universal Data Access (UDA).

OLE DB error
object

An error object used by OLE DB objects to return an error. See also error object and
OLE DB object.
6 Using UniOLEDB

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta
OLE DB object A COM object that is defined by OLE DB. Examples of COM objects that are
defined by OLE DB include enumerators, data source objects, commands, sessions,
rowsets, and OLE DB error objects. See also enumerator object, data source object,
command object, session object, rowset object, and OLE DB error object.

Open Database
Connectivity
(ODBC)

A Microsoft interface that defines a library of function calls that permit a client appli-
cation program to connect to a data source, execute SQL statements against that
source, and retrieve results. ODBC inserts a middle layer, called a database driver,
between an application and the DBMS. This layer translates the application’s data
queries into commands that the DBMS understands. ODBC provides a standard set
of error codes, a way to connect to the data source, and a standard set of data types.
The ODBC specifications from Microsoft for SQL-based database interoperability
cover both the application programming interface (API) and SQL grammar. UCI is
modeled on this standard, but it is not ODBC compliant. Together with OLE DB and
ADO, ODBC is a main component of Microsoft’s Universal Data Access (UDA)
specification. See also interface and Universal Data Access (UDA).

primary key The value in one or more columns that uniquely identifies each row in a table. See
also key.

property A characteristic of an object that describes a behavior. A property describes the attri-
butes associated with a data structure. An attribute’s value can be changed. See also
object.

provider A software component that uses OLE DB interfaces to expose data to which consum-
ers request access. See also component, consumer, and service component.

qualifier An identifier prefixed to the name of a column, table, or alias to distinguish names
that would otherwise be identical. See also column and table.

query A request for data from a database. See also database.

record See row.

row A set of information that contains columns, each of which contains an item of infor-
mation. A set of rows make up a table. See also column and table.

rowset object An OLE DB object that contains a set of rows, each of which has columns of data.
See also column, OLE DB object, and row.

RDA Remote data access.

RDBMS Relational database management system.
Glossary 7

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
relational
database
management
system
(RDBMS)

A type of DBMS that organizes and accesses information in a database in the form
of related tables. The columns of a table represent attributes, and the rows represent
tuples. See also database, database management system (DBMS), extended rela-
tional database, and table.

remote
procedure call
(RPC)

UCI uses a library of calls developed by Ardent to implement remote procedure calls
(UniRPC). An RPC allows a consumer to have a function executed on its behalf by
another system (the server). The consumer passes arguments to the server as well as
an identifier that specifies the procedure to be executed on the server. The server exe-
cutes the procedure using the arguments passed to it, and then returns the results to
the client. See also client, consumer, and server.

RPC Remote procedure call.

schema In SQL, a collection of database objects, such as tables, views, and indexes, that share
the same namespace. See also object, table, and view.

Schema API An application programming interface (API) that consists of a series of UniBasic
subroutines designed to accomplish the same tasks (generating schema on UniData
files) as Visual Schema Generator (VSG). VSG’s interface makes it easier and faster
to use than Schema API. See also interface, schema, and Visual Schema Generator
(VSG).

schema rowset A predefined rowset that provides information about the structure of a database. See
also rowset object.

server A computer running software that offers resources to clients. See also client.

A process that accepts and handles requests from a client process.

service
component

A software component that provides extended functionality the provider does not
support, such as advanced cursor and query processing features. Service components
do not expose data directly, but provide services the data provider does not support.
See also data provider.

service provider See service component.

session An OLE DB object that serves as the context for a transaction. See also OLE DB
object and transaction.

singlevalued
column

A column that can contain only one value for each row in a table. See also column,
multivalued column, and multi-subvalued column.
8 Using UniOLEDB

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta BetaBeta Beta
Structured
Query
Language
(SQL)

An industry standard for data management, data definition and manipulation, access
protections, and transaction control. It provides a standardized query language for
requesting information from a database. See also query and transaction.

SQL Structured Query Language.

table A matrix of data arranged in rows and columns. See also column and row.

TABLES rowset An OLE DB rowset that includes all UniOLEDB-visible tables. See also rowset and
UniOLEDB-visible table.

tuple See row.

transaction A strategy that treats a group of database operations as one unit. The database
remains consistent because either all or none of the operations are completed.

transaction
object

An OLE DB object used to support transactions. See also OLE DB object.

