IBM

InterCall Developer’s Guide

Version 10.3
February, 2009

il

IBM Corporation
555 Bailey Avenue
San Jose, CA 95141

Licensed Materials — Property of IBM
© Copyright International Business Machines Corporation 2008, 2009. All rights reserved.

AIX, DB2, DB2 Universal Database, Distributed Relational Database Architecture, NUMA-Q, OS/2, 0S/390, and
0S/400, IBM Informix®, C-ISAM®, Foundation.2000 ™, IBM Informix® 4GL, IBM Informix® DataBlade® module,
Client SDK™, Cloudscape™, Cloudsync™, IBM Informix® Connect, IBM Informix® Driver for JDBC, Dynamic
Connect™, IBM Informix® Dynamic Scalable Architecture™ (DSA), IBM Informix® Dynamic Server™, IBM
Informix® Enterprise Gateway Manager (Enterprise Gateway Manager), IBM Informix® Extended Parallel Server™,
i.Financial Services™, J/Foundation™, MaxConnect™, Object Translator™, Red Brick® Decision Server™, IBM
Informix® SE, IBM Informix® SQL, InformiXML™, RedBack®, SystemBuilder™, U2™, UniData®, UniVerse®,
wlintegrate® are trademarks or registered trademarks of International Business Machines Corporation.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Windows, Windows NT, and Excel are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company
Limited.

Other company, product, and service names used in this publication may be trademarks or service marks of others.
This product includes cryptographic software written by Eric Young (eay@cryptosoft.com).
This product includes software written by Tim Hudson (tjh@cryptosoft.com).

Documentation Team: Claire Gustafson, Shelley Thompson, Anne Waite
US GOVERNMENT USERS RESTRICTED RIGHTS

Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

InterCall Developer’s Guide

Preface

Chapter 1

Chapter 2

Chapter 3

Table of Contents

Organization of This Manual
Documentation Conventions.
Help . .
API Documentation

Introduction

About InterCall .

Minimum System Requlrements

InterCall Installation .

On Windows Platforms.
On UNIX Systems .

How InterCall Works .

Copying the Software .

UniVerse NLS in Client Programs
NLS Configurable Parameters
Character Mapping .

The Sample Program .

Programming with InterCall
Server Sessions .
Using the Microsoft Securlty Token
Argument Passing Conventions.
The ICSTRING Type
Calling Functions from C Programs. .
Calling Functions from Visual Basic Programs .
Using the @TTY Variable

InterCall Functions
Function Summary.

viii
ix
Xi

xii

1-2
1-3
1-4
1-4
1-5

1-8
1-8
1-10

2-3
2-4
2-5
2-5
2-5
2-6
2-7

3-5

ErrorCodes L ... 3-8
icalpha. L L L L. Lo 3-9
ic calloc . 310
ic cleardata . 31
ic clearfile. 312
ic clearselect . 314
icclose. 316
ic closeseq. 318
icdata . 32
icdate L L322
ic delete . 323
ic execute . 325
ic_executecontinue 327
ic_extract 32
ic fileinfo . 331
ic filelock o 334
ic fileunlock . 336
icfmt . 338
ic formlist . 340
ic free L L L L L L L oL 342
ic getlist . 343
ic get locale . 345
ic get map. 34T
ic_get mark value 349
ic_ getvalue. 351
iciconv. .. 354
ic indices . 356
ic_inputreply . 35
ic insert. 30l
icitype. 363
ic locate . 365
iclock L. L. L. ... 3067
ic lower. 368
ic malloc . 370
icoconv 3
icopen. 373
icopenseq. 376
ic_opensession. 378
ic quit L L L L. 381
ic quitall L 3-8
icraise 383
icread . 3-8

iv InterCall Developer’s Guide

Appendix A

ic_readblk
ic_readlist
ic_readnext .
ic_readseq
ic_readv .
ic_recordlock
ic_recordlocked .
ic_release.
ic_remove
ic_replace.

ic_seek

ic_select .
ic_selectindex
ic_session_info .
ic_set_comms_timeout
ic_set_locale. .
ic_set map (UniVerse only)
ic_setsession.
ic_setvalue
ic_strdel .
ic_subcall.

ic_time
ic_timedate .
ic_trans

ic_unlock .
ic_unidata_session .
ic_universe_session
ic_weofseq
ic_write
ic_writeblk
ic_writeseq .
ic_writev .

InterCall Functions by Use

Accessing a Server .
Reading and Modifying Records

Reading and Modifying Sequential Files .

Accessing and Modifying Strings .
Accessing and Modifying Select Lists .
Managing Database Files .

Using UniVerse NLS (UniVerse Only)
Using System Utilities.

3-88

3-90

3-92

3-94

3-96
. 3-99
. 3-102
. 3-105
. 3-107
. 3-110
. 3-113
. 3-115
. 3-117
. 3-119
. 3-121
. 3-123
. 3-125
. 3-127
. 3-129
. 3-131
. 3-133
. 3-135
. 3-136
. 3-138
. 3-140
. 3-141
. 3-144
. 3-147
. 3-149
. 3-151
. 3-153
. 3-155

A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9

Table of Contents v

vi

Appendix B Error Codes

Database Error Codes

InterCall Developer’s Guide

B-2

Preface

This manual describes how to use InterCall, an application programming interface to
UniVerse and UniData. This book is for application developers who have a good
working knowledge of UniVerse or UniData, UNIX, and Windows environments.

vii

Organization of This Manual

This manual contains the following:

Chapter 1, “Introduction,” introduces InterCall.

Chapter 2, “Programming with InterCall,” describes programming with InterCall.
Chapter 3, “InterCall Functions,” describes the InterCall functions.

Appendix A, “InterCall Functions by Use,” contains a summary of InterCall
functions listed by usage.

Appendix B, “Error Codes,” describes the InterCall error reporting system and lists
the error codes and their meanings.

The Glossary defines terms that are used in this manual.

viii InterCall Developer’s Guide

Documentation Conventions

This manual uses the following conventions:

Convention

Usage

Bold

UPPERCASE

Italic

Courier

Courier Bold

[]
{1

itemA | itemB

->

In syntax, bold indicates commands, function names, and
options. In text, bold indicates keys to press, function names,
menu selections, and MS-DOS commands.

In syntax, uppercase indicates UniVerse commands, keywords,
and options; UniVerse BASIC statements and functions; and
SQL statements and keywords. In text, uppercase also indicates
UniVerse identifiers such as file names, account names, schema
names, and Windows file names and paths.

In syntax, italic indicates information that you supply. In text,
italic also indicates UNIX commands and options, file names,
and paths.

Courier indicates examples of source code and system output.

In examples, courier bold indicates characters that the user types
or keys the user presses (for example, <Return>).

Brackets enclose optional items. Do not type the brackets unless
indicated.

Braces enclose nonoptional items from which you must select at
least one. Do not type the braces.

A vertical bar separating items indicates that you can choose
only one item. Do not type the vertical bar.

Three periods indicate that more of the same type of item can
optionally follow.

A right arrow between menu options indicates you should
choose each option in sequence. For example, “Choose

File -> Exit” means you should choose File from the menu bar,
then choose Exit from the File menu.

Item mark. For example, the item mark (I) in the following
string delimits elements 1 and 2, and elements 3 and 4:
1I2F3I14V5

Documentation Conventions

ix

Convention Usage

F Field mark. For example, the field mark (F) in the following
string delimits elements FLD1 and VAL1:
FLD1FVAL1VSUBV1SSUBV2

A Value mark. For example, the value mark (V) in the following
string delimits elements VAL1 and SUBV1:
FLD1FVAL1VSUBV1SSUBV2

S Subvalue mark. For example, the subvalue mark (S) in the
following string delimits elements SUBV1 and SUBV2:
FLD1FVAL1VSUBV1SSUBV2

T Text mark. For example, the text mark (T) in the following string
delimits elements 4 and 5: 1F2S3V4T5

Documentation Conventions (Continued)

The following are also used:

B Syntax definitions and examples are indented for ease in reading.

B All punctuation marks included in the syntax—for example, commas,
parentheses, or quotation marks—are required unless otherwise indicated.

B Syntax lines that do not fit on one line in this manual are continued on
subsequent lines. The continuation lines are indented. When entering
syntax, type the entire syntax entry, including the continuation lines, on the
same input line.

x InterCall Developer’s Guide

Help

To get Help about InterCall, choose Programs -> IBM U2 -> UniDK -> InterCall
-> Help from the Start menu.

xi

xii

API Documentation

The following books document application programming interfaces (APIs) used for
developing client applications that connect to UniVerse and UniData servers.

Administrative Supplement for APIs: Introduces IBM’s seven common APIs for
UniData and UniVerse, and provides important information that developers using
any of the common APIs will need. It includes information about the UniRPC, the
UCI Config Editor, the ud_database file, and device licensing.

UCI Developer’s Guide: Describes how to use UCI (Uni Call Interface), an interface
to UniVerse and UniData databases from C-based client programs. UCI uses ODBC-
like function calls to execute SQL statements on local or remote UniVerse and
UniData servers. This book is for experienced SQL programmers.

IBM JDBC Driver for UniData and UniVerse: Describes UniJDBC, an interface to
UniData and UniVerse databases from JDBC applications. This book is for
experienced programmers and application developers who are familiar with UniData
and UniVerse, Java, JDBC, and who want to write JDBC applications that access
these databases.

InterCall Developer’s Guide: Describes how to use the InterCall API to access data
on UniVerse and UniData systems from external programs. This book is for
experienced programmers who are familiar with UniVerse or UniData.

UniObjects Developer’s Guide: Describes UniObjects, an interface to UniVerse and
UniData systems from Visual Basic. This book is for experienced programmers and
application developers who are familiar with UniVerse or UniData, and with Visual
Basic, and who want to write Visual Basic programs that access these databases.

UniObjects for Java Developer’s Guide: Describes UniObjects for Java, an interface
to UniVerse and UniData systems from Java. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with Java, and who want to write Java programs that access these databases.

UniObjects for .NET Developer’s Guide: Describes UniObjects, an interface to
UniVerse and UniData systems from .NET. This book is for experienced
programmers and application developers who are familiar with UniVerse or UniData,
and with .NET, and who want to write .NET programs that access these databases.

InterCall Developer’s Guide

Using UniOLEDB: Describes how to use UniOLEDB, an interface to UniVerse and
UniData systems for OLE DB consumers. This book is for experienced programmers
and application developers who are familiar with UniVerse or UniData, and with
OLE DB, and who want to write OLE DB programs that access these databases.

xiii

Introduction

About InterCall L. o L L. 0L 1-2
Minimum System Requirements 1-3
InterCall Installation. 1-4
On Windows Platforms 1-4
On UNIX Systems 1-5
How InterCall Works 1-6
Copying the Software 1-7
UniVerse NLS in Client Programs 1-8
NLS Configurable Parameters 1-8
Character Mapping. 1-8

The Sample Program 1-10

About InterCall

InterCall is an API (application programming interface) that enables a UNIX or
Windows client to access data on UniVerse and UniData servers. With InterCall, your
applications can:

B Connect to one or more servers

B Access files and records

B Execute database commands and UniVerse BASIC programs
On Windows platforms, you can write applications for client programs using any

development tool that accesses DLLs, for example, Visual Basic, C, or Visual C/C++.
On UNIX, you can use any tool that accesses static libraries, typically a C compiler.

1-2

1-3 InterCall Developer’s Guide

Minimum System Requirements

To run InterCall applications, you need the following:

B Ona UNIX server:

UniVerse Release 8.3.3.1G or later, or UniData Release 5.1 or later
TCP/IP
UniRPC daemon (unirpcd) running

B On a Windows server:

UniVerse Release 9.3.1 or later, or UniData Release 5.1 or later
TCP/IP, if connected to a UNIX client
TCP/IP or LAN Manager, if connected to a Windows client

UniRPC service (unirpc) running

B Ona UNIX client:

TCP/IP

B On a Windows client:

TCP/IP, if connected to a UNIX server
TCP/IP or LAN Manager, if connected to a Windows server

Required InterCall files copied from the development system

To develop InterCall applications, C-language development tools must be available
on the system you are using for development.

InterCall Installation

The installation of InterCall is different on Windows platforms and UNIX platforms.

On Windows Platforms

InterCall is one of several APIs in the UniDK (Uni Development Kit). The UniDK is

installed using the standard Microsoft Windows installation procedure. The
following UniDK files are used for InterCall development.

File Description
include/intcall.h A C header file used when compiling InterCall application
programs.

include/INTCALL.TXT A Visual Basic include file used when compiling InterCall
application programs.

lib/UVIC32.LIB A library file used when linking InterCall application
programs.

bin/UVIC32.DLL A DLL used by InterCall applications at run time.

bin/UVCLNT32.DLL A DLL used by InterCall applications at run time.

bin/unirpc32.dil A DLL used by InterCall applications at run time.

UniDK Files for InterCall Development

files:

On UNIX Systems

The InterCall SDK is included on the UniVerse and UniData installation tapes for
UNIX systems. It is installed from the IC group as part of the standard installation.
The installation process creates a directory called icsdk in the unishared directory,
whose path is stored in the file /. unishared. The icsdk directory contains the following

File

Description

version
intcall.h
libuvic.a
ictest.c

ictest.mak

A text file containing the version number of InterCall.

A header file used when compiling InterCall application programs.
An archive file used when linking InterCall application programs.
C source code for a sample InterCall application.

A make file for the sample InterCall application.

1-5 InterCall Developer’s Guide

icsdk Files

How InterCall Works

The client program initializes InterCall by calling one of the following functions:

B ic_opensession
B ic_unidata_session

B ic_universe_session
These functions log on to a host system over TCP/IP and run a server.

As the client program runs, InterCall functions send requests to the server to be
executed. The program can access files, records, commands, and UniVerse BASIC
programs that are available in the server database environment. When it finishes, it
calls ic_quit or ic_quitall and the server program terminates.

Copying the Software

You can make as many copies as you want of the client part of InterCall without
further payment.

You may not copy or redistribute the server program unless your license agreement
explicitly allows you to.

If you want to distribute part of InterCall with the executable version of an
application that uses it, you can. The following files are required for 32-bit Windows
systems:

B UVIC32.DLL

B UVCLNT32.DLL

B unirpc32.dll

Note: On UNIX systems you do not need to redistribute any InterCall components.

1-7 InterCall Developer’s Guide

UniVerse NLS in Client Programs

To use NLS features in client programs connected to a UniVerse database, NLS mode
must be enabled on the server. All servers honor the settings of the database
configurable parameters and client requests for character mapping and locales. For
detailed information about NLS, see the UniVerse NLS Guide.

NLS Configurable Parameters

You can configure the following parameters:

Parameter Description

NLSDEFSRVLC Specifies the name of the default locale to use for passing data to and
from client programs. This locale is used if the client program does
not specify a server locale. The default value is ISO8859-
1+MARKS.

NLSDEFSRVMAP Specifies the name of the default map to use for passing data to or
from client programs. This map is used if the client program does not
specify a server map. The default value is ISO8859-1+MARKS.

NLSLCMODE Specifies whether locales are enabled. A value of 1 indicates that
locales are enabled, a value of 0 indicates that locales are disabled.
The default setting is 0. This parameter has no effect unless
NLSMODE is set to 1.

NLSMODE Turns NLS mode on or off. A value of 1 indicates that NLS is on, a
value of 0 indicates NLS is off. If NLS mode is off, UniVerse does
not check any other NLS parameters.

Configurable Parameters

Character Mapping

UniVerse performs character mapping on the server. Your program can inform the
server of the appropriate map name or the character set you use to send and receive
data. In theory, you can set and reset maps as many times as you want in a program.
All users who log on in a client/server system have their own individual copies of the
server program.