UCI A C-language application programming interface (API) that enables application pro-
grammers to write client application programs that use SQL function calls to access
data in UniData and UniVerse databases. UniOLEDB uses UCI to access data in Uni-
Data and UniVerse databases. See also interface and UniOLEDB.

uci.config file The client UCI configuration file, which defines data sources to which an application
can connect in terms of DBMS, network, service, host, and optional extended param-
eters. See also data source.

UCI data source A source of data, or database engine, represented by the specifications supplied in the
data source entry in the uci.config file. These specifications include the DBMS type,
the network, the name of the service, and the host platform. See also data source and
uci.config file.

UDA Universal Data Access.

udserver
process

A UniData server process that handles requests from the client. For each client con-
nection to the server, there is one udserver process. See also client and server.

UniOLEDB Ardent’s OLE DB provider. See also provider.

UniOLEDB
table

Any UniData or UniVerse table or file that is accessible to UniOLEDB. UniOLEDB
tables are always 1NF tables. See also 1NF tables, first normal form (1NF), and
tables.
Glossary 9

C:\Program Files\Adobe\FrameMaker8\UniVerse 10.3\unioledb\OLDBAPPB.fm
2/4/09

Beta BetaBeta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta Beta
UniOLEDB-
visible table

Any UniOLEDB table that is included in the TABLES rowset. See also rowset, table,
TABLES rowset, and UniOLEDB table.

UniRPC A library of calls developed by Ardent to implement remote procedure calls. See also
remote procedure call (RPC).

unirpc service On Windows platforms, the service that waits for a client’s request to connect. When
it receives a request, unirpcd daemon creates the connection to the server. See also
UniRPC.

unirpcd daemon On UNIX servers, the daemon that waits for a client’s request to connect. When it
receives a request, unirpcd creates the connection to the server. See also UniRPC.

Universal Data
Access (UDA)

Microsoft’s high-level specification for providing access to diverse forms of informa-
tion across an enterprise. The main components of UDA include OLE DB, ODBC,
and ADO. See also OLE DB, Open Database Connectivity (ODBC), and ActiveX
Data Objects (ADO).

UniVerse file A file defined by the UniVerse command CREATE.FILE.

UniVerse table A table defined by the CREATE TABLE statement. A view defined by the CREATE
VIEW statement. A virtual table generated from a UniVerse table or file by dynamic
normalization. See also dynamic normalization, normalization, and table.

uvserver
process

A UniVerse server process that handles requests from the client. For each client con-
nection to the server, there is one uvserver process. See also client and server.

view A derived table created by a SELECT statement that is part of the view’s definition.
See also table.

Visual Schema
Generator
(VSG)

A windows-based graphical user interface (GUI) tool for generating schema on Uni-
Data files. The schema allow Ardent’s ODBC driver or UniOLEDB provider to
access data in UniData files, which the schema represent in 1NF subtables and views.
See also first normal form (1NF), interface, schema, UniOLEDB, and view.

VSG Visual Schema Generator.
10 Using UniOLEDB

@

Index

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
Index
Numerics
1NF databases

definition of 1-1
examples 1-4

1NF (first normal form)
definition of 1-5

1NF mappings
definition of 1-1

1NF table
definition of 1-1

A
accessing

UniData data 3-2
UniVerse data 4-2

accessing data
challenges 1-4
OLE DB 1-6
OLE DB interfaces for 1-10
traditional approaches 1-4

accessors
definition of 1-1

Active Server Pages (ASP)
definition of 1-1

Active Sessions property 5-13
ActiveX Data Objects (ADO)

definition of 1-1
interface to OLEDB 1-7

ADO (ActiveX Data Objects)
definition of 1-1
interface to OLE DB 1-7

American National Standards Institute
(ANSI)

definition of 1-2

ANSI (American National Standards
Institute)

definition of 1-2
API (application programming

interface)
definition of 1-2
Schema API 1-8

Append-Only Rowset property 5-36
application programming interface

(API)
definition of 1-2
Schema API 1-8

application programs
definition of 1-2

arrays of errors 5-61
ASP (Active Server Pages)

definition of 1-1
association keys 4-19

definition of 1-2
association rows

definition of 1-2
associations 4-19

definition of 1-2
Asynchable Abort property 5-13
Asynchable Commit property 5-13
Asynchronous Processing initialization

property 5-31
authentication properties

supported by UniOLEDB 5-28
Autocommit Isolation Levels session

property 5-57
auto-commit transactions 5-62

B
binary large object (BLOB)

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
definition of 1-2
BLOB (binary large object)

definition of 1-2
Blocking Storage Objects property 5-

37
Bookmark Type property 5-40
Bookmarks Ordered property 5-51
bulk-copy rowsets 5-5

C
Cache Authentication authentication

property 5-29
Cache Deferred Columns property 5-

40
Can Scroll Backward property 5-42
catalogs

definition of 1-3
Change Inserted Rows property 5-42
chaptered rowsets 1-16, 3-8, 5-6
character columns 4-25
clients

definition of 1-2
hardware and software

requirements 1-21
CoCreateInstance interface 1-12, 1-14
codes

conversion 5-58
error 5-60
method return 5-60
success 5-60
warning 5-60

code, examples of consumer source A-
1

Column Definition property 5-14
Column Privileges property 5-43
columns

character 4-25
definition of 1-2
multi-subvalued 1-6
multivalued 3-8, 1-6
singlevalued 1-9
unassociated multivalued 4-19
@ASSOC_ROW 4-19

COLUMNS rowset 5-5
definition of 1-3

COM (Component Object Model)
architecture 1-6

definition of 1-3
COM objects

definition of 1-3
descriptions of 1-11
diagram example 1-10
interactions of 1-15
interfaces in 1-10
methods in 1-10

command objects
definition of 1-13, 1-3
implementation notes 5-4
supported interfaces 5-8

Command Time Out property 5-43
commands

HS.SCRUB 4-28
Component Object Model (COM)

architecture 1-6
definition of 1-3

components
definition of 1-3
OLE DB 1-7, 1-9
reusable 1-7
service 1-9

configuration files
UCI (uci.config) 1-10
unirpcservices file 3-4

configuration parameters
MAXFETCHBUFF 4-25
MAXFETCHCOLS 4-25

configurations
defining 3-6
UCI connection timeout 3-4

Connect Timeout initialization
property 5-35

consumers
architecture diagram 1-8
definition of 1-9, 1-3
examples of 1-9

conversion codes 5-58
conversion errors 4-26
converting data types 5-59
coordinated transactions 5-62
cursors

definition of 1-3
custom error objects 5-61

D
daemon, unirpc 4-2, 1-10
data

conversion errors 4-26
length 3-8
multivalued 3-8

data access
challenges 1-4
OLE DB 1-6
OLE DB interfaces for 1-10
traditional approaches 1-4
UniData 1-4, 1-7, 3-2
Universal Data Access (UDA) 1-5,

1-10
UniVerse 1-4, 1-7

data definition language (DDL)
description of 1-3
UniOLEDB support 5-62

data manipulation language (DML)
definition of 1-3

data providers
definition 1-4

Data Source Information property
group 5-12

Data Source initialization property 5-
32

Data Source Name property 5-15
Data Source Object Threading Model

property 5-17
data source objects

definition of 1-12, 1-4
implementation notes 5-3
supported interfaces 5-7
supported properties 5-13

data sources
1NF relational 1-4
defining 2-3
definition 1-4
definition of 1-12
extended (NF2) relational 1-4
nonrelational 1-4
ODBC driver 1-6
UCI 1-10

data types 3-8, 5-58
defining 4-23
definition of 1-4
mappings 5-58
supported by UniOLEDB 5-58
Index ii

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
UniData SQL 5-58
UniVerse SQL 5-58

database management system (DBMS)
definition of 1-4
relational 1-8

databases
1NF 1-4, 1-1
definition of 1-4
extended relational 1-5
NF2 1-4, 1-6
nonrelational 1-4

DATATYPE field 4-23, 4-25
DBMS (database management system)

definition of 1-4
relational 1-8

DBMS Name property 5-16
DBMS Version property 5-16
DBPROPSET_DATASOURCEINFO

5-12
DBPROPSET_DBINIT 5-12
DBPROPSET_ROWSET 5-12
DBPROPSET_SESSION 5-12
DBPROP_ABORTPRESERVE 5-36
DBPROP_ACTIVESESSIONS 5-13
DBPROP_APPENDONLY 5-36
DBPROP_ASYNCTXNABORT 5-13
DBPROP_ASYNCTXNCOMMIT 5-