Locale Conversion

UniVerse does locale conversions on the server. Your program must inform the server
of the locale your programs want to use in order to send or receive data. Once a
connection to the server is established, you can change the locale settings as you
wish. These settings do not interfere with other client/server users.

System Delimiters and the Null Value

Your program must use the correct values for system delimiters and the null value.
You should not use hard-coded values for system delimiters.

1-9 InterCall Developer’s Guide

The Sample Program

On UNIX systems, InterCall comes with a sample program called ictest, which
prompts for a machine and account to connect to and then reads the ED record from
that account’s VOC. To use ictest, you must compile it by running the following
command in the icsdk directory:

$ make -f ictest.mak

You may need to copy the directory, change its permissions, or both, before you can
write to it.

Note: ictest is not available on Windows platforms.

1-10

Programming with InterCall

Server Sessions . P

Using the Microsoft Security Token .
Argument Passing Conventions .

The ICSTRING Type . .

Calling Functions from C Programs

Calling Functions from Visual Basic Programs .
Using the @TTY Variable .

2-3
2-4
2-5
2-5

2-6
2-7

This chapter describes programming with InterCall.

2-2

Server Sessions

An InterCall client can support up to 10 simultaneous sessions on different database
servers.

Open a session on a database server using one of the following functions:

B ic _opensession
B ic unidata_session

B ic universe session

These functions return a unique session identifier for the new session. Each time you
use one of these functions to open a new session on the server, the new session
becomes the current session on which subsequent InterCall functions act.

Move among sessions using the ic_setsession function. ic_setsession finds the
desired session using the session identifier returned by ic_opensession,
ic_unidata_session, or ic_universe_session.

Get information about the current session using the ic_session_info function.

Close a session using the ic_quit function. ic_quit closes any open files and releases
locks in the current session, and closes the connection with the server. However, a
closed session still will be the current session until you use ic_setsession to switch to
another session.

Use ic_quitall to close all open sessions.

When you open a file on the server using ic_open, InterCall returns a unique file
identifier for that file within the current session. If you try to use this unique file
identifier to reference the file from any other session, InterCall returns the error

IE_FIFS (file invalid for session).

Device Licensing

Device licensing restricts InterCall connections, just at it restricts any other type of
connection. Without device licensing, the connection limit is the lesser of the server’s
license limit, or 1024.

2-3 InterCall Developer’s Guide

Using the Microsoft Security Token

When you log on to a Windows client, your login details are held in a Microsoft
Security Token.

You can use the security token to make a LAN pipes connection from InterCall to a
Windows server.

To use the security token, set the user _name and password parameters in the
ic_opensession, ic_unidata_session, or ic_universe_session expression to empty
strings.

2-4

Argument Passing Conventions

The functions exported by the InterCall library use only two types of argument:
numeric arguments and string arguments. For more information about passing
arguments, see the next four sections.

The ICSTRING Type

ICSTRING is C structure. It is used by ic_subcall to pass arguments to the UniVerse
BASIC cataloged subroutines.

The structure has the following definition in the intcall.h header file:

typedef struct icstring

{

long len;
unsigned char * text;
} ICSTRING;

len is used to store the length of the data being used. fext is an unsigned char pointer
that points to an area of memory containing the data.

Allocate the memory to which text points using ic_malloc or ic_calloc. Release
memory with ic_free.

For more information about subroutines, see UniVerse BASIC.

Calling Functions from C Programs

To use InterCall functions from an application written in C, include the header file
intcall.h. This file contains ANSI-C function declarations for all InterCall functions.
Here is an example:

void

ic_open (LPLONG , LPLONG , LPSTR , LPLONG , LPLONG , LPLONG
)i

2-5 InterCall Developer’s Guide

Calling Functions from Visual Basic Programs

To use InterCall functions in a Visual Basic application, you should add the
INTCALL.TXT file to your project. This file includes the necessary function
declarations for all InterCall functions.

Create a new module and load INTCALL.TXT into it using the Load Text option
under the File menu. This module can be added to any new program that needs to use
InterCall procedures. For example:

Declare Sub ic_open Lib "UVIC.DLL" (FileID As Long, DictFlag As
Long, ByVal FileName As String, FileLength As Long, StatusFunc As
Long, Status As Long)

Numeric arguments are declared using As Long; character arguments are declared
using ByVal and As String.

For information about string arguments used as output arguments, see Size of Output
Buffers in the next section.

Size of Output Buffers

It is important to make sure that any string variable used as an output argument to an
InterCall function is large enough to hold the returned data. The size of the buffer
passed to the InterCall function is the actual size of the value contained in the Visual
Basic variable before the call.

One way to call an InterCall function that returns a string value is to make the
returned argument long enough by filling it with characters:
Dim ListBuffer As String
ListBuffer = String$ (1000, 0)
ic_readlist 0, ListBuffer, Len(ListBuffer), ListLength, ListCount,
ErrorCode
Another solution is to define the string as fixed length:
Dim ListBuffer As String * 1000
ic_readlist 0, ListBuffer, Len(ListBuffer), ListLength, ListCount,
ErrorCode

In either case, you should refer to the data returned by ic_readlist as:

Lefts (ListBuffer, ListLength)

2-6

Using the @ TTY Variable

You can use the @TTY variable setting to determine the type of connection made to
the server. The three possible settings are:

B The terminal number. This is the UNIX path of the terminal connected, or a
number representing the connection from a Windows system.

B The string phantom. This is set if a phantom process is connected to the
server.

B The string uvcs (on UniVerse systems) or udcs (on UniData systems).
This is set if the connection is made from InterCall.

You can use this returned value, by adding a paragraph entry to the VOC file. For
example:

PA

IF @TTY = 'uvcs' THEN GO END:
START .APP

END:

For more information, see the following functions in Chapter 3, “InterCall
Functions”:

B ic execute

B ic opensession

B ic subcall

2-7 InterCall Developer’s Guide

InterCall Functions

Function Summary 3-5
ErrorCodes L ... 3-8
ic alpha L L L oL L oL 3-9
iccalloc . 310
ic cleardata . 31
ic clearfile. 312
ic clearselect . 314
icclose. 316
ic closeseq . 318
icdata. 320
icdate L L. L L L. L. 322
ic delete . 323
ic execute . 325
ic_executecontinue 327
ic extract .. 32
ic fileinfo. 331
ic filelock . 334
ic_fileunlock . 336
icfmt . 338
ic formlist. 340
ic free L . L L L. L. L. 342
ic getlist . 343
ic getlocale . 345
ic get map 34
ic get mark value 349
ic getvalue . 351
iciconv . 35

ic_ indices . 356
ic_inputreply . 359
ic insert. .. 30l
icitype. 363
ic locate . 365
iclock 307
ic lower . 3068
ic malloc . 370
icoconv L.3
icopen. 373
icopenseq. 376
ic opensession 378
ic quit L. L 381
ic quitall L. 382
icraise. 383
icread . 385
icreadblk . 388
ic readlist . 39
ic readnext. 39
icreadseq . 39
icreadv. 39
ic recordlock . 39
ic recordlocked 3102
icrelease . 3105
ic remove . 3107
ic replace . 3110
icseek . 3113
ic select . 3115
ic_selectindex. 3117
ic_ session_info 3-119
ic_set comms_timeout 3121
ic set locale . 3123
ic_set map (UniVerseonly) 3-125
ic_setsession 3127
ic setvalue. 3129
ic strdel. L 3131

3-2 InterCall Developer’s Guide

ic_subcall.
ic_time
ic_timedate .
ic_trans
ic_unlock .

ic_unidata session .

ic_universe_session
ic_weofseq
ic_write
ic_writeblk
ic_writeseq .
ic_writev .

.3-133
.3-135
.3-136
.3-138
.3-140
.3-141
.3-144
.3-147
.3-149
.3-151
.3-153
.3-155

InterCall Developer’s Guide 3-3

This chapter describes the InterCall functions in alphabetical order. All InterCall
functions begin with the prefix ic_. The syntax diagram for each function includes
the function name and any applicable input and output variables. For example:

ic_alpha (string, string len, code)

3-4 InterCall Developer’s Guide

Function Summary

The following table lists all InterCall functions. See also the general explanation of
argument passing in Using the Microsoft Security Token and the description of the
ICSTRING structure in The ICSTRING Type in Chapter 2, “Programming with

InterCall.”

Use

Function

Accessing a server

Reading and modifying records

Reading and modifying sequential files

ic_opensession
ic_session_info
ic_setsession
ic_set_comms_timeout
ic_quit

ic_quitall
ic_unidata_session
ic_universe_session

ic_read
ic_readv
ic_writev
ic_write
ic_trans
ic_release
ic_delete

ic_openseq
ic_readseq
ic_readblk
ic_writeseq
ic_writeblk
ic_weofseq
ic_seek
ic_closeseq

Functions and Their Uses

3-5

Use Function

Accessing and modifying strings ic_alpha
ic_extract
ic_fmt
ic_iconv
ic_insert
ic_locate
ic_lower
ic_oconv
ic_raise
ic_remove
ic_replace
ic_strdel

Accessing and modifying select lists ic_select
ic_selectindex
ic_getlist
ic_readlist
ic_formlist
ic_readnext
ic_clearselect

Functions and Their Uses (Continued)

3-6 InterCall Developer’s Guide

Use

Function

Managing database files

Using NLS (UniVerse only)

Using system utilities

ic_open
ic_fileinfo
ic_filelock
ic_fileunlock
ic_recordlock
ic_recordlocked
ic_close
ic_clearfile

ic_get locale

ic_get map

ic_get mark value
ic_set_locale

ic_set_map (UniVerse only)

ic_calloc
ic_cleardata
ic_data
ic_date
ic_execute
ic_executecontinue
ic_free
ic_getvalue
ic_indices
ic_inputreply
ic_itype
ic_lock
ic_malloc
ic_setvalue
ic_subcall
ic_time
ic_timedate
ic_unlock

Functions and Their Uses (Continued)

Error Codes

InterCall functions return error information as a status code. Symbolic constants
representing each error number can be found in the files intcall.h (for C) and
INTCALL.TXT (for Visual Basic) in the include subdirectory of the InterCall install
directory. For a list of InterCall error codes, see Appendix B, “Error Codes.”

3-8 InterCall Developer’s Guide

ic_alpha

Syntax

ic_alpha (string, string len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

string char * String to be tested.

string_len long * Length of string.

ic_alpha Input Variables

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_alpha Output Variable

Description

ic_alpha determines whether a string is alphabetic or nonalphabetic. If the string
contains the characters a through z or A through Z, it returns a value of 1. If the string

contains any other characters or an empty string, it returns 0.

ic_alpha 3-9

3-10

ic_calloc

Syntax

ptr =ic_calloc (size)

Input Variable

The following table describes the input variable.

Parameter Type Description

size long * Number of bytes to allocate and clear.

ic_calloc Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

ptr void * Pointer to the allocated memory.

ic_calloc Output Variable

Description

ic_calloc allocates and zeros a piece of memory for use by ic_subcall, returning a
pointer, i, to the allocated memory. Use ptr with ic_free to release the memory when
it is no longer needed.

See also The ICSTRING Type in Chapter 2, “Programming with InterCall.”

Related Function

ic_malloc

InterCall Developer’s Guide

ic_cleardata

Syntax

ic_cleardata (code)

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * 1 if the string was alphabetic, 0 if it was nonalphabetic, or a
specific error code if execution was not successful.

ic_cleardata Output Variable

Description

ic_cleardata flushes data loaded by the ic_data function from the input stack.

ic_cleardata 3-11

3-12

ic_clearfile

Syntax

ic_clearfile (file_id, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

ic_clearfile Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_clearfile Output Variable

Description

ic_clearfile deletes all open data or dictionary records of a server database file.
ic_clearfile deletes the record content only, not the file itself. You must specify each
file to be cleared in a separate ic_clearfile statement.

Related Functions

ic_close
ic_delete

InterCall Developer’s Guide

ic_clearselect

Syntax

ic_clearselect (select list num, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

select_list_ num long * Identifies the select list (0 through 10) that is to be cleared.

ic_clearselect Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_clearselect Output Variable

Description
ic_clearselect clears an active select list. You can get an active select list by:

B Using ic_select to create it
B Using ic_getlist to restore it

B Using ic_execute to execute a database command such as SELECT, which
creates a select list

ic_clearselect 3-13

Related Functions

ic_formlist
ic_readlist
ic_readnext
ic_selectindex

3-14 InterCall Developer’s Guide

ic_close

Syntax

ic_close (file_id, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

ic_close Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_close Output Variable

Description

ic_close closes an open server database file. Use ic_close after opening and
processing a file. This function releases any file locks or record locks for the current
user.

ic_close 3-15

Related Functions

ic_filelock
ic_fileunlock
ic_recordlock

3-16 InterCall Developer’s Guide

ic_closeseq

Syntax

ic_closeseq (file_id, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

file_id long * File identifier returned by the ic_openseq function.

ic_closeseq Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_closeseq Output Variable

Description
Note: UniData databases do not support the ic_closeseq function.

ic_closeseq closes a file that was opened for sequential processing.

ic_closeseq 3-17

Related Functions

ic_readseq
ic_weofseq
ic_writeseq

3-18 InterCall Developer’s Guide

ic_data

Syntax

ic_data (string, string_len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description
string char * Data value to be placed in the queue.
string_len long * Length of the data value in bytes.

ic_data Input Variables

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_data Output Variable

Description

ic_data loads strings onto the input stack. These values can be used as responses to
UniVerse BASIC or UniBasic INPUT statements executed on the server.

Expressions used in ic_data can be numeric or string data. ic_data handles
expressions in a first-in, first-out order.

ic_data functionally is the same as the UniVerse BASIC or UniBasic DATA
statement.

ic_data 3-19

Related Functions

ic_cleardata
ic_execute
ic_executecontinue

3-20 InterCall Developer’s Guide

ic_date

Syntax

ic_date (date, code)

Output Variables

The following table describes the output variables.

Parameter Type Description
date long * Server system date in internal format.
code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_data OQutput Variables

Description

ic_date returns the server system date in internal format. The internal format for the
date is based on a reference date of December 31, 1967, which is day 0. All dates
therefore are positive numbers representing the number of days elapsed since day 0.

Related Functions

ic_time
ic_timedate

ic_date 3-21

ic_delete

Syntax

Input Variables

ic_delete (file id, lock, record id, id len, status func, code)

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

lock long * Specifies what actions to perform if the user has locked the
record:

IK_DELETE Releases any locks you hold on that record.
If another user has an exclusive lock on the
record to be deleted, deletion fails and a
locked error is returned.

IK DELETEW Pauses until the lock is released if another
user has an exclusive update on the record
to be deleted.

IK_DELETEU Retains any locks held by the user on the
record after deletion.

record_id char * Character string containing the record ID of the record to be
deleted.
id len long * Actual length of record_id. The maximum length of record _id is

255 bytes.

3-22 InterCall Developer’s Guide

ic_delete Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function after
ic_delete is executed.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_delete Output Variables

Description

ic_delete deletes a record from an open server database file. The value of lock
specifies what actions ic_delete performs. If the record is not found, code will
contain the error I[E_RNF (record not found).

Related Functions
ic_clearfile

ic_close
ic_release

ic_delete 3-23

ic_execute

Syntax

ic_execute (command, command_len, text buffer, text_buf size, text len,
return_code, return_code 2, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

command char * Command to be executed.
command len long * Length of the command in bytes.

text_buffer long * Buffer where the output from the command is to be placed.
New lines in the output are replaced by field marks.

text_buf size long * Maximum size of the returned output in bytes.

ic_execute Input Variables

3-24 InterCall Developer’s Guide

Output Variables

The following table describes the output variables.