13
DBPROP_AUTH_CACHE_AUTHIN

FO 5-29
DBPROP_AUTH_ENCRYPT_PASS

WORD 5-29
DBPROP_AUTH_INTEGRATED 5-

29
DBPROP_AUTH_MASK_PASSWO

RD 5-30
DBPROP_AUTH_PASSWORD 5-30
DBPROP_AUTH_PERSIST_ENCRY

PTED 5-30
DBPROP_AUTH_PERSIST_SENSIT

IVE_AUTHINFO 5-31
DBPROP_AUTH_USERID 5-31
DBPROP_BLOCKINGSTORAGEOB

JECTS 5-37
DBPROP_BOOKMARKS 5-38
DBPROP_BOOKMARKSKIPPED 5-

39
DBPROP_BOOKMARKTYPE 5-40
DBPROP_BYREFACCESSORS 5-14

DBPROP_CACHEDEFERRED 5-40
DBPROP_CANFETCHBACKWARD

S 5-41
DBPROP_CANHOLDROWS 5-41
DBPROP_CANSCROLLBACKWAR

DS 5-42
DBPROP_CHANGEINSERTEDROW

S 5-42
DBPROP_COLUMNDEFINITION 5-

14
DBPROP_COLUMNRESTRICT 5-

43
DBPROP_COMMANDTIMEOUT 5-

43
DBPROP_COMMITPRESERVE 5-

43
DBPROP_CONCATNULLBEHAVIO

R 5-15
DBPROP_DATASOURCENAME 5-

15
DBPROP_DATASOURCEREADON

LY 5-15
DBPROP_DBMSNAME 5-16
DBPROP_DBMSVER 5-16
DBPROP_DEFERRED 5-44
DBPROP_DELAYSTORAGEOBJEC

TS 5-44
DBPROP_DSOTHREADMODEL 5-

17
DBPROP_GROUPBY 5-17
DBPROP_IACCESSOR 5-44
DBPROP_ICOLUMNSINFO 5-44
DBPROP_ICONVERTTYPE 5-45
DBPROP_IDENTIFIERCASE 5-18
DBPROP_IMMOBILEROWS 5-45
DBPROP_INIT_ASYNCH 5-31
DBPROP_INIT_DATASOURCE 5-

32
DBPROP_INIT_HWND 5-32
DBPROP_INIT_IMPERSONATION_

 5-32
DBPROP_INIT_LCID 5-33
DBPROP_INIT_LOCATION 5-33
DBPROP_INIT_MODE 5-33
DBPROP_INIT_PROMPT 5-34
DBPROP_INIT_PROTECTION_LEV

EL 5-35
DBPROP_INIT_PROVIDERSTRING

 5-35

DBPROP_INIT_TIMEOUT 5-35
DBPROP_IROWSET 5-45
DBPROP_IROWSETCHANGE 5-46
DBPROP_IROWSETFIND 5-46
DBPROP_IROWSETIDENTITY 5-

47
DBPROP_IROWSETINFO 5-47
DBPROP_IROWSETLOCATE 5-47
DBPROP_IROWSETSCROLL 5-48
DBPROP_IROWSETUPDATE 5-48
DBPROP_ISUPPORTERRORINFO

5-48
DBPROP_LITERALBOOKMARKS

5-49
DBPROP_LITERALIDENTITY 5-49
DBPROP_MAXINDEXSIZE 5-18
DBPROP_MAXOPENROWS 5-49
DBPROP_MAXPENDINGROWS 5-

50
DBPROP_MAXROWS 5-50
DBPROP_MAXROWSIZE 5-18
DBPROP_MAXROWSIZEINCLUDE

SBLOB 5-19
DBPROP_MAXTABLESINSELECT

5-19
DBPROP_MEMORYUSAGE 5-50
DBPROP_MULTIPLEPARAMSETS

5-19
DBPROP_MULTIPLERESULTS 5-

20
DBPROP_MULTITABLEUPDATE 5

-20
DBPROP_NULLCOLLATION 5-20
DBPROP_ORDERBYCOLUMNSINS

ELECT 5-21
DBPROP_ORDEREDBOOKMARKS

 5-51
DBPROP_OTHERINSERT 5-51
DBPROP_OTHERUPDATEDELETE

 5-52
DBPROP_OUTPUTPARAMETERA

VAILABILITY 5-21
DBPROP_OWNINSERT 5-52
DBPROP_OWNUPDATEDELETE 5

-53
DBPROP_PREPAREABORTBEHAV

IOR 5-21
DBPROP_PREPARECOMMITBEHA

VIOR 5-22
iii Using UniOLEDB

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
DBPROP_PROCEDURETERM 5-22
DBPROP_PROVIDERNAME 5-22
DBPROP_QUICKRESTART 5-53
DBPROP_RETURNPENDINGINSER

TS 5-53
DBPROP_ROWRESTRICT 5-54
DBPROP_ROWTHREADMODEL 5-

54
DBPROP_SERVERCURSOR 5-55
DBPROP_SESS_AUTOCOMMITISO

LEVELS 5-57, 5-62
DBPROP_STRONGIDENTITY 5-55
DBPROP_TABLETERM 5-28
DBPROP_UPDATABILITY 5-56
DDL (data definition language)

description of 1-3
UniOLEDB support 5-62

Defer Column property 5-44
defining

configurations 3-6
data sources 2-3

Delay Storage Object Updates
property 5-44

DLL (dynamic link library)
definition of 1-4
UniOLEDB deployed as 5-3

DML (data manipulation language)
definition of 1-3

driver, ODBC 1-6
dynamic link library (DLL)

definition of 1-4
UniOLEDB deployed as 5-3

dynamic normalization
definition of 1-4

E
empty strings 4-26
encapsulation

COM objects 1-10
definition of 1-4

Encrypt Password authentication
property 5-29

enumerator objects
definition of 1-14, 1-5

error arrays 5-61
error codes 5-60
error handling 5-60

error lookup service 5-61
error objects

custom 5-61
definition of 1-14, 1-5
implementation notes 5-6
OLE Automation 1-14
OLE DB 5-61
supported interfaces 5-11

errors
arrays of 5-61
data conversion 4-26
lookup service 5-61
SQL state (SQLSTATE) 1-14
trace logs 3-7

events, tracing 3-7
examples of consumer source code A-

1
Extended Properties initialization

property 5-35
extended relational databases

definition of 1-5
examples 1-4

F
Fetch Backwards property 5-41
fields

DATATYPE 4-23, 4-25
FORMAT 4-25
multivalued 3-8
SQLTYPE 4-23, 4-25

files, UniVerse 1-10
first normal form (1NF)

definition of 1-5
FORMAT field 4-25
functionality, UniOLEDB 1-20, 5-2

G
general implementation notes 5-3
graphical user interface (GUI)

definition of 1-5
GROUP BY Support property 5-17
GUI (graphical user interface)

definition of 1-5

H
handles

definition of 1-5
hardware requirements

client machine 1-21
server machine 1-22

Hold Rows property 5-41
HS.SCRUB utility

adding @EMPTY.NULL record to
dictionary 4-27

adding @SELECT record to
dictionary 4-27

command syntax 4-28
functional overview 4-26
running 4-27

I
IAccessor interface 1-11, 5-8, 5-9
IAccessor property 5-44
IColumnsInfo interface 1-11, 5-8, 5-9,

5-59
IColumnsInfo property 5-44
IColumnsRowset interface 5-8
ICommand interface 1-12, 5-8
ICommandPrepare interface 5-8
ICommandProperties interface 5-9
ICommandText interface 5-9
ICommandWithParameters

interface 5-9, 5-59
IConvertType interface 1-11, 5-9, 5-59
IConvertType property 5-45
IDBCreateCommand interface 5-7
IDBCreateSession interface 5-7
IDBInitialize interface 5-7
IDBProperties interface 5-7
IDBSchemaRowset interface 5-7
Identifier Case Sensitivity property 5-

18
IErrorInfo interface 5-61
IErrorLookup interface 5-11, 5-61
IGetDataSource interface 5-7
Immobile Rows property 5-45
Impersonation Level initialization

property 5-32
implementation notes, UniOLEDB 5-3
index rowsets
Index iv

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
definition of 1-13
initialization properties

supported by UniOLEDB 5-28
Initialization property group 5-12
installing UniOLEDB 1-21, 2-2
Integrated Security authentication

property 5-29
interfaces

See also specific interface
ADO 1-7
COM objects 1-10
command objects 5-8
data source objects 5-7
definition of 1-5
error objects 5-11
GUI 1-5
methods in 1-10
ODBC 1-7
OLE DB 1-7, 1-9, 1-7
rowset objects 5-9
Schema API 1-8
session objects 5-7
supported by UniOLEDB 5-7
Visual Schema Generator (VSG) 1-