Parameter Type Description
text_len long * Actual length of the returned output in bytes.
return_code long * Value of the @SYSTEM.RETURN.CODE variable following

execution of the command.

return_code 2 long * The second part of the value of the
@SYSTEM.RETURN.CODE variable following execution
of the command. Following some database commands,
@SYSTEM.RETURN.CODE contains two values, which are
assigned to return_code and return_code_2. When
@SYSTEM.RETURN.CODE has only one value,
return_code 2 is set to 0, and the value of
@SYSTEM.RETURN.CODE is returned in return_code.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_execute Output Variables

Description

ic_execute executes a server database command and copies the resulting output into
a buffer supplied by the user. The output is truncated if it is larger than text buf size
bytes in length and the error IE_BTS (buffer too small) is returned. The output from
a Windows server is always paged, whereas the output from a UNIX server is not. If
the executed command requests input, then the function returns the output and the
error code I[E_ AT INPUT (server at input).

Use ic_executecontinue to supply an additional buffer to continue reading output
when ic_execute returns [E_BTS.

See also Using the @TTY Variable in Chapter 2, “Programming with InterCall.”

Related Function

ic_inputreply

ic_execute 3-25

ic_executecontinue

Syntax

ic_executecontinue (fext buffer, text buf size, text len, return_code,
return_code 2, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

text_buf size long * Maximum size of the returned output in bytes.

ic_executecontinue Input Variable

Output Variables
Parameter Type Description
text_buffer char * Buffer where the output from the command is to be placed.
New lines in the output are replaced by field marks.
text len long * Actual length of the returned output in bytes.

return_code long * The value of the @SYSTEM.RETURN.CODE variable
following execution of the command.

return_code 2 long * The second part of the @SYSTEM.RETURN.CODE variable
following execution of the command. If a second part does not
exist for the executed command, return_code_2 is 0.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_executecontinue Output Variables

3-26 InterCall Developer’s Guide

Description

ic_executecontinue lets you supply an additional buffer to continue reading output
when ic_execute returns IE_BTS (buffer too small) in its code argument. If
ic_executecontinue returns [E_BTS, use this function for as many times as
necessary. The output from a Windows server is always paged, whereas the output
from a UNIX server is not.

Ific_executecontinue returns IE_AT INPUT (server at input), use ic_inputreply.

ic_executecontinue 3-27

ic_extract

Syntax

ic_extract (dynamic_array, length_da, field, value, subvalue, string, max_str_size,
string len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

dynamic_array char * String containing a server database dynamic array.
length_da long * Length of the dynamic array in bytes.

field long * Number of the field to extract.

value long * Number of the value to extract.

subvalue long * Number of the subvalue to extract.

max_str_size long * Maximum size of the string buffer in bytes.

ic_extract Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

string char * Substring extracted from the dynamic array.

string_len long * Actual length of the extracted string in bytes.

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_extract Output Variables

3-28 InterCall Developer’s Guide

Description

ic_extract returns data from a single field, value, or subvalue of a dynamic array. The
numeric values of field, value, and subvalue determine which data is returned:

B If both value and subvalue are 0, the entire field is extracted.

B [f only subvalue is 0, the entire value is extracted.

B [fno argument is 0, the subvalue is extracted.

If the string buffer is too small for the specified field, value, or subvalue, I[E_BTS
(buffer too small) is returned in code.

Related Functions

ic_insert
ic_remove
ic_replace
ic_strdel

ic_extract 3-29

ic_fileinfo

Syntax

ic_fileinfo (key, file_id, data, buffer, buffer_size, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

key long * Specifies what information is required. The symbolic names for
key are included in the intcall.h and INTCALL.TXT files.

file_id long * File identifier returned by a previous call to the ic_open
function.
buffer size long * Length of buffer in bytes.

ic_fileinfo Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

data long * Information sought or its length.
buffer char * Buffer where returned string information will be placed.
code long * Either 0 or IE_STR if execution was successful or a specific error

code if execution was not successful.

ic_fileinfo Output Variables

3-30 InterCall Developer’s Guide

Description

ic_fileinfo returns a specified item of information relating to an open server database
file. For multivolume or distributed files, most data items are returned as a dynamic
array, one element for each part.

If the returned data is numeric, its value is placed in data, and code is set to 0. The
buffer argument is not used. If the data item is a string or a dynamic array, it is
returned in buffer, code is set to IE_STR, and data is set to the length of data returned,
in bytes.

Ifthe size of the returned output exceeds buffer size bytes, [E_BTS (buffer too small)
is returned in code. Any other value is a specific error code.

The following table lists the valid values for key.

Value Symbolic Name Description

0 FINFO_IS FILEVAR 1 if file_id is a valid file identifier; 0
otherwise.

1 FINFO_VOCNAME VOC name of file.

2 FINFO_PATHNAME Path of the file.

3 FINFO TYPE File type as follows:

2 = UniData static hashed file

3 = Dynamic

4 ="Type 1

5 = Sequential

7= Distributed and Multivolume

4 FINFO_HASHALG Hashing algorithm as follows:
0 = UniData algorithm 0
1 = UniData algorithm 1

2 =GENERAL
3=SEQ.NUM
5 FINFO_MODULUS Current modulus.
6 FINFO_MINMODULUS Minimum modulus.
7 FINFO_GROUPSIZE Group size, in 1Kbyte units.
8 FINFO_LARGERRECORDSIZE Large record size.

key Values

ic_fileinfo 3-31

3-32

Value

Symbolic Name

Description

10

11

12

13

14

15

16

19

FINFO_MERGELOAD
FINFO_SPLITLOAD
FINFO_CURRENTLOAD
FINFO_NODENAME

FINFO IS AKFILE

FINFO_CURRENTLINE

FINFO_PARTNUM

FINFO_STATUS

FINFO_IS_FIXED _MODULUS

Merge load parameter.
Split load parameter.
Current loading of the file (%).

Empty string, if the file resides on the
local system, otherwise the name of the
node where the file resides.

1 if secondary indexes exist on the file;
0 otherwise.

Current line number.

For a distributed file, returns list of
currently open part numbers.

For a distributed file, returns list of
status codes showing whether the last
I/O operation succeeded or failed for
each part. A value of —1 indicates the
corresponding part file is not open.

1 if the file has a fixed modulus; 0
otherwise.

ic_extract

InterCall Developer’s Guide

key Values

Related Function

ic_filelock

Syntax

ic_filelock (file_id, status func, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

ic_filelock Input Variable

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC or UniBasic STATUS
function after ic_filelock is executed:
0 There is a IK_ READU lock on the file.
other Terminal number of the user who has set an

exclusive lock on the file.

code long * Either 0 if execution was successful or a specific error
code if execution was not successful.

ic_filelock Output Variables

Description

ic_filelock locks an open server database file, preventing any other user from:

ic_filelock 3-33

B Reading any record in that file using the ic_read function with a
IK_READU or IK_READL lock, or any of the UniVerse BASIC or
UniBasic READL, READU, READVU, or MATREADU statements

B Reading any field in that file using the ic_readv function with aIK READU
lock or the UniVerse BASIC or UniBasic READVU statement

B [ocking the file using ic_filelock or the UniVerse BASIC or UniBasic
FILELOCK statement

Use ic_fileunlock (or ic_release) to unlock files after using them.

Related Functions

ic_close
ic_write
ic_writev

3-34 InterCall Developer’s Guide

ic_fileunlock

Syntax

ic_fileunlock (file_id, status_func, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

ic_fileunlock Input Variable

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function
after ic_unfilelock is executed:

-2 The file was not locked before execution.

0 The file was locked before executing ic_fileunlock.
status_func is always 0 for database files.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_fileunlock Output Variables

Description

ic_fileunlock unlocks a file locked by ic_filelock. ic_fileunlock does not unlock
records that were locked using:

ic_fileunlock 3-35

B ic read with a IK READL or IK READU lock
ic_readv with a IK. READU lock

B The UniVerse BASIC or UniBasic statements READL, READU,
READVU, or MATREADU

Related Functions

ic_close
ic_write
ic_writev

3-36 InterCall Developer’s Guide

ic_fmt

Syntax

ic_fmt (format, format len, string, string len, result, max_rslt size, result_len,
status_func)

Input Variables

The following table describes the input variables.

Parameter Type Description

format char * Format pattern to use. See “Description.”
format_len long * Length of the format pattern in bytes.
string char * Input string to be formatted.

string len long * Length of string in bytes.

max_rslt_size long * Maximum size of the result buffer in bytes.

ic_fmt Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

result char * Buffer containing the formatted string.

result_len long * Length of the formatted string in bytes.

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function

after ic_fmt is executed:

ic_fmt Output Variables

ic_fmt 3-37

3-38

Parameter Type Description

0 The conversion was successful.

1 The string expression passed as an argument is
invalid.

2 The conversion code passed as an argument to the

function is invalid.

ic_iconv
ic_oconv

ic_fmt Output Variables (Continued)

Description
ic_fmt formats a string into various patterns. You can specify the following
characteristics:

B Width of the field

B Fill character

B Right-justification or left-justification

B Numeric conversion specification

B Masking

Related Functions

InterCall Developer’s Guide

ic_formlist

Syntax

ic_formlist (dynamic_array, dynamic_len, selnum, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

dynamic_array char* Dynamic array to load as a select list.
dynamic_len long * Length of the dynamic array.

selnum long * Select list number into which to load the dynamic array.

ic_formlist Input Variables

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_formlist Output Variable

Description

ic_formlist produces a select list from a dynamic array.

ic_formlist 3-39

Related Functions

ic_clearselect
ic_getlist
ic_readlist
ic_readnext
ic_select

3-40 InterCall Developer’s Guide

ic_free

Syntax

ic_free (ptr)

Input Variable

The following table describes the input variable.

Parameter Type Description

ptr void * Pointer to memory to be released.

ic_free Input Variable

Parameter Type Description
ptr void * Pointer to memory to be released.
Description

ic_free releases a piece of memory previously allocated by ic_calloc or ic_malloc.

See also The ICSTRING Type in Chapter 2, “Programming with InterCall.”

Related Function

ic_subcall

ic_free 3-41

3-42

ic_getlist

Syntax

ic_getlist (list_ name, length, select list num, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

list_name char * Name of the select list to be restored.

length long * Length of /ist_name in bytes.

select list num long * Select list number (0 through 10) to be assigned to the restored

select list.

ic_getlist Input Variables

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error
code if execution was not successful.

ic_getlit Output Variable

Description

ic_getlist restores a select list from the &SAVEDLISTS& file. This function allows
an application to use the record IDs previously saved by the SAVE.LIST command.

InterCall Developer’s Guide

Related Functions

ic_clearselect
ic_formlist
ic_readlist
ic_readnext
ic_select

ic_getlist 3-43

ic_get locale

Syntax

ic_get _locale (key, locale_string, max_buff size, locale string len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

key long * Specifies the locale information you want to retrieve. It must be
one of the following tokens:

IK LC ALL = All categories

IK LC TIME = Time category

IK_LC _NUMERIC = Numeric category
IK_ LC MONETARY = Monetary category
IK LC _CTYPE = Ctype category

IK_ LC COLLATE = Collate category

max_buff size long * Maximum size of the return buffer.

ic_get_locale Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

locale_string char * Locale string for the current server locale.
locale_string len long * Length of the returned string.

code long * Either 0 if the operation is successful or a specific error code
if the operation failed.

ic_get_locale Output Variables

3-44 InterCall Developer’s Guide

Description
Note: UniData databases do not support the ic_get_locale function.
ic_get_locale retrieves the name of the locale that the server is using.

If NLS mode is not enabled on the server, the error code IE_ NO_NLS is returned in
code.

If you specify IK_ LC_ALL, all five category settings are returned, separated by the
current field mark character. (You must use ic_get _mark value to determine the
value of the field mark character.)

See also “UniVerse NLS in Client Programs” in Chapter 1, “Introduction.”

ic_get locale (UniVerse only) 3-45

ic_get map

Syntax

ic_get _map (map_name, max_buff size, map name_len, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

max_buff size long * Maximum size of the return buffer.

ic_get _map Input Variable

Output Variables

The following table describes the output variables.

Parameter Type Description

map_name char * Map name of the current server map.
map_name_len long * Length of the returned string.

code long * Either 0 if the operation is successful or a specific error code if
the operation failed.

ic_get_map Output Variables

Description

— Note: UniData databases do not support the ic_get_map function.

ic_get_map retrieves the name of the map currently used on the server.

3-46 InterCall Developer’s Guide

If NLS mode is not enabled on the server, the error code IE_ NO_NLS is returned in
code. For more information, see “UniVerse NLS in Client Programs™ in Chapter 1,
“Introduction.”

ic_get_map (UniVerse only) 3-47

ic_get mark value

Syntax

ic_get _mark_value (key, mark string, max_buff size, mark_string len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

key long * Type of system delimiter. It must be one the following tokens:
IK IM = Item mark
IK_FM = Field mark
IK VM = Value mark
IK_SM = Subvalue mark
IK_TM = Text mark
IK_NULL = The null value

max_buff size long * Maximum size of the return buffer.

ic_get_mark_value Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

mark_string char * Character value of the system delimiter.
mark_string len long* Length of the returned string.

code long * Either 0 if the operation is successful or a specific error code
if the operation failed.

ic_get mark_value Output Variables

3-48 InterCall Developer’s Guide

Description
Note: UniData databases do not support the ic_get_mark_value function.
A system delimiter that is used in the current character set on the server.

The system delimiter values retrieved are valid only for the current connection with
the server. If NLS mode is off, the default values for these tokens (128, 251 to 255)
are returned. For more information, see “UniVerse NLS in Client Programs” in
Chapter 1, “Introduction.”

ic_get_mark value (UniVerse only) 3-49

3-50

Syntax

ic_getvalue

Input Variables

ic_getvalue (key, text_buffer, buffer size, text len, code)

The following table describes the input variables.

Parameter Type Description
key long * A key value indicating which system variable is required.
buffer size long * Maximum size of text_buffer in bytes.
ic_getvalue Input Variables
Output Variables

The following table describes the output variables.

InterCall Developer’s Guide

Parameter Type Description
text_buffer char * Buffer that contains the value returned, as a string of characters.
text_len long * Length of data actually placed in text buffer in bytes.
code long * Either 0 if execution was successful or a specific error code if
execution was not successful.
ic_getvalue Output Variables
Description

ic_getvalue returns the value of a system variable from the server program.

The following table lists the valid values for key.

Valu
e

Symbolic Name

Equivalent to

Description

1

2

IK_AT LOGNAME

IK_AT PATH

IK_AT USERNO

IK_AT_WHO

IK_AT TRANSACTION

IK_AT DATA_PENDING

IK_AT USER_RETURN_
CODE

@LOGNAME

@PATH

@USERNO

@WHO

@TRANSACTION.ID

@DATA.PENDING

@USER.RETURN.
CODE

The user login name.

Path of the current
account.

The user number on a
Windows server, and
the process ID on a
UNIX server.

The name of the
current database
account.

A numeric value. Any
nonzero value
indicates that a trans-
action is active; 0
indicates that no
transaction exists.

Dynamic array

containing input
generated by the
DATA statement.

Status codes created
by the user.

key Values

ic_getvalue 3-51

3-52

Valu

Related Function

ic_setvalue

InterCall Developer’s Guide

e Symbolic Name Equivalent to Description
8 IK AT SYSTEM _RETURN_ ~ @SYSTEM.RETURN. Status codes returned
CODE CODE by system processes.

9 IK_ AT NULL STR @NULL.STR The internal represen-
tation of the null
value, which is
CHAR (128) on
UniVerse systems and
CHAR(129) on
UniData systems.