11
IOpenRowset interface 1-13, 5-7
IPersist interface 5-7
IRowset interface 1-11, 5-9
IRowset property 5-45
IRowsetChange interface 5-10
IRowsetChange property 5-46
IRowsetFind interface 5-10
IRowsetFind property 5-46
IRowsetIdentity interface 5-10
IRowsetIdentity property 5-47
IRowsetInfo interface 1-11, 5-10
IRowsetInfo property 5-47
IRowsetLocate interface 5-10
IRowsetLocate property 5-47
IRowsetScroll interface 5-10
IRowsetScroll property 5-48
IRowsetUpdate interface 5-11
IRowsetUpdate property 5-48
ISessionProperties interface 5-8
isolation levels

definition of 1-5
for transactions 5-62

Isolation Levels property 5-27
Isolation Retention property 5-27

ISQLErrorInfo interface 5-61
ISupportErrorInfo interface 5-7, 5-8,

5-9, 5-11, 5-61
ISupportErrorInfo property 5-48
ITransaction interface 5-8, 5-62
ITransactionLocal interface 5-8, 5-62

K
keys

association 4-19, 1-2
definition of 1-5
primary 4-19, 1-7

L
length

of character columns 4-25
of data 3-8

Literal Bookmarks property 5-49
Literal Row Identity property 5-49
Locale Identifier initialization

property 5-33
Location initialization property 5-33
logs, trace 3-7
lookup service, error 5-61

M
manual-commit transactions 5-62
mappings

1NF 1-1
data type 5-58

Mask Password authentication
property 5-30

MAXFETCHBUFF parameter 4-25
MAXFETCHCOLS parameter 4-25
Maximum Index Size property 5-18
Maximum Open Rows property 5-49
Maximum Pending Rows property 5-

50
Maximum Row Size Includes BLOB

property 5-19
Maximum Row Size property 5-18
Maximum Rows property 5-50
Maximum Tables In SELECT

property 5-19

Memory Usage property 5-50
menus

UniVerse Server Administration 4-
10

metadata
definition of 1-5

methods
COM objects 1-10
definition of 1-5
return codes 5-60

Microsoft Cursor Engine service
component 5-5, 5-8, 5-10, 5-11, 5-
38, 5-39, 5-40, 5-42, 5-46, 5-47, 5-
48, 5-51, 5-52, 5-53, 5-56

missing values
in UniData 3-9

Mode initialization property 5-33
MSDADC.DLL 5-59
Multiple Parameter Sets property 5-19
Multiple Results property 5-20
multi-subvalued columns

definition of 1-6
Multi-Table Update property 5-20
multivalued

data 3-8
multivalued columns

definition of 1-6
unassociated 4-19

N
nested transactions 5-62

definition of 1-6
NF2 databases

definition of 1-6
examples 1-4

NF2 (nonfirst-normal form)
definition of 1-6

nonfirst-normal form (NF2)
definition of 1-6

nonrelational data sources 1-4
normalization

definition of 1-6
dynamic 1-4

NULL Collation Order property 5-20
NULL Concatenation Behavior

property 5-15
null value 4-26
v Using UniOLEDB

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
O
Object Linking and Embedding (OLE)

definition of 1-6
object-oriented programming

definition of 1-6
objects

binary large (BLOB) 1-2
COM 1-10, 1-3
command 1-13, 1-3
data source 1-12, 1-4
definition of 1-6
enumerator 1-14, 1-5
error 1-14, 1-5
interactions of COM 1-15
OLE DB 1-7
rowset 1-12, 1-8
rowset example 1-10
session 1-12, 1-9
transaction 1-14, 1-9
view 1-13

ODBC (Open Database Connectivity)
comparing with OLE DB 1-5, 1-6
definition of 1-7
driver 1-6

OLE Automation error objects 1-14
OLE DB Data Conversion Library

(MSDADC.DLL) 5-59
OLE DB Version property 5-23
OLE (Object Linking and Embedding)

definition of 1-6
OLE DB

and UniOLEDB 1-5, 1-7
architecture 1-8
COM architecture 1-6
comparing with ODBC 1-5, 1-6
components 1-7, 1-9
data types supported by

UNIOLEDB 5-58
definition of 1-7
exploiting the technology 1-7
overview 1-6

OLE DB objects
definition of 1-7
descriptions 1-11
interfaces and methods 1-10

Open Database Connectivity (ODBC)
comparing with OLE DB 1-5, 1-6
definition of 1-7

driver 1-6
ORDER BY Columns in Select List

property 5-21
Others’ Changes Visible property 5-52
Others’ Inserts Visible property 5-51
Output Parameter Availability

property 5-21
Own Changes Visible property 5-53
Own Inserts Visible property 5-52

P
parameters

OLE DB data types in 5-58
Pass By Ref Accessors property 5-14
Password authentication property 5-30
Persist Encrypted authentication

property 5-30
Persist Security Info authentication

property 5-31
precision 4-25
Prepare Abort Behavior property 5-21
Prepare Commit Behavior property 5-

22
Preserve On Abort property 5-36
Preserve On Commit property 5-43
primary keys 4-19

definition of 1-7
procedure calls

remote (RPC) 1-8
Procedure Term property 5-22
programs

application 1-2
Prompt initialization property 5-34
properties

See also specific property
authentication 5-28
data source objects 5-13
definition of 1-7
initialization 5-28
rowset objects 5-36
session objects 5-57
supported by UniOLEDB 5-12

property groups
Data Source Information 5-12
Initialization 5-12
Rowset 5-12
Session 5-12

supported by UniOLEDB 5-12
Protection Level initialization 5-35
Provider Name property 5-22
Provider Version property 5-23
providers

architecture diagram 1-8
data 1-4
definition of 1-9, 1-7

PROVIDER_TYPES rowset 5-5, 5-58

Q
qualifiers

definition of 1-8
queries

definition of 1-8
Quick Restart property 5-53
Quoted Identifier Sensitivity

property 5-24

R
RDBMS (relational database

management system)
definition of 1-8

Read-Only Data Source property 5-15
record IDs 4-19
records

@ 4-27
@EMPTY.NULL 4-26, 4-27
@SELECT 4-27

relational database management system
(RDBMS)

definition of 1-8
relational databases

extended 1-4
remote procedure call (RPC)

definition of 1-8
return codes 5-60
return codes for methods 5-60
Return Pending Inserts property 5-53
Row Privileges property 5-54
Row Threading Model property 5-54
rows

association 1-2
definition of 1-8

Rowset Conversions On Command
property 5-24
Index vi

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
rowset objects
definition of 1-12, 1-8
example of 1-10
implementation notes 5-5
supported interfaces 5-9
supported properties 5-36

Rowset property group 5-12
rowsets

bulk-copy 5-5
chaptered 1-16, 3-8, 5-6
COLUMNS 5-5, 1-3
index 1-13
OLE DB data types in 5-58
PROVIDER_TYPES 5-5, 5-58
schema 1-13, 1-8
SCHEMATA 5-5
TABLES 5-5, 1-9

RPC (remote procedure call)
definition of 1-8

S
Schema API

description of 1-8
schema rowsets

COLUMNS 5-5
definition of 1-13, 1-8
PROVIDER_TYPES 5-5, 5-58
SCHEMATA 5-5
supported by UniOLEDB 5-5
TABLES 5-5

Schema Term property 5-24
Schema Usage property 5-25
schemas

definition of 1-8
generating for UniData 1-2
Schema API 1-8
Visual Schema Generator (VSG) 1-

11
SCHEMATA rowset 5-5
Server Cursor property 5-55
servers

definition of 1-9
hardware and software

requirements 1-22
Service Component Manager 1-9
service components

architecture diagram 1-8

definition of 1-9
examples of 1-9
Service Component Manager 1-9

session objects
definition of 1-12
implementation notes 5-4
supported interfaces 5-7
supported properties 5-57

Session property group 5-12
sessions

definition of 1-9
level of transaction scope 5-62

SetErrorInfo function 5-61
setting up the UCI configuration file

(uci.config) 2-3
setting up UniOLEDB 2-2
SICA 4-24
singlevalued columns

definition of 1-9
Skip Deleted Bookmarks property 5-

39
software requirements

client machine 1-21
server machine 1-22

Sort On Index property 5-25
source code, consumer examples A-1
SQL (Structured Query Language)

definition of 1-9
SQL Support property 5-25
SQLSTATE 1-14
SQLTYPE field 4-23, 4-25
starting

HS.SCRUB utility 4-27
UniRPC 3-3

Strong Row Identity property 5-55
Structured Query Language (SQL)

definition of 1-9
Subquery Support property 5-26
success codes 5-60

T
Table Term property 5-28
tables

1NF 1-1
definition of 1-9
UniOLEDB 1-10
UniOLEDB-visible 1-10

TABLES rowset 5-5
definition of 1-9

tables, UniVerse 1-11
TCP/IP 1-21, 1-22
trace levels 3-7
trace logs 3-7
tracing events 3-7
Transaction DDL property 5-26
transaction objects

definition of 1-14, 1-9
transactions

auto-commit 5-62
coordinated 5-62
definition of 1-9
isolation levels 5-62, 1-5
level of scope per session 5-62
manual-commit 5-62
nested 5-62, 1-6