10 IK_AT SCHEMA @SCHEMA Schema name of the
current database
account.

key Values (Continued)

ic_iconv

Syntax

ic_iconv (conv, conv_len, string, string len, result, max_rslt size, result_len,
status_func)

Input Variables

The following table describes the input variables.

Parameter Type Description

conv char * Conversion code to be used.

conv_len long * Length of the conversion code in bytes.
string char * String to be converted.

string len long * Length of the string to be converted in bytes.
max_rslt_size long * Maximum size of result in bytes.

ic_iconv Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

result char * Buffer containing the converted string.
result_len long * Length of the converted string in bytes.

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function after
ic_iconv is executed:

0 The conversion was successful.

ic_iconv Output Variables

ic_iconv 3-53

Parameter Type Description

1 string was invalid. An empty string is returned,
unless string is the null value, in which case
string is returned.

2 conv was invalid.

3 The conversion was successful; there could be
an invalid date.

other Any other value is an error code.

ic_iconv Output Variables (Continued)

Description

ic_iconv converts a character string to an internal format specified by the conversion
code. This function also can be used to check the validity of data. It is equivalent to
the UniVerse BASIC or UniBasic ICONV function.

If status_func equals 1 or 2, the string returned by ic_iconv is the input string.

Related Functions

ic_alpha
ic_fmt
ic_oconv

3-54 InterCall Developer’s Guide

ic_indices

Syntax

ic_indices (file_id, ak _name, ak_name_len, text buffer, text buf size, text len,
code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by a previous call to ic_open.
ak_name char * Name of the secondary index on the file.

ak_name_len long * Length of ak_name. If ak_name _len is 0 or negative, a

dynamic array is returned containing the secondary index
names for all indexes on the file.

text_buf size long * Maximum size of the returned output in bytes.

ic_indices Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

text_buffer char * Buffer where the output from the command is to be placed. New
lines in the output are replaced by field marks.

text_len long * Actual length of the returned output in bytes.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_indicies Output Variables

ic_indices 3-55

3-56

Description

ic_indices returns information about the secondary indexes on a file. You can find the
name of secondary indexes or return specific information about an index.

Finding the Name of Secondary Indexes

Ific_indices is called with a 0 or negative value for ak_name_len, it returns a
dynamic array containing the secondary index names for all indexes in the file. If the
file is of the wrong type, or if it has no indexes, a null string is returned. The index
names are not in any particular order, and are separated by field marks. As the parts
of a distributed file can be accessed individually, the list of secondary index names
contains only the names of indexes that are common to all part files.

Returning Information About a Secondary Index

Ific_indices is called with a nonzero value for ak_name_len, it returns information
about the index specified by ak_name. If the named index does not exist, an empty
string is returned. If the index exists, the form of the result depends on the type of
index:

B [fthe named index is a D-type index, the result is a dynamic array
containing the letter D in the first character of field 1 and the location
number of the indexed field in field 2.

B [fthe named index is an I-type index, the result is a dynamic array
containing the letter I in the first character of field 1, the I-type expression
in field 2, and the compiled I-type code beginning in field 19. Fields 3
through 5 and 7 through 18 are empty.

For both D-type indexes and I-type indexes:
B Ifthe index needs to be rebuilt, the second value of field 1 is 1, otherwise it
is null.

B [fthe index is null-suppressed, the third value of field 1 is 1, otherwise it is
null.

B [fautomatic updates are disabled, the fourth value of field 1 is 1, otherwise
it is null.

Field 6 contains an S if the index is singlevalued, and an M if the index is
multivalued.

InterCall Developer’s Guide

Related Function

ic_selectindex

ic_indices 3-57

Syntax

ic_inputreply

Input Variables

ic_inputreply (reply string, reply len, add newline, text_buffer, text buf size,
text len, return_code, return_code_2, code)

The following table describes the input variables.

Parameter Type Description

reply_string char * Characters that are to be supplied to the running program as
terminal input.

reply len long * Length of the reply string in bytes.

add_newline long * Indicates whether the input should be terminated with a return
(NEWLINE) character. If add_newline is False (0), no newline
is added; if add newline is True (any nonzero value), the
running program receives the characters of reply string
followed by a newline.

text_buf size long * Maximum size of the returned output in bytes.

3-58 InterCall Developer’s Guide

ic_inputreply Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

text_buffer char * Buffer where the output from the command is to be placed.
New lines in the output are replaced by field marks.

text len long * Actual length of the returned output in bytes.

return_code long * Value of @SYSTEM.RETURN.CODE following the
execution of this command.

return_code 2 long * Second part of the @SYSTEM.RETURN.CODE variable
following execution of the command. If a second part does not
exist for the executed command, return_code_ 2 is 0.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_inputreply Output Variables

Description

ic_inputreply responds to a request for input during execution of a command.
ic_inputreply lets you send data to a server at input (IE_AT INPUT).

When ic_execute returns IE_ AT INPUT in code, indicating that the command being
executed is waiting for terminal input, use ic_inputreply to supply characters as if
they had come from a terminal. Ific_inputreply also returns IE_ AT INPUT, you can
call ic_inputreply again, as many times as necessary.

Ific_inputreply returns IE_BTS (buffer too small), use ic_executecontinue.

ic_inputreply 3-59

ic_insert

Syntax

ic_insert (dynamic_array, max_da_size, length_da, field, value, subvalue, string,
string_len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

max_da_size long * Maximum size of the dynamic_array buffer in bytes.
field long * Number of the field at which to insert the new string.
value long * Number of the value at which to insert the new string.
subvalue long * Number of the subvalue at which to insert the new string.
string char * String to insert into the dynamic array.

string_len long * Length of the new string in bytes.

ic_insert Input Variables

Input/Output Variables

The following table describes the input/output variables.

Parameter Type Description
dynamic_array char * String containing a server database dynamic array.
length _da long * Length of the old and new dynamic array in bytes.

ic_insert Input/Output Variables

3-60 InterCall Developer’s Guide

Output Variable

The following table describes the output variable.

Paramete
r Type Description
code long * Either 0 if execution was successful or a specific error code if
execution was not successful.
ic_insert Output Variable
Description

ic_insert inserts a new field, value, or subvalue into a dynamic array at a specified
location, returning the new dynamic array and its new length. The data content to be
inserted is specified by string. The numeric values of field, value, and subvalue
determine whether the new data is inserted as a field, value, or subvalue.

B [fboth value and subvalue are 0, the new data is inserted before the specified
field.
B [fonly subvalue is 0, the new data is inserted before the specified value.
B [fno argument is 0, the new data is inserted before the specified subvalue.
If the number of characters to be added extends the length of the dynamic array past

max_da_size, the original dynamic array is not altered and an error value is returned
in code.

Related Functions

ic_extract
ic_remove
ic_replace
ic_strdel

ic_insert 3-61

ic_itype

Syntax

Input Variables

ic_itype (filename, filename len, record_id, record id len, itype id, itype_id_len,
text_buffer, text_buf size, text len, code)

The following table describes the input variables.

Parameter Type Description

filename char * Name of the server database file.

filename_len long * Length of the file name in bytes.

record_id char * Record ID of the data record to be supplied as data during the
evaluation.

record_id len long * Length of the data record ID in bytes.

itype_id char * Record ID of the I-descriptor record which is to be evaluated.

itype_id_len long * Length of the I-descriptor record ID in bytes.

text _buf size long * Size of text_buffer in bytes.

3-62 InterCall Developer’s Guide

ic_itype Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

text_buffer char * Buffer that will contain the value returned, as a string of
characters.

text len long * Actual length of data placed in text_buffer in bytes.

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_itype Output Variables

Description

ic_itype evaluates an [-descriptor taken from the dictionary of a server database file,
and returns the result. When ic_itype is executed, the server attempts to open the
dictionary of the specified file on the server, and then read the I-descriptor record.

If the I-descriptor is valid, it will always be evaluated. The system variable @ID is
set to the value of record_id, and the variable @RECORD is set to the contents of the
specified record, and the result is placed in fext_buffer. If the data cannot be opened,
if record_id is null, or if the data record is not present, @RECORD is set to a null
string instead.

If the dictionary cannot be opened, if the I-descriptor record is not present in the file,
or if the I-descriptor field has not been compiled, then code will be set to an error
code.

ic_itype 3-63

ic_locate

Syntax

ic_locate (search, search_len, dynamic_array,dynamic_len, field, value, start, order,
order_len, index, found, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

search char * Content of the field, value, or subvalue being sought.
search_len long * Length of the search string.

dynamic_array char * Dynamic array to be searched.

dynamic_len long * Length of the dynamic array.

field long * Starting field position for the search.

value long * Starting value position for the search.

start long * Field or value from which to start the search.

order char * String indicating the order of the elements within the

dynamic array.

order_len long * Length of order is as follows:
AL or A = Ascending, left-justified
AR = Ascending, right-justified
D = Descending, left-justified
DR = Descending, right-justified

ic_locate Input Variables

3-64 InterCall Developer’s Guide

Output Variables

The following table describes the output variables.

Parameter Type Description

index long * A variable to receive the position within the dynamic array of the
string being sought.

found long * Either 1 if search was found or 0 if it was not.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_locate Output Variables

Description

ic_locate searches a dynamic array for a string and returns a value indicating whether
the expression is in the array and where it is or where the expression should go if it
is not in the array. ic_locate searches the dynamic array for search and returns values
indicating the following:

B Where search was found in the dynamic array

B Where search should be inserted in the dynamic array if it was not found
The search can start anywhere in dynamic_array. field and value delimiter values
specify:

B Where the search is to start in the dynamic array

B What kind of element is being searched for

Related Functions

ic_extract
ic_insert
ic_replace
ic_strdel

ic_locate 3-65

ic_lock

Syntax

ic_lock (lock num, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

lock_num long * An integer from 0 through 63 specifying one of the 64 public
process locks.

ic_lock Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_lock Output Variable

Description

ic_lock sets a public process lock. The locks are used to protect user-defined
resources or events on the server from unauthorized or simultaneous data file access
by different users.

Related Function

ic_unlock

3-66 InterCall Developer’s Guide

ic_lower

Syntax

ic_lower (string, string len, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

string len long * Length of the string used.

ic_lower Input Variable

Input/Output Variable

The following table describes the input/output variable.

Parameter Type Description

string char * String in which the delimiters are lowered.

ic_lower Input/Output Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_lower Output Variable

ic_lower 3-67

Description

ic_lower returns string with the system delimiters converted to the next lower-level
delimiter. For example, field marks are changed to value marks, value marks are
changed to subvalue marks, and so on.

Related Function

ic_raise

3-68 InterCall Developer’s Guide

ic_malloc

Syntax

ptr =ic_malloc (size)

Input Variable

The following table describes the input variable.

Parameter Type Description

size long * Number of bytes to allocate.

ic_malloc Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

ptr void * Pointer to the allocated memory.

ic_malloc Output Variable

Description

ic_malloc allocates a piece of memory for use by ic_subcall, returning a pointer, ptr,
to the allocated memory. Use ptr with ic_free to release the memory when it is no
longer needed.

See also The ICSTRING Type in Chapter 2, “Programming with InterCall.”

Related Function

ic_calloc

ic_malloc 3-69

ic_oconv

Syntax

ic_oconv (conv, conv_len, string, string len, result, max_rsit_size, result len,
status_func)

Input Variables

The following table describes the input variables.

Parameter Type Description

conv char * Conversion code to be used.

conv_len long * Length of the conversion code in bytes.
string char * String to be converted.

string len long * Length of the string to be converted in bytes.

max_rslt size long * Maximum size of result in bytes.

ic_oconv Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description
result char * Buffer containing the converted string.
result_len long * Length of the converted string in bytes.

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function
after ic_oconv is executed:

ic_oconv Output Variables

3-70 InterCall Developer’s Guide

Parameter Type Description

-1 The conversion was completed but precision was lost.
This value only occurs when numeric conversions are
specified.

0 The conversion was successful.

1 The input string was invalid or the returned string

exceeded max_rsit_size.
2 The conversion code was invalid.

other Any other value is an error code.

ic_oconv Output Variables (Continued)

Description

ic_oconv converts a character string to an external format specified by the conversion
code. This function is equivalent to the UniVerse BASIC or UniBasic OCONV
function. Any string returned by ic_iconv can be supplied directly to ic_oconv using
the same conversion code.

If status_func equals 1 or 2, the string returned by ic_oconv is the input string.
Related Functions

ic_alpha
ic_fmt

ic_oconv 3-71

3-72

ic_open

Syntax

Input Variables

ic_open (file_id, dict flag, filename, file len, status func, code)

The following table describes the input variables.

Parameter Type Description
file_id long * File identifier that should be used for all subsequent operations
on this file.

dict flag long * Indicates whether the data or dictionary file is to be opened.
filename char * VOC name of the file to be opened.

file len long * Length of filename in bytes.

ic_open Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function
after ic_open is executed.

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

InterCall Developer’s Guide

ic_open Output Variables

Description

ic_open opens a server database file for reading, writing, and deleting. You must
open a database file with ic_open before any type of file I/O operation can be
executed.

The value of dict_flag determines whether a data or dictionary file is opened. To open
adictionary file, the value of dict flag must be IK_DICT. To open a data file, its value
must be IK_ DATA.

The ic_open function returns an integer as the unique file identifier in file id. All
subsequent file operations should use this argument when referring to the opened file.
Ific_open does not execute successfully, the value of file id is 0.

The ic_open function uses the file’s VOC record in the account specified in the
ic_opensession, ic_unidata_session, or ic_universe_session call. The VOC file
record must be a valid file definition record.

Use separate ic_open functions for each file. Any number of files can be opened at
any point in the program.

For UniVerse files, status_func contains the external file type, 2 through 18, 25, or
30. For all other server database files, status_func contains the internal file type: 3 for
a dynamic, multivolume or distributed file, or 4 for a type 1 file. If the file is not
opened, status_func contains 0.

For UniData files, status_func returns either success or failure.

The following table lists the valid UniVerse values for status _func.

Value Meaning

-1 File name not found in the VOC file.

—2% No file name or file. This error may occur when you cannot open a file across
UV/Net.

-3 UNIX access error that occurs when you do not have UNIX permissions to

access a database file in a UNIX directory. For example, this may occur when
trying to access a type 1 or type 30 file.

—4% Access error when you do not have UNIX permissions or if DATA.30 is missing
for a type 30 file.

UniVerse status_func Values

ic_open 3-73

Value Meaning

-5 Read error detected by UNIX.

-6 Unable to lock file header.

-7 Invalid file revision or wrong byte-ordering for the platform.

—8* Invalid part file information.

—9* Invalid type 30 file information in a distributed file.

-10 A problem occurred while the file was being rolled forward during warmstart

recovery. Therefore, the file is marked “inconsistent”.

-11 The file is a view, therefore it cannot be opened by a UniVerse BASIC or
UniBasic program.

-12 No SQL privilege to open the table.
—13* Index problem.
-14 Cannot open an NFS file.

-99 (UniData only) The ic_open function failed.

UniVerse status_func Values (Continued)

* A generic error that can occur for a variety of reasons.

Related Functions

ic_close
ic_filelock
ic_fileunlock
ic_read
ic_readv
ic_recordlock
ic_write
ic_writev

3-74 InterCall Developer’s Guide

ic_openseq

Syntax

ic_openseq (file_id, filename, file_len, record _id, record_id len, status_func, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier that should be used for all subsequent operations
on this file.

filename char * VOC name of the file to be opened.
file_len long * Length of filename in bytes.
record_id char * Record in the file to be opened.

record_id len long * Length of record id.

ic_openseq Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC STATUS function after
ic_openseq is executed:

0 record_id could not be found.

ic_openseq Output Variables

ic_openseq 3-75

3-76

Parameter Type Description

1 filename is not type 1 or type 19.
2 filename could not be found.
code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_openseq Output Variables (Continued)

Description
Note: UniData databases do not support the ic_openseq function.

ic_openseq opens a file for sequential processing, such as by ic_readseq or
ic_writeseq. A database file must be opened using the ic_openseq function before
any type of sequential file processing operation can be performed.

UniData databases do not support the ic_openseq function.

Related Functions

ic_closeseq
ic_readblk
ic_seek
ic_writeblk

InterCall Developer’s Guide

ic_opensession

Syntax

session_id = ic_opensession (server name, user_name, password, account, status,
subkey)

Input Variables

The following table describes the input variables.

Parameter Type Description

server_name char * Name of the server to which to connect. See “Description” for
details on how you can use this to specify the transport type to
use for the connection.

user_name char * Name to use to log on to the server.

password char * Password for user_name.

subkey char * Name of the device subkey, used when an application
connects to a database server through a multiple-tier
connection.

account char * Name or path of the account to access on the server.

ic_opensession Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description
session_id long Unique session identifier.
status long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_opensession Qutput Variables

ic_opensession 3-77

3-78

Description

ic_opensession opens a new session from the client to a UniVerse or UniData server,
and returns session_id, a unique session identifier. Use the ic_setsession function to
switch among sessions using the contents of session_id.

An InterCall client can support up to 10 simultaneous sessions to different database
servers.

Note: ic_opensession does not execute the LOGIN entry.

ic_opensession always opens a UniVerse or UniData server called defcs, which is
defined in the unirpcservices file. Use ic_universe_session to open the UniVerse
server uvcs. Use ic_unidata_session to open the UniData server udcs or another
UniData server.

The way in which you specify server _name determines the transport type used for the
connection:

B [fyou enter server_name only, the connection is made using TCP/IP.

B [fyou enter server name:TCP, the connection is made using TCP/IP.

B [fyou enter server_name:LAN, the connection is made using LAN pipes.

For TCP/IP connections, you can also specify the port number and/or the IP address
to use as part of server_name. For example:

B [fyou enter /P address only, a TCP/IP connection is made to the specified
address.

B [fyou enter server name:port number, a TCP/IP connection is made to the
specified port number on the server.

B [fyou enter /P address:port_number, a TCP/IP connection is made to the
specified port number at the given IP address.

See also the following sections in Chapter 2, “Programming with InterCall.”

B Server Sessions
B Using the @TTY Variable
B Using the Microsoft Security Token

InterCall Developer’s Guide

Related Functions

ic_quit

ic_quitall
ic_unidata_session
ic_universe_session

ic_opensession 3-79

ic_quit

Syntax

ic_quit (code)

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_quit Output Variable

Description

ic_quit terminates the current InterCall session, closes all files opened during this
session, releases all locks used during this session, and logs out the server process
used to invoke the server database.

See also “Server Sessions” in Chapter 2, “Programming with InterCall.”

Related Functions

ic_opensession
ic_quitall
ic_setsession
ic_unidata_session
ic_universe session

3-80 InterCall Developer’s Guide

ic_quitall

Syntax

ic_quitall (code)

Output Variable

The following table describes the output variable.

Paramete
r Type Description
code long * Either 0 if execution was successful or a specific error code if
execution was not successful.
ic_quitall Output Variable
Description

ic_quitall closes all the sessions opened by ic_opensession, ic_unidata_session, or
ic_universe session. It functionally is the same as using ic_quit on individual
sessions. All files are closed and locks are released.

See also “Server Sessions” in Chapter 2, “Programming with InterCall.”

Related Function

ic_quit
ic_setsession

ic_quitall 3-81

3-82

ic_raise

Syntax

ic_raise (string, string_len, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

string_len long * Length of the string used.

ic_raise Input Variable

Input/Output Variable

The following table describes the input/output variable.

Parameter Type Description

string char * String in which delimiters are raised.

ic_raise Input/Output Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_raise Output Variable

InterCall Developer’s Guide

Description

ic_raise returns string with its delimiters converted to the next higher-level delimiter.
For example, value marks are changed to field marks, subvalue marks are changed to
value marks, and so on.

Related Function

ic_lower

ic_raise 3-83

3-84

ic_read

Syntax

ic_read (file_id, lock, record _id, id len, record, max_rec_size, record_len,
status_func, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

lock long * Specifies the type of lock required.

record_id char * Character string containing the record ID of the record to be
read.

id_len long * Length of record_id. The maximum length of record_id is 255
bytes.

max_rec_size long * Maximum record size in bytes that can be returned.

ic_read Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

record char * Buffer that will contain the record returned by the ic_read
function.

record len long * Length of the record in bytes.

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function

after ic_read is executed:

ic_read Output Variables

InterCall Developer’s Guide

Parameter Type Description
-1 The user holding the lock is on a remote
node.
0 The record is not locked.
other The record is locked by another user. The
value is the user number of the user
holding the lock.
code long * Either 0 if execution was successful or a specific error code
if execution was not successful.
ic_read Output Variables (Continued)
Description

ic_read reads a record from an open server database file.

If you do not specify a buffer large enough for the record, the buffer is filled to the
value of max_rec_size and the error IE_BTS (buffer too small) is returned.

If the record does not exist, the value of record len is set to 0 and record is set to null.

The following table lists the valid values for /ock.

Lock Meaning

IK READ The record is to be read without locking.

IK_ READL The record is locked with an IK_ READL lock, preventing other users
from setting an IK_ READU lock. Users are able to read the record using
an IK_ READL lock.

IK READU The record is locked with an IK. READU lock, preventing other users
from setting a lock on the same record.

If a value of IK_ READUW or IK READLW is specified for lock and
another user holds an exclusive lock on the record to be read, the program
will pause until the lock is released.

IK_ READLW The record is locked with an IK_ READL lock, preventing other users

from setting an IK. READU lock. Users are able to read the record using
an IK_ READL lock.

lock Values

ic_read 3-85

3-86

Lock

Meaning

IK_READUW

The record is locked with an IK READU lock, preventing other users
from setting a lock on the same record.

If the record is already locked by another user and the value of lock is
IK_READU, the error IE_LCK (record is locked by another user) is
returned in code, and the user number of the user who has locked the
record is returned in status_func. If a value of IK_ READU or
IK_READL is specified for lock, the record is locked even if ic_read
does not execute successfully.

The lock is released if an attempt is made to write to the record with the
ic_write or ic_writev function. The lock also can be released by calling
the ic_release function.

ic_close
ic_readv
ic_release
ic_write
ic_writev

InterCall Developer’s Guide

lock Values (Continued)

Related Functions

ic_readblk

Syntax

ic_readblk (file_id, text buffer, text len, block size, status_func, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

ile_id long * File identifier returned by the ic_openseq function.
_ _0p q

block_size long * Number of characters that ic_readblk will read.

ic_readblk Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

text_buffer char * Buftfer that will contain the record returned by the
ic_readblk function.

text len long * Length of the record in bytes.

status_func long * Value of the UniVerse BASIC STATUS function after
ic_readblk is executed:

-1 The file is not open for a read.
0 The read is successful.

1 The end of file is encountered, or the
number of bytes passed in was <=0.

ic_readblk Output Variables

ic_readblk 3-87

3-88

Parameter Type Description

2 TIMEOUT ended the read.
3 Some characters were read before a
TIMEOUT ended the read.
code long * Either 0 if execution was successful or a specific error code

if execution was not successful.

ic_readblk Output Variables (Continued)

Description

—> Note: UniData databases do not support the ic_readblk function.

ic_readblk reads a block of a set size from a server file opened for sequential
processing.

Related Functions

ic_closeseq
ic_readseq
ic_seek
ic_writeblk
ic_writeseq

InterCall Developer’s Guide

ic_readlist

Syntax

ic_readlist (select list num, list_buffer, list buf size, list_len, id _count, code)

Input Variables

The following table describes the input variables.

Parameter Type Description
select_list_ num long * Identifies the select list (0 through 10 on UniVerse systems,
0 through 9 on UniData systems) that is to be read.
list_buffer char * Buffer where the list of record IDs is to be placed.
list_buf size long * Maximum size of the record ID list in bytes.
ic_readlist Input Variables
Output Variables

The following table describes the output variables.

Parameter Type Description

list len long * Actual length of the record ID list in bytes.

id_count long * Number of record IDs in the returned list.

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_readlist Output Variables

ic_readlist 3-89

Description

ic_readlist reads the remains of an active select list into a dynamic array, and copies
the list of record IDs, separated by field marks, into a buffer supplied by the user. You
can get an active select list by:

B Using ic_getlist or ic_select

B Usingic_execute to execute a UniVerse BASIC or UniBasic statement such
as SELECT, which creates a select list

If you do not specify a buffer large enough for the select list, the buffer is filled to the
value of list_buf size and the error IE_BTS (buffer too small) is returned in code. If
the select list for the number specified is inactive, the error IE_LRR (last record read)
is returned in code.

Related Functions

ic_clearselect
ic_formlist
ic_readnext

3-90 InterCall Developer’s Guide

ic_readnext

Syntax

ic_readnext (select list num, record_id, max_id_size, id len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

select_list num long * Select list (0 through 10 on UniVerse systems, 0 through
9 on UniData systems) from which the record ID is to be
taken.

max_id_size long * Maximum size of record_id in bytes.

ic_readnext Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description
record_id char * Next record ID from the select list.
id len long * Actual length of record _id. The maximum length of

record_id is 255 bytes.

code long * Either 0 if execution was successful or a specific error
code if execution was not successful.

ic_readnext Output Variables

ic_readnext 3-91

Description

ic_readnext returns record_id from a currently active select list. The select list is
read sequentially and values of record _id are returned sequentially. You can get an
active select list by:

B Using ic_getlist or ic_select

B Usingic_execute to execute a UniVerse BASIC or UniBasic statement such
as SELECT, which creates a select list

If the maximum length specified for record id is too small to receive the record id
being read, the error [E_BTS (buffer too small) is returned in code. If the select list
is empty, the error [E_LRR (last record read) is returned in code.

If the active select list is the result of an exploded select, then ic_readnext writes a
multivalued string containing the record ID, relative value position, and the relative
subvalue position in record_id. You must extract the record ID before attempting any
read or write operation.

Related Functions

ic_clearselect
ic_formlist

3-92 InterCall Developer’s Guide

ic_readseq

Syntax

ic_readseq (file_id, text buffer, max_buff, text len, status func, code)

Input Variables

The following table describes the input variables.

Paramete
r Type Description
file id long * File identifier returned by the ic_openseq function.
max_buff long * Maximum size of text_buffer in bytes.
ic_readseq Input Variables
Output Variables

The following table describes the output variables.

Parameter Type Description

text_buffer char * Buffer that will contain the record returned by the ic_readseq
function.

text_len long * Length of the record in bytes.

status_func long * Value of the UniVerse BASIC STATUS function after
ic_readseq is executed:
-1 The file is not open for a read.
0 The read is successful.

ic_readseq Output Variables

ic_readseq 3-93

Parameter Type Description

1 The end of file is encountered.
2 TIMEOUT ended the read.
code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_readseq Output Variables (Continued)

Description

— Note: UniData databases do not support the ic_readseq function.

ic_readseq reads a line from an open server database file which has been opened for
sequential processing. Each ic_readseq function reads data from the current position
through the end of the line. The current position is updated to the position after the
end of the line.

= Note: UNIX uses NEWLINE (ASCII 10) as the end-of-line string. UniVerse for
Windows Platforms uses the CARRIAGE RETURN-NEWLINE pair (ASCII 13-ASCII
10).

Related Functions

ic_closeseq
ic_readblk
ic_seek
ic_writeblk
ic_writeseq

3-94 InterCall Developer’s Guide

ic_readv

Syntax

ic_readyv (file_id, lock, record_id, id len, field number, field, max_field size,
field len, status _func, code)

Input Variables

The following table describes the input variables.

Parameter Type Description
file_id long * File identifier returned by the ic_open function.
lock long * Specifies the type of lock required:
IK_ READ The record is to be read without locking.

IK READL The record is locked with an IK._ READL
lock, preventing other users from setting an
IK_READU lock. Users are able to read the
record using an IK_ READL lock.

IK_READU The record is locked with an IK. READU
lock, preventing other users from setting a
lock on the same record.

IK READLW The record is locked with an IK._ READL
lock, preventing other users from setting an
IK_READU lock. Users are able to read the
record using an IK_ READL lock.

IK_ READUW The record is locked with an IK READU
lock, preventing other users from setting a
lock on the same record.

record_id char * Character string containing the record ID of the record that
contains the field to be read.

ic_readv Input Variables

ic_readv 3-95

3-96

Parameter Type

Description

id len long *

field number long *
max_field size long *

field len long *

Length of record_id. The maximum length of record_id is 255
bytes.

Number of the field from which the data is to be read.
Size of the field in bytes.

Length of the field in bytes.

Output Variables

ic_readv Input Variables (Continued)

The following table describes the output variables.

Parameter Type

Description

field char *

status_func long *

Character buffer that will contain the field that is being read.

Value of the UniVerse BASIC or UniBasic STATUS function
after ic_readyv is executed. If the record is not locked, 0 is
returned.

returned in code.

InterCall Developer’s Guide

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.
ic_readv Qutput Variables
Description

ic_readv reads a specified field from a record in an open server database file.

If a value of 0 is specified for field number, ic_readv checks if the record exists. The
value of field len is set to 0 and field is set to null. If the record exists, a value of 0 is
returned in code. If the record does not exist, the error [IE_ RNF (record not found) is

If you do not specify a buffer large enough for the field, the buffer is filled to the value
of max_field size, and IE_BTS (buffer too small) is returned in code.

IK READU: If a value of IK READUW or IK READLW is specified for lock and
another user holds an exclusive lock on the record to be read, the program will pause
until the lock is released.

IK_READUW: If the record is already locked by another user and the value of lock
is IK_ READU, the error IE_LCK (record is locked by another user) is returned in
code, and the user number of the user who has locked the record is returned in
status_func. If a value of IK READU or IK READL is specified for lock, the record
is locked even if ic_readv does not execute successfully. The lock is released if an
attempt is made to write to the record with the ic_write or ic_writev function. The
lock can also be released by calling the ic_release function.

Related Functions

ic_close
ic_read
ic_release
ic_write
ic_writev

ic_readv 3-97

ic_recordlock

Syntax

ic_recordlock (file_id, lock, record id, id len, status_func, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.
lock long * Specifies the type of lock required:
IK_ READL The record is locked with an IK._ READL lock,

preventing other users from setting an
IK_READU lock. Users are able to read the
record using an IK_READL lock.

IK_ READU Therecord is locked with an IK_ READU lock,
preventing other users from setting a lock on
the same record.

IK READLW The record is locked with an IK._ READL lock,
preventing other users from setting an
IK_READU lock. Users are able to read the
record using an IK_ READL lock.

IK_ READUW Therecord is locked with an IK_ READU lock,
preventing other users from setting a lock on
the same record.

record_id char * Character string containing the record ID of the record for which
the lock is being taken.

id len long * Length of record_id. The maximum length of record id is 255
bytes.

ic_recordlock Input Variables

3-98 InterCall Developer’s Guide

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC or UniBasic STATUS
function after ic_recordlock is executed:

-1 The user holding the lock is on a remote node.
0 The record is not locked.
other User number of the user holding the lock.

code long * Either 0 if execution was successful or a specific error
code if execution was not successful.

ic_recordlock Output Variables

Description

ic_recordlock sets an IK READU lock on a record in an open server database file
without performing a read.

IK_READU: If a value of IK. READUW or IK READLW is specified for lock and
another user holds an exclusive lock on the record to be locked, the program will
pause until the lock is released.