troubleshooting
trace logs 3-7

U
UCI

configuration file (uci.config) 2-3, 1-
10

connection timeout configuration 3-
4

data source 1-10
definition of 1-9

UCI Config Editor 2-3
UCI data sources

definition of 1-10
uci.config file

default settings 2-4
definition of 1-10
setting up 2-3

UDA (Universal Data Access)
accessing diverse data sources 1-5
definition of 1-10

udserver process
definition of 1-10

UDTHOME directory 3-6
ud_database file

trace log settings 3-7
unassociated multivalued columns 4-

19
UniData
vii Using UniOLEDB

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
data access 1-4, 1-7, 3-2
UniOLEDB

and OLE DB technology 1-5, 1-7
architecture 1-17
data types supported by 5-58
DDL support 5-62
definition of "table" 1-10
DLL deployment 5-3
error support 5-60
functionality 5-2
functionality supported by 1-20
implementation notes 5-3
installing 1-21, 2-2
interfaces supported by 5-7
preparing UniData files for 1-2
property groups supported by 5-12
setting up 2-2
SQL support 5-62
tables visible to 1-10
transaction support 5-62

UniOLEDB-visible table
definition of 1-10

UniRPC
definition of 1-10
starting 3-3
verifying that it is running 3-3

unirpc daemon 4-2
unirpc service

definition of 1-10
unirpcd daemon

definition of 1-10
unirpcservices file 3-4
unishared directory 3-4
Universal Data Access (UDA)

accessing diverse data sources 1-5
definition of 1-10

UniVerse
data access 1-4, 1-7
definition of "file" 1-10
definition of "table" 1-11
dynamic normalization 1-4

UniVerse Server Administration
menu 4-10

Updatability property 5-56
Use Bookmarks property 5-38
User ID authentication property 5-31
utility, HS.SCRUB

adding @EMPTY.NULL record to
dictionary 4-27

adding @SELECT record to
dictionary 4-27

command syntax 4-28
functional overview 4-26
running 4-27

uvserver process
definition of 1-11

V
verifying that UniRPC is running 3-3
view objects

definition of 1-13
views

definition of 1-11
Visual Schema Generator (VSG)

definition of 1-11
VSG (Visual Schema Generator)

definition of 1-11

W
warning codes 5-60
Window Handle initialization

property 5-32

Symbols
@ record 4-27
@ASSOC_ROW column 4-19
@EMPTY.NULL record 4-26, 4-27
@SELECT record 4-27
Index viii

	Online Guide

	Table of Contents

	Introduction to UniOLEDB
	Introduction
	The Data Challenge
	The Data Solution

	Overview of OLE DB
	Comparing OLE DB with ODBC
	Exploiting OLE DB Technology
	OLE DB Architecture

	Overview of UniOLEDB
	UniOLEDB Architecture
	Supported OLE DB Functionality

	Before You Use UniOLEDB
	Hardware and Software Requirements

	Setting Up UniOLEDB
	Setting Up the UCI Configuration File

	Accessing UniData Data
	Verifying That UniRPC Is Running
	UCI Connection Timeout Configuration

	Making UniData Accounts Accessible
	Tracing Events

	Presenting Data in OLE DB–Accessible Format
	Data Types
	Multivalued and Multi-Subvalued Data
	Missing Values

	Accessing UniVerse Data
	Accessing UniVerse Tables and Files
	Tables
	Files
	Multivalued Data
	The TABLES Rowset

	The UniVerse Server Administration Menu
	Making Files Visible to UniOLEDB Consumers
	Making Files Visible
	Restricting File Visibility
	Updating the File Information Cache
	Removing File Visibility
	COLUMNS Rowset
	Association Keys

	Table and Column Names Containing Special Characters
	Delimited Identifiers

	Making UniVerse Data Meaningful to UniOLEDB
	SQL Data Types
	Length of Character String Data
	Empty-Null Mapping
	Validating and Fixing Tables and Files

	UniOLEDB Functionality
	UniOLEDB Implementation Notes
	General
	Data Source Objects
	Session Objects
	Command Objects
	Rowset Objects
	Error Objects

	Supported Interfaces
	UniOLEDB Properties
	Data Source Information
	Initialization
	Rowset
	Session

	Data Type Support
	Supported Data Types
	Data Type Conversions

	Error Support
	Method Return Codes

	Transaction and SQL Support
	Transaction Support
	SQL Support

	Examples of Consumer Source Code
	Glossary
	Index