IK_READUW: If the record is already locked by another user and the value of lock
is IK_ READU, the error IE_LCK (record is locked by another user) is returned in
code, and the user number of the user who has locked the record is returned in
status_func. The record can be released explicitly with ic_release or implicitly with
the ic_write, ic_writev, or ic_delete function.

ic_recordlock 3-99

Related Functions

ic_close
ic_delete
ic_read
ic_readv
ic_release
ic_write
ic_writev

3-100 InterCall Developer’s Guide

ic_recordlocked

Syntax

ic_recordlocked (file_id, record id, id length, lock status, status func, code)

Input Variables

The following table describes the input variables.

Parameter Type Description
file_id long * File identifier returned by the ic_open function.
record_id char * Character string containing the record ID of the record for which

the lock is being taken.

id_length long * Length of record_id. The maximum length of record _id is 255
bytes.

ic_recordlocked Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description
lock_status long * Lock status of the specified record.
status_func long * Value of the UniVerse BASIC or UniBasic STATUS function

after the procedure has been executed:

positive value The user number of the owner of the lock
(or the first user number encountered, if
more than one user has locked records in
the specified file).

ic_recordlocked Output Variables

ic_recordlocked 3-101

Parameter Type Description

0 The READU lock table is full.

negative value —1 times the user number of the remote user
who has locked the record or file.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_recordlocked Output Variables (Continued)

Description

ic_recordlocked returns the status of a record lock in the Jock status argument.

The following table lists the valid values for lock_status.

Symbolic Constant Value Meaning
4 This user has a shared FILELOCK.
LOCK MY FILELOCK 3 This user has an exclusive FILELOCK.
LOCK_MY_ READU 2 This user has a READU lock.
LOCK MY READL 1 This user has a READL lock.
LOCK _NO_LOCK 0 Record not locked.
LOCK_OTHER READL -1 Another user has a READL lock.
LOCK_OTHER READU -2 Another user has a READU lock.
LOCK _OTHER_FILELOCK -3 Another user has an exclusive FILELOCK.
—4 Another user has a shared FILELOCK.

lock_status Values

3-102 InterCall Developer’s Guide

Related Functions

ic_clearfile
ic_delete
ic_release
ic_trans

ic_recordlocked 3-103

3-104

ic_release

Syntax

ic_release (file_id, record id, id len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_open function, or 0 if all locks are
to be released.

record_id char * Character string containing the record ID of the record for which
locks are to be released.

id len long * Length of record id. The maximum length of record id is 255
bytes.

ic_release Input Variables

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_release Qutput Variable

Description

ic_release releases records locked by the ic_filelock, ic_read, or ic_readv function,
or by the UniVerse BASIC or UniBasic FILELOCK, MATREADU, READL,
READU, or READVU statements.

InterCall Developer’s Guide

If the value of file_id is 0, ic_release releases all records locked by all ic_filelock,
ic_read, ic_readv, and ic_recordlock calls made during the current session.

If the value of id len is 0, all records in the specified file are released. If values are
supplied for file id, record _id, and id_len, only locks on the specified record are
released.

Useic_quitoric_quitall to release all file and record locks. If the file has been opened
more than once, the locks are released on the last close.

Record locks are released automatically if ic_write, ic_writev, or ic_delete is called.

Related Functions

ic_close
ic_fileunlock

ic_release 3-105

3-106

ic_remove

Syntax

ic_remove (dynamic_array, length_da, string, max_str_size, string_len, delimiter,
remove_pointer, code)

Input Variables

The following table describes the input variables.

Parameter Type Description
length _da long * Length of the dynamic array in bytes.
max_str_size long * Maximum size of the string buffer in bytes.

ic_remove Input Variables

Input/Output Variables

The following table describes the input/output variables.

Parameter Type Description
dynamic_array char * String containing a server database dynamic array.
remove_pointer long * Stores the position of the string which is processing.

ic_remove Input/Qutput Variables

InterCall Developer’s Guide

Output Variables

The following table describes the output variables.

Parameter Type Description

string char * Substring extracted from the dynamic array.
string_len long * Length of the new substring in bytes.
delimiter long * Value of the delimiter following the string:

0 = End of string

1= Item
2 = Field
3 = Value
4 = Subvalue
5 = Text
code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_remove Output Variables

Description

ic_remove assigns a substring of a dynamic array to string. The substring can be
delimited by an item, field, value, subvalue, or text mark.

A pointer, remove_pointer, is maintained to the trailing delimiter of the substring just
assigned. Its initial value must be 0. Each subsequent execution moves the pointer to
the next delimiter and assigns this substring to the variable. The function can be
executed repeatedly until all substrings have been removed.

You can reset the pointer to 0 at any time to begin again at the start of the string, but
its value must not be altered otherwise. The ic_remove function does not change the
value of the dynamic array.

If the string extracted from the dynamic array exceeds max_str_size, IE_BTS (buffer
too small) is returned in code.

ic_remove 3-107

Related Functions

ic_extract
ic_insert
ic_readlist
ic_replace
ic_strdel

3-108 InterCall Developer’s Guide

ic_replace

Syntax

ic_replace (dynamic_array, max_da_size, length _da, field, value, subvalue, string,
string_len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

max_da_size long * Maximum size of the dynamic array buffer in bytes.
field long * Number of the field to be replaced.

value long * Number of the value to be replaced.

subvalue long * Number of the subvalue to be replaced.

string char * String to replace the specified substring.

string_len long * Length of the new substring in bytes.

ic_replace Input Variables

Input/Output Variables

The following table describes the input/output variables.

Parameter Type Description
dynamic_array char * String containing a server database dynamic array.
length _da long * Length of the dynamic array in bytes.

ic_replace Input/Output Variables

ic_replace 3-109

3-110

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_replace Output Variable

Description

ic_replace replaces the data content of an element of a dynamic array, returning the
new dynamic array and its new length. The data content to be inserted is specified by
string. The numeric values of field, value, and subvalue determine whether the new
data replaces a field, value, or subvalue.

Numeric Values of field, value, and subvalue

The numeric values of field, value, and subvalue determine whether the new data
replaces a field, value, or subvalue.

B Ifvalue and subvalue are 0, the new data replaces the specified field.

B If only subvalue is 0, the new data replaces the specified value.
B [fno argument is 0, the new data replaces the specified subvalue.
|

If a higher-level argument has a value of 0, and a lower-level argument is
nonzero, the 0 value becomes 1. (Field is the highest level, subvalue is the
lowest.)

B [f field, value, or subvalue evaluate to —1, the data is placed after the last
field, value, or subvalue, respectively.

B [f the number of characters to be added extends the length of the dynamic
array past max_da_size, the original dynamic array is not altered, and the
error [E_BTS (buffer too small) is returned in code.

InterCall Developer’s Guide

Related Functions

ic_extract
ic_insert
ic_readlist
ic_remove
ic_strdel

ic_replace 3-111

—

3-112

ic_seek

Syntax

ic_seek (file_id, offset, relto, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * Specifies the file identifier of a file opened for sequential access.
offset long * Number of bytes before or after the reference position.

relto long * Value that specifies the reference position relative to:

0 = The beginning of the file
1 = The current position
2 = The end of the file

ic_seek Input Variables

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_seek Output Variable

Description

Note: UniData databases do not support the ic_seek function.

InterCall Developer’s Guide

ic_seek moves a file pointer from the beginning or end of a file, relative to the current
position. offset is the number of bytes before or after the relfo reference point. A
negative offset results in the pointer being moved before the position specified by
relto.

Note: UNIX uses NEWLINE (ASCII 10) as the end-of-line string. UniVerse for
Windows Platforms uses the CARRIAGE RETURN-NEWLINE pair (ASCII 13—ASCII
10). Programs using these routines must be aware of the system type with which they
are communicating, as it affects the seek position in the files.

Related Functions

ic_closeseq
ic_openseq
ic_readblk
ic_readseq
ic_writeblk
ic_writeseq

ic_seek 3-113

ic_select

Syntax

ic_select (file id, select list num, code)

Input Variables

The following table describes the input variables.

Parameter Type Description
file_id long * File identifier returned by the ic_open function.
select list num long * Select list number (0 through 10 on UniVerse systems, 0

through 9 on UniData systems) to be used for the newly
created list.

ic_select Input Variables

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_select Output Variable

Description

ic_select creates a list of all record IDs from an open server database file. It is similar
to the UniVerse BASIC or UniBasic SELECT statement.

3-114 InterCall Developer’s Guide

Related Functions

ic_clearselect
ic_formlist
ic_getlist
ic_readlist
ic_readnext

ic_select 3-115

3-116

Syntax

ic_selectindex

Input Variables

ic_selectindex (file_id, select list num, ak_name, ak_name_len, ak value,
ak_value_len, status_func, code)

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

select list num long * Select list number (0 through 10) to be used for the newly
created list.

ak_name char * Name of a secondary index on the file.

ak_name_len long * Length of ak_name. If ak_name_len is 0 or negative, a
dynamic array is returned containing the secondary index
names for all indexes on the file.

ak_value char * Name of a particular secondary index value for which a select
list is requested.

ak_value len long * Length of ak_value. An empty value is indicated by setting

ak_value lento 0. To get a list of all keys present in the index,
ak_value len should be set to a negative number.

InterCall Developer’s Guide

ic_selectindex Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * The status value. It uses the same values as the UniVerse BASIC or
UniBasic STATUS function following a SELECTINDEX
statement: 0 if the operation was successful or 1 if the index name
supplied is not the name of a secondary index on the file.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_selectindex Output Variables

Description
ic_selectindex creates a select list based on a secondary index.

If ak_value len is set to a negative number, ic_selectindex will create a select list of
all the secondary index values present in the index specified by ak_name.

If ak_name does not correspond to the name of a secondary index on the specified
file, no select list is created, and status_func is set to 1. Otherwise, status_func is set
to 0.

Related Functions

ic_clearselect
ic_indices
ic_readlist
ic_readnext
ic_select

ic_selectindex 3-117

3-118

ic_session_info

Syntax

Input Variables

ic_session_info (key, data, max_data_len, data_len, code)

The following table describes the input variables.

IK_HOSTNAME

IK_HOSTTYPE

IK_TRANSPORT

IK_USERNAME

IK_STATUS

Parameter Type Description
key long * Key value specifying which piece of information is to be
returned:

The name of the server currently
connected.

The type of server. A value of 1 is
returned for a UNIX server and a value
of 2 is returned for a Windows server.

The type of transport used to make the
connection. A value of 1 is returned for
a TCP/IP connection and a value of 2 is
returned for a LAN pipe connection.

The name of the user who made the
connection (unless the Microsoft
Security Token was used to make the
connection).

This is the current state of the
connection. A value greater than 0 is
returned when the connection is still
active, and a value of 0 is returned if
the connection is down.

max_data_len long * Maximum length of the returned data in bytes.

InterCall Developer’s Guide

ic_session_info Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

data char * Buffer where the returned data is placed.

data_len long * Actual length of the returned data in bytes.

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_session_info Output Variables

Description

ic_session_info returns information about the current session. The information
returned is determined by the key value.

See also “Server Sessions” in Chapter 2, “Programming with InterCall.”

Related Functions

ic_opensession
ic_setsession
ic_unidata_session
ic_universe_session

ic_session_info 3-119

ic_set comms_timeout

Syntax

ic_set_comms_timeout (timeout, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

timeout long * UniRPC timeout in seconds.

ic_set_comms_timeout Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_set comms_timeout Qutput Variable

Description

ic_set_comms_timeout sets the UniRPC timeout in seconds for the current session.
This function can be used at any time except when ic_execute or ic_executecontinue
is running. In this case, the command being executed must complete before you can
use ic_set_comms_timeout.

The default timeout is 24 hours (86400 seconds). You can disable the timeout by
entering a negative value or 0 for the timeout parameter.

3-120 InterCall Developer’s Guide

Note: If you enter a value for the timeout that is too small, a running command may
time out (for example, if you use ic_read). An error code is returned, and the
connection to the server is dropped.

ic_set_comms_timeout 3-121

3-122

ic_set locale

Syntax

Input Variables

ic_set_locale (key, locale_string, locale string len, status, code)

The following table describes the input variables.

Parameter Type

Description

key long *

locale_string char *

locale_string len long *

Specifies the locale information you want to set. It must be one
of the following tokens:

IK LC ALL = All categories

IK LC TIME = Time category

IK_LC _NUMERIC = Numeric category
IK_ LC MONETARY = Monetary category
IK LC _CTYPE = Ctype category

IK_LC COLLATE = Collate category

Specifies the locale string setting for the requested category.

Specifies the length of the locale string.

Output Variables

ic_set_locale Input Variables

The following table describes the output variables.

Parameter Type Description

status long * Contains the code IE NLS DEFAULT if the default locale is used.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

InterCall Developer’s Guide

ic_set_locale Output Variables

Description
UniData databases do not support the ic_set_locale function.

If you specify IK LC ALL, all five categories are set to locale string. If NLS mode
is not enabled on the server, the error code IE NO_NLS is returned in code. If NLS
is enabled on the server, ic_set_locale does one of the following in this order:

B Looks for the specified locale string on the server in the NLS.CLIENT.LCS
file. If it is found, uses the NLS locale name it defines.

B [ooks for the default entry in the NLS.CLIENT.LCS file. If it is found, uses
the NLS locale name it defines.

B Looks for the locale string directly to see if it is loaded. If a locale name is
loaded, uses it.

See also “UniVerse NLS in Client Programs” in Chapter 1, “Introduction.”

ic_set_locale (UniVerse only) 3-123

ic_set map (UniVerse only)

Syntax

ic_set_map (map_string, map_string len, status, code)

Input Variables

The following table describes the input variables.

Parameter Type Description
map_string char * Specifies the map name for the current server locale.
map_string len long * Specifies the length of map_string.

ic_set_map Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

status long * Contains the code IE_ NLS_DEFAULT if the default locale is
used.

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_set_map Output Variables

Description

= Note: UniData databases do not support the ic_set_map function.

If NLS mode is not enabled on the server, the error code IE NO_NLS is returned in
code. If NLS mode is enabled on the server, ic_set_map does one of the following in
this order:

3-124 InterCall Developer’s Guide

B Looks for the specified map string in the NLS.CLIENT.MAPS file on the
server. If it is found, uses the NLS map name it defines.

B Looks for the default entry in the NLS.CLIENT.MAPS file on the server. If
it is found, uses the NLS map name it defines.

B [f the map string is DEFAULT, uses the NLSDEFSRVMAP configurable
parameter.

B [fan NLS map string is not found, uses the map string supplied to the routine
directly.

See also UniVerse NLS in Client Programs in Chapter 1, “Introduction.”

ic_set_map (UniVerse only) 3-125

3-126

ic_setsession

Syntax

ic_setsession (session_id, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

session_id long * Session identifier obtained from an earlier call to the
ic_opensession, ic_unidata_session, or ic_universe_ session
function.

ic_setsession Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_setsession Qutput Variable

Description

ic_setsession changes the current InterCall session for the current task. The new
current session opened by ic_opensession, ic_unidata_session, or
ic_universe_session, must be open when you call ic_setsession. All InterCall
functions will use the current session for that task until the current session is changed.
ic_quit only terminates the current session; it has no effect on other sessions started
by the current task. Use ic_quitall to close all sessions. Use ic_session_info to get
information about the current session.

InterCall Developer’s Guide

See also Server Sessions in Chapter 2, “Programming with InterCall.”

ic_setsession 3-127

ic_setvalue

Syntax

ic_setvalue (key, data, data_len, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

key long * Key value identifying the system variable.

data char * Data to add to the system variable.

data_len long * Length of the data to add to the system variable.

ic_setvalue Input Variables

Output Variable

The following table describes the output variable.

Paramete
r Type Description
code long * Either 0 if execution was successful or a specific error code if
execution was not successful.
ic_setvalue Output Variable
Description

ic_setvalue sets the value of a system variable from the server program.

At this release, only one key value can be specified:

3-128 InterCall Developer’s Guide

Value Symbolic Name System Variable

7 IK_AT USER_RETURN CODE @USER.RETURN.CODE

Related Function

ic_getvalue

ic_setvalue 3-129

ic_strdel

Syntax

ic_strdel (dynamic_array, length_da, field, value, subvalue, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

field long * Number of the field to delete.
value long * Number of the value to delete.
subvalue long * Number of the subvalue to delete.

ic_strdel Input Variables

Input/Output Variables

The following table describes the input/output variables.

Parameter Type Description

dynamic_array char* String that contains a server database dynamic array from
which the specific field, value, or subvalue is to be deleted.

length_da long * Length of the dynamic array in bytes.

ic_strdel Input/Output Variables

3-130 InterCall Developer’s Guide

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_strdel Output Variable

Description

ic_strdel deletes an element in a dynamic array. The numeric values of field, value,
and subvalue determine whether the data to be removed is a field, value, or subvalue.
B Ifvalue and subvalue are 0, the entire field is deleted.
B If only subvalue is 0, the data deleted is the specified value.

B [fno argument is 0, the data deleted is the specified subvalue.

Related Functions

ic_extract
ic_insert

ic_remove
ic_replace

ic_strdel 3-131

3-132

ic_subcall

Syntax

ic_subcall (sub_name, sub_name_len, code, num_args, var_args...)

Input Variables

The following table describes the input variables.

Parameter Type Description

sub_name char * Name of the subroutine to be called.
sub_name_len long * Length of sub_name.

num_args long * Number of arguments used by the subroutine.

ic_subcall Input Variables

Input/Output Variable

The following table describes the input/output variable.

Parameter Type Description

var_args ICSTRING * List of arguments for the subroutine.

ic_subcall Input/Output Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_subcall Output Variable

InterCall Developer’s Guide

Description

ic_subcall calls a cataloged BASIC subroutine on the server. If the subroutine has
arguments, before you use ic_subcall you must:

B Define the arguments in a C variable argument list composed of ICSTRING
data structures.

B Allocate initial memory for the arguments using either the ic_malloc or the
ic_calloc function.

When the subroutine is executed, memory is resized dynamically to contain any
returned arguments. When the subroutine is completed, release memory using the
ic_free function.

Warning: Your program will not work correctly and you may corrupt memory if you
use any other function to allocate or free memory.

Visual Basic does not support variable arguments. Visual Basic users should use the
features in the UniObjects Programming Interface instead.

See also Using the @TTY Variable in Chapter 2, “Programming with InterCall.”

Example

char subname[4] = "TEST";
long subname_len = 4;
long code = 0;

long numargs = 3;

long size = 6;

long size2 = 7;

ICSTRING argl, arg2, arg3;

argl.len = 0;/* This is a null argument */
arg2.len = size;

arg2.text = ic_malloc(size);

memcpy (arg2.text, "132456", arg2.len);

arg3.len = size2;

arg3.text = ic_malloc(size2);

memcpy (arg3.text, "ACCOUNT", arg3.len);

ic_subcall (subname, &subname len, &code, &numargs, &argl,
&arg2, &arg3) ;

ic_free(arg2.text);

ic_free(arg3.text);

if (argl.len)

{
}

ic_free(argl.text) ;

ic_subcall 3-133

3-134

ic_time

Syntax

ic_time (time, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

time long * Server system time in internal date format.

ic_time Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_time Output Variable

Description

ic_time returns the server system time in internal format. The internal format for the
time is based on a reference time of midnight, which is 0. All times are positive
numbers representing the number of seconds elapsed since midnight.

Related Functions

ic_date
ic_timedate

InterCall Developer’s Guide

ic_timedate

Syntax

ic_timedate (string, max_str_len, string len, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

max_str_len long * Maximum size of the returned string.

ic_timedate Input Variable

Output Variables

The following table describes the output variables.

Parameter Type Description

string char * Current server time and date.

string_len long * Length of the current server time and date.

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_timedate Output Variables

ic_timedate 3-135

Description

ic_timedate returns the time and date in external format. The format is 2h:mm.ss dd
mmm yyyy, where:

hh Hours based on a 24-hour clock
mm Minutes

s Seconds

dd Day

mmm Month, such as jan for January
Yy Year

To return the full date and time, the max_str_len needs to be set to at least 21.

Related Functions

ic_date
ic_time

3-136 InterCall Developer’s Guide

ic_trans

Syntax

ic_trans (filename, filename_len, dict flag, record _id, record id len, field no,
control_code, control_code_len, text_buffer, max_buff, text_len, status, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

filename char * Name of the database file on the server.

filename_len long * Length of the file name.

dict flag long * Indicates whether the data or dictionary records of a file are to
be used.

record_id char * D of the record to be accessed.

record_id _len long * Length of the ID to be accessed.

field no long * Field number of the record from which the data is to be
extracted.

control_code char * Specifies what action to take if data is not found or is null.

control_code_len long *

max_buff’ long *

Length of control_code.

Maximum size of text_buffer in bytes.

ic_trans Input Variables

ic_trans 3-137

Output Variable

The following table describes the output variables.

Parameter Type Description

text_buffer char * Buffer that contains the result of the data transfer.

text_len long * Actual length of text buffer.

status long * Size of the ic_trans function.

code long * Either 0 if execution was successful or a specific error code if

execution was not successful.

ic_trans Output Variable

Description

ic_trans returns the contents of a field or a record in a server database file. ic_trans
opens the file, reads the record, and extracts the specified data.

If field no is —1, the entire record is returned, except for the record ID. control code
specifies what is done if data is not found or is the null value:

Code Description

X (Default) Returns an empty string if the record does not exist or data cannot be
found.

Returns the value of record_id if the record does not exist or data cannot be found.

N Returns the value of record_id if the null value is found.

ic_trans Control Codes

3-138 InterCall Developer’s Guide

ic_unlock

Syntax

ic_unlock (lock num, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

lock_num long * Lock number to be cleared (0 through 63).

ic_unlock Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_unlock Output Variable

Description

ic_unlock clears a public process lock. Process locks are used to protect user-defined
resources or events on the server from unauthorized or simultaneous data file access
by different users.

Related Function

ic_lock

ic_unlock 3-139

3-140

Syntax

Input Variables

ic_unidata_session

session_id = ic_unidata_session (server name, user_name, password, account,
subkey, status, unidata_server)

The following table describes the input variables.

Parameter Type Description

server_name char * Name of the server to which you want to connect. See
“Description” for details on how you can use this to specify the
transport type to use for the connection.

user_name char * Name to use to log on to the server.

password char * Password for user_name.

account char * Name or path of the account to access on the server.

subkey char * Name of the device subkey, used when an application connects
to a database server through a multiple-tier connection.

unidata_server char* Name of the UniData server to which you want to connect. If

you do not specity unidata_server, the server udcs is opened.

InterCall Developer’s Guide

ic_unidata_session Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

session_id long Unique session identifier.

status long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_unidata_session Output Variables

Description

ic_unidata_session opens a new session from the client to a UniData server and
returns session_id, a unique session identifier. Use the ic_setsession function to
switch among sessions using the contents of session_id.

An InterCall client can support up to 10 simultaneous sessions to different database
servers.

Note: ic_unidata_session does not execute the LOGIN entry.

ic_unidata_session opens the UniData server specified by unidata_server. If none is
specified, it opens the server called udcs. These servers are defined in the
unirpcservices file. Use ic_universe_session to open the UniVerse server uvcs. Use
ic_opensession to open the server defcs on either UniVerse or UniData systems.

The way in which you specify server _name determines the transport type used for the
connection:

B [fyou enter server _name only, the connection is made using TCP/IP.

B [fyou enter server name:TCP, the connection is made using TCP/IP.

B [fyou enter server name:LLAN, the connection is made using LAN pipes.

For TCP/IP connections, you can also specify the port number and/or the IP address
to use as part of server name. For example:

B [fyou enter /P address only, a TCP/IP connection is made to the specified
address.

B [fyou enter server name:port_number, a TCP/IP connection is made to the
specified port number on the server.

ic_unidata_session 3-141

B [fyou enter /P address:port_number, a TCP/IP connection is made to the
specified port number at the given IP address.

See also the following sections in Chapter 2, “Programming with InterCall.”

B Server Sessions
B Using the @TTY Variable
B Using the Microsoft Security Token

Related Functions

ic_opensession
ic_quit

ic_quitall
ic_universe session

3-142 InterCall Developer’s Guide

ic_universe_session

Syntax

session_id = ic_universe_session (server_name, user_name, password, account,
subkey, status)

Input Variables

The following table describes the input variables.

Parameter Type Description

server_name char * Name of the server to which you want to connect. See
“Description” for details on how you can use this to specify the
transport type to use for the connection.

user_name char * Name to use to log on to the server.

password char * Password for user_name.

account char * Name or path of the account to be accessed on the server.
subkey char * Name of the device subkey, used when an application connects

to a database server through a multiple-tier connection.

ic_universe_session Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

session_id long Unique session identifier.

status long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_unverse Output Variables

ic_universe_session 3-143

3-144

Description

ic_universe_session opens a new session from the client to a UniVerse server and
returns session_id, a unique session identifier. Use the ic_setsession function to
switch among sessions using the contents of session_id.

An InterCall client can support up to 10 simultaneous sessions to different database
servers.

Note: ic_universe_session does not execute the LOGIN entry.

ic_universe_session always opens a server called uvcs, which is defined in the
unirpcservices file. Use ic_unidata_session to open the UniData server udcs. Use
ic_opensession to open the server defcs on either UniVerse or UniData systems.

The way in which you specify server _name determines the transport type used for the
connection:

B [fyou enter server_name only, the connection is made using TCP/IP.

B [fyou enter server name:TCP, the connection is made using TCP/IP.

B [fyou enter server_name:LAN, the connection is made using LAN pipes.

For TCP/IP connections, you can also specify the port number and/or the IP address
to use as part of server_name. For example:

B [fyou enter /P address only, a TCP/IP connection is made to the specified
address.

B [fyou enter server name:port_number, a TCP/IP connection is made to the
specified port number on the server.

B [fyou enter IP address:port_number, a TCP/IP connection is made to the
specified port number at the given IP address.

See also the following sections in Chapter 2, “Programming with InterCall.”

B Server Sessions
B Using the @TTY Variable
B Using the Microsoft Security Token

InterCall Developer’s Guide

Related Functions
ic_opensession

ic_quit

ic_quitall
ic_unidata_session

ic_universe_session 3-145

3-146

ic_weofseq

Syntax

ic_weofseq (file_id, code)

Input Variable

The following table describes the input variable.

Parameter Type Description

file_id long * File identifier returned by the ic_openseq function.

ic_weofseq Input Variable

Output Variable

The following table describes the output variable.

Parameter Type Description

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_weofseq Output Variable

Description
Note: UniData databases do not support the ic_weofseq function.

ic_weofseq writes an end-of-file (EOF) mark onto a file opened for sequential
processing. The EOF mark truncates the file at the current processing position.

InterCall Developer’s Guide

Related Functions

ic_closeseq
ic_readblk
ic_readseq
ic_writeblk
ic_writeseq

ic_weofseq 3-147

ic_write

Syntax

Input Variables

ic_write (file id, lock, record _id, id len, record, record len, status_func, code)

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

lock long * Specifies what actions to perform if the record was previously
locked:

IK_WRITE Releases any locks on the target record. If
another user has an exclusive lock on the
target record, the write fails and a locked
error is returned.

IK_ WRITEW Pauses until the lock is released if another
user has an exclusive update on the target
record.

IK_WRITEU Specifies that any lock is to be retained.

record_id char * Character string containing the record ID of the record to be
written.

id_len long * Length of record_id. The maximum length of record id is 255
bytes.

record char * Character string containing the record.

record_len long * Length of the record in bytes.

3-148 InterCall Developer’s Guide

ic_write Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function after
ic_write is executed:

-3 The record failed an SQL integrity check.

-2 The record was unlocked before the operation, and the
value of lock is IK. WRITE.

0 The record was locked before the operation, and the value
of lock is IK._ WRITE.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_write Output Variables

Description

ic_write writes a record to an open server database file.

Related Functions

ic_close
ic_read
ic_readv
ic_writev

ic_write 3-149

ic_writeblk

Syntax

ic_writeblk (file id, data, data_len, status_func, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_openseq function.
data char * Character string containing the data to be written.
data_len long * Length of the data in bytes.

ic_writeblk Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC STATUS function after
ic_writeblk is executed.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_writeblk Output Variables

Description

— Note: UniData databases do not support the ic_writeblk function.

ic_writeblk writes the data held in data starting at the current position in a file that
has been opened for sequential processing.

3-150 InterCall Developer’s Guide

Related Functions

ic_closeseq
ic_readblk
ic_readseq
ic_seek
ic_writeseq

ic_writeblk 3-151

ic_writeseq

Syntax

ic_writeseq (file id, data, data_len, status_func, code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_openseq function.
data char * Character string containing the data to be written.
data_len long * Length of the data in bytes.

ic_writeseq Input Variables

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC STATUS function after
ic_writeseq is executed:

-2 The record was unlocked before the operation.
0 The record was locked before the operation.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_writeseq Output Variables

3-152 InterCall Developer’s Guide

Description
Note: UniData databases do not support the ic_writeseq function.

Eachic_writeseq function writes data starting at the current position in a file that has
been opened for sequential processing. An end-of-line string is written into the end
of the data and the pointer is then set past the end of the line.

Note: UNIX uses NEWLINE (ASCII 10) as the end-of-line string. UniVerse for
Windows NT uses the CARRIAGE RETURN-NEWLINE pair (ASCII 13-ASCII 10).

Related Functions

ic_closeseq
ic_readblk
ic_readseq
ic_seek
ic_writeblk

ic_writeseq 3-153

ic_writev

Syntax

ic_writev (file_id, lock, record id,id len,field number,field,field len, status func,
code)

Input Variables

The following table describes the input variables.

Parameter Type Description

file_id long * File identifier returned by the ic_open function.

lock long * Specifies what actions to perform if the record was previously
locked:
IK_WRITE Releases any locks on the target record. If

another user has an exclusive lock on the
target record, the write fails and a locked
error is returned.

IK_ WRITEW Pauses until the lock is released if another
user has an exclusive update on the target
record.

IK_WRITEU Specifies that any lock is to be retained.

record_id char * Character string containing the record ID of the record
containing the field to be written.

id_len long * Length of record_id. The maximum length of record id is 255
bytes.

field number long * Number of the field to which the data is to be written.
field char * Character string containing the field.

field len long * Length of the field in bytes.

ic_writev Input Variables

3-154 InterCall Developer’s Guide

Output Variables

The following table describes the output variables.

Parameter Type Description

status_func long * Value of the UniVerse BASIC or UniBasic STATUS function after
ic_writev is executed:

-3 The record failed an SQL integrity check.

-2 The record was unlocked before the operation, and the
value of lock is IK_WRITE.

0 The record was locked before the operation, and the value
of lock is IK_WRITE.

code long * Either 0 if execution was successful or a specific error code if
execution was not successful.

ic_writev Output Variables

Description

ic_writev writes a specified field to a record in an open server database file.

Related Functions

ic_close
ic_read

ic_readv
ic_write

ic_writev 3-155

InterCall Functions
by Use

This appendix summarizes the InterCall functions described in detail in
Chapter 3, “InterCall Functions.” The functions are grouped according
to use.

A-2

Accessing a Server

Function

Description

ic_opensession
ic_unidata_session
ic_universe_session
ic_session_info

ic_setsession

ic_set_comms_timeout
ic_quit

ic_quitall

Starts a session on a database server.
Starts a session on a UniData server.
Starts a session on a UniVerse server.
Returns details about the current session.

Switch between sessions using the session identifier returned by
ic_opensession.

Sets the network timeout period for the current session.
Closes the current session.

Closes all open sessions.

InterCall Developer’s Guide

Functions for Accessing a Server

Reading and Modifying Records

Function Description

ic_readv Reads a single field value from a record in an open server database file.
ic_read Reads a record from an open server database file.

ic_writev Writes a new value to a field in a record in an open server database file.
ic_write Writes a record to an open server database file.

ic_trans Returns the contents of a field or a record in an open server database file.
ic_release Releases a lock on one record, or all records, in a file.

ic_delete Deletes a record from an open server database file.

Functions for Reading and Modifying Records

A-3

A-4

Reading and Modifying Sequential Files

Function

Description

ic_openseq
ic_readseq

ic_readblk

ic_writeseq

ic_writeblk

ic_weofseq

ic_seek

ic_closeseq

Opens a file for sequential processing.
Reads a line of data from a file opened for sequential processing.

Reads a block of data of a specified length from a file opened for
sequential processing.

Writes a line of data from a file opened for sequential processing.

Writes a block of data of a specified length from a file opened for
sequential processing.

Writes an end-of-file (EOF) mark to a file opened for sequential
processing.

Positions a file pointer by an offset in a file opened for sequential
access.

Closes a file opened for sequential processing.

InterCall Developer’s Guide

Functions for Reading and Modifying Sequential Files

Accessing and Modifying Strings

Function Description

ic_oconv Converts data to an external storage format.

ic_iconv Converts data to an internal storage format.

ic_raise Raises delimiters in a dynamic array to the next higher level.

ic_lower Converts delimiters in a dynamic array to the next lower level.

ic_strdel Deletes data from a dynamic array.

ic_alpha Determines whether a string is alphabetic.

ic_extract Returns data from a dynamic array.

ic_fmt Formats a string in a specified pattern.

ic_insert Inserts data into a dynamic array.

ic_locate Searches a dynamic array for a string and returns a value indicating where
the expression is in the array and/or where the expression should go if it is
not in the array.

ic_remove Removes successive substrings from a dynamic array.

ic_replace Replaces data in a dynamic array.

Functions for Accessing and Modifying Strings

A-5

Accessing and Modifying Select Lists

Function Description

ic_select Creates a select list of all the record IDs in a file.

ic_selectindex Creates a select list from a secondary index.

ic_getlist Reactivates a saved select list.

ic_readlist Reads an entire active select list.

ic_formlist Converts a dynamic array to a select list.

ic_readnext Returns a record ID from a currently active select list.
ic_clearselect Clears an active select list.

Functions for Accessing and Modifying Select Lists

A-6 InterCall Developer’s Guide

Managing Database Files

Function

Description

ic_open
ic_fileinfo
ic_filelock
ic_fileunlock
ic_recordlock
ic_recordlocked
ic_close

ic_clearfile

Opens a file so that records can be read or written.
Returns information about a server database file.
Locks a file for exclusive use.

Releases the exclusive lock on a file.

Locks a record in a file.

Returns the status of a locked record.

Closes a file opened by ic_open.

Deletes all records from an open server database file.

Functions for Managing Database Files

A-7

A-8

Using UniVerse NLS (UniVerse Only)

= Note: You can use the NLS functions only on UniVerse servers.

Function

Description

ic_get locale
ic_get map

ic_get _mark value

ic_set_locale

ic_set_map (UniVerse
only)

Retrieves the name of the locale that the server is using.
Retrieves the name of the map the server is currently using.

Retrieves the character value of a UniVerse system delimiter
that is used in the current character set on the server.

Sets a locale on the server.

Sets a map name for data transfer to and from the server.

InterCall Developer’s Guide

Functions for Using UniVerse NLS

Using System Utilities

Function Description

ic_malloc Allocates a piece of memory.
ic_calloc Allocates a clears a piece of memory
ic_subcall Calls a cataloged subroutine.
ic_unlock Clears a public process lock.

ic_executecontinue

ic_itype
ic_cleardata
ic_free
ic_getvalue
ic_inputreply
ic_data
ic_date
ic_time
ic_timedate
ic_execute
ic_lock
ic_setvalue

ic_indices

Resumes command execution when ic_execute returns IE_BTS

(buffer too small).

Returns the value, resulting from the evaluation of an I-descriptor.

Flushes all data loaded in the input stack.
Releases previously allocated memory.

Gets a system variable value.

Passes data to a server at input.

Passes a string to a server requesting data.
Returns the date in internal format.

Returns the time in internal format.

Returns the date and time in external format.
Executes a server database command.

Sets a public process lock.

Sets a system variable value.

Returns information about secondary indexes on a file.

Functions for Using System Utilities

A-9

Erxrror Codes

InterCall functions return error information as a status code. Symbolic
constants representing each error number are in the files intcall.h (for
C) and INTCALL.TXT (for Visual Basic) in the include subdirectory
of the InterCall install directory.

If you are running an application that was developed using InterCall
Release 1.0, some of the error symbols contained in your code may not
be listed here, as they are no longer used in InterCall 2.5 or later. Refer
to your interCALL Release 1.0 manual, or the intcall.h file for a full
listing of these symbols and their respective codes. Only the error codes
that are returned by this version of InterCall are listed here.

Database Error Codes

Value Symbol Meaning

1 IE NLS DEFAULT

14002 IE_ENOENT No such file or directory

14005 IE_EIO 1/O error

14009 IE_EBADF Bad file number

14012 IE_ENOMEM No memory available

14013 IE_ EACCES Permission denied

14022 IE_EINVAL Invalid argument

14023 IE_ENFILE File table overflow

14024 IE_EMFILE Too many open files

14028 IE_ENOSPC No space left on device

14551 IE_ BW_NETUNREACH Network is unreachable. When you
see this error, you must quit and
reopen the session.

22002 IE_BTS Buffer too small

22004 IE_ LRR Last record already read

22005 IE_NFI File identifier given does not corre-
spond to an open file

22009 IE_STR FILEINFO result is a string

30001 IE_RNF Record not found

30002 IE LCK File or record locked by another
user

30086 IE UFI FILEINFO request has not been
implemented

30094 IE BIL Bad ID length

B-2

B-3

Value Symbol Meaning

30095 IE_FIFS File ID is incorrect for session

30096 IE USC Unsupported server command

30097 IE_SELFAIL Select failed

30098 IE_LOCKINVALID Lock number provided is invalid

30099 IE_SEQOPENED The file was opened for sequential
access and you have attempted
hashed access

30100 IE HASHOPENED The file was opened for hashed
access and you have attempted
sequential access

30101 IE_SEEKFAILED Seek command failed

30102 IE_ DATUMERROR Internal datum error

30103 IE_INVALIDATKEY Invalid key used for GET/SET
(@variables

30104 IE_INVALIDFILEINFOKEY FILEINFO key out of range

30105 IE_ UNABLETOLOADSUB Unable to load subroutine on host

30106 IE BADNUMARGS Bad number of arguments for
subroutine (either too many or too
few)

30107 IE_SUBERROR Subroutine failed to complete
successfully

30108 IE_ITYPEFTC I-type failed to complete correctly

30109 IE_ITYPEFAILEDTOLOAD I-type failed to load

30110 IE_ITYPENOTCOMPILED The I-type has not been compiled

30111 IE_ BADTYPE It is not an I-type or the I-type is
corrupt

30112 IE_INVALIDFILENAME Filename is null

30113 IE_ WEOFFAILED ic_weofseq failed

InterCall Developer’s Guide

Value

Symbol

Meaning

30114

30115

30116

30117

30118

30119

30120

30124

30125

30126

30127

30128

30129

31000

31001

33201

33202

33203

33204

33205

33206

33207

IE_ EXECUTEISACTIVE
IE_EXECUTENOTACTIVE

IE_ BADEXECUTESTATUS

IE_INVALIDBLOCKSIZE
IE_BAD_CONTROL_CODE

IE_BAD _EXEC_CODE

IE_BAD TTY DUP
IE_TX_ACTIVE
IE_CANT ACCESS_PF
IE_FAIL_TO CANCEL
IE_INVALID INFO KEY

IE_CREATE_FAILED

IE_ DUPHANDLE_FAILED
IE_NVR
IE_NPN
IE_PARI
IE_PAR2
IE_PAR3
IE_PAR4
IE_PARS
IE_PARG

IE_PAR7

An execute is currently active
An execute is currently inactive

Internal execute error, execute has
not returned an expected status

Block size is invalid for call
Bad trans control code

Execute did not send return codes
back to client correctly

Failure to duplicate ttys
Transaction is active

Cannot access part files
Failed to cancel an execute
Bad key for ic_session_info

The creation of a sequential file
failed

Failed to duplicate a pipe handle
No VOC record

No pathname in VOC record
Bad parameter 1

Bad parameter 2

Bad parameter 3

Bad parameter 4

Bad parameter 5

Bad parameter 6

Bad parameter 7

B-4

B-5

Value Symbol Meaning

33208 IE_PARS Bad parameter 8

33209 IE_PAR9 Bad parameter 9

33211 IE BSLN Bad select list number

33212 IE_BPID Bad partfile ID

33213 IE BAK Bad secondary index file

39000 IE BAD COMMAND Command not recognized by server

39101 IE_ NODATA The server is not responding

39119 IE_AT INPUT A program executed using
ic_execute is waiting for terminal
input

39120 IE_SESSION NOT_OPEN The session is not opened when an
action is attempted

39121 IE_ UVEXPIRED The license has expired

39122 IE_CSVERSION Client or server is out of date;
client/server functions have been
updated

39123 IE_ COMMSVERSION Client or server is out of date;
comms support has been updated

39124 E_BADSIG You are trying to communicate with
the wrong client or server

39125 IE_ BADDIR The directory you are connecting to
does not exist or is not a database
account

39126 IE_SERVERERR An error has occurred on the server
while trying to transmit an error
code to the client

39127 IE BAD UVHOME Unable to get the correct path to the
installed database

InterCall Developer’s Guide

Value

Symbol

Meaning

39128

39129

39130

39131

39133

39134

39135

39200

39201

39202

39203

39204

39205

39206

39207

39208

IE_ INVALIDPATH

IE_ INVALIDACCOUNT

IE_BAD _UVACCOUNT FILE

IE_FTA_NEW_ACCOUNT

IE_FTS_TERMINAL

IE_ULR
IE_NO_NLS

IE_SR_CREATE_PIPE_FAIL

IE_SR_SOCK_CON_FAIL

IE_SR_GA_FAIL

IE_SR_MEMALLOC_FAIL

IE_SR_SLAVE_EXEC_FAIL

IE_SR_PASS_TO SLAVE FAIL

IE_SR_EXEC_ALLOC_FAIL

IE_SR_SLAVE_READ_FAIL

IE_SR_REPLY WRITE_FAIL

Bad path found in UV.ACCOUNT
file

Account name given is not an
account

UV.ACCOUNT file could not be
found and/or opened

Failed to attach to the account
specified

Failed to set up the terminal for
server

User limit has been reached
NLS is not enabled on the server

Server failed to create the slave
pipes

Server failed to connect to socket

Slave failed to give server the Go
Ahead message

Failed to allocate memory for the
message from the slave

The slave failed to start correctly

Failed to pass the message to the
slave correctly

Server failed to allocate the
memory for the execute buffer
correctly

Failed to read from the slave
correctly

Failed to write the reply to the slave
(ic_inputreply)

B-6

B-7

Value

Symbol

Meaning

39209

39210

39211

80011

80019

80036

80144

80147

80148

81001

81002

81003

81004

81005

81006

81007

IE_SR_SIZE READ FAIL

IE_SR_SELECT FAIL

IE_SR_SELECT TIMEOUT

IE BAD LOGINNAME

IE_BAD PASSWORD
IE_REM_AUTH_FAILED
IE_ACCOUNT_EXPIRED
IE_RUN_REMOTE_FAILED
IE_UPDATE_USER_FAILED

UVRPC_BAD CONNECTION

UVRPC_NO_CONNECTION

UVRPC NOT_INITED

UVRPC_INVALID ARG TYPE

UVRPC_WRONG_VERSION

UVRPC_WRONG_VERSION

UVRPC_NO_MORE_
CONNECTIONS

Failed to read the size of the
message from the slave

Server failed to select on input
channel. When you see this error,
you must quit and reopen the
session.

The select has timed out

Login failed (user name or
password invalid)

Password has expired

Unable to set remote authorization
The account has expired

Unable to run as the given user
Unable to update user details

Connection is bad. When you see
this error, you must quit and reopen
the session.

Connection is down. When you see
this error, you must quit and reopen
the session.

The UniRPC has not be initialized

Argument for message is not a valid
type. When you see this error, you
must quit and reopen the session.

UniRPC version mismatch

Packet message out of step. When
you see this error, you must quit
and reopen the session.

No more connections available

InterCall Developer’s Guide

Value

Symbol

Meaning

81008

81009

81010

81011

81012

81013

81014

81015

81016

81017

81018

81019

UVRPC BAD PARAMETER

UVRPC_FAILED

UVRPC_ARG_COUNT
UVRPC_UNKNOWN_HOST
UVRPC_FORK_FAILED
UVRPC_CANT OPEN_SERV_
FILE

UVRPC_CANT_FIND SERVICE

UVRPC_TIMEOUT

UVRPC_REFUSED

UVRPC_SOCKET_INIT FAILED

UVRPC_SERVICE_PAUSED

UVRPC_BAD TRANSPORT

Bad parameter passed to the
UniRPC. When you see this error,
you must quit and reopen the
session.

UniRPC failed. When you see this
error, you must quit and reopen the
session.

Bad number of arguments for
message

Bad host name, or host not
responding

UniRPC failed to fork service
correctly

Cannot find or open the unirpcser-
vices file

Unable to find the service in the
unirpcservices file

Connection has timed out. When
you see this error, you must quit
and reopen the session (start the
UniRPC daemon or service on the
server).

Connection refused, unirpcd not
running. When you see this error,
you must quit and reopen the
session.

Failed to initialize network
interface

The UniRPC service has been
paused

An invalid transport type was used

B-8

Value Symbol Meaning

81020 UVRPC BAD PIPE Invalid pipe handle
81021 UVRPC PIPE_ WRITE _ERROR Error writing to pipe
81022 UVRPC_PIPE READ ERROR Error reading from pipe

B-9 InterCall Developer’s Guide

client

dynamic link
library (DLL)

extended
relational
database

graphical user
interface (GUI)

InterCall

locale

select list

S€rver

UniObjects
Programming
Interface

Glossary

A computer system or program that uses the resources and services of another system
or program (called a server).

A process that uses resources provided by a local or remote server process. See also
server.

A special executable library that applications can use to share code and resources.

A database that uses a three-dimensional file structure that supports multivalued data
within nested tables, and extensible, variable-length data formats. This enables a
single file (table) to contain the information that otherwise would be scattered among
several interrelated files.

A user interface that lets users interact with a computer application using images and
text.

A library of functions that let a client using UNIX or Windows access data on a
database server.

(UniVerse NLS only) The language, character set, and data formatting conventions
used by a group of people. In UniVerse, a locale comprises a set of conventions in
specific categories (Time, Numeric, Monetary, Ctype, and Collate).

A string of pointers to records in a file. A select list contains the record IDs of records
that meet specified criteria. Select lists can be used with other database utilities such
as RetrieVe on UniVerse or UniQuery on UniData.

A computer running software that offers resources to clients.
A process that accepts and handles requests from a client process.

An interface that allows database clients to access and manipulate data from
Windows applications. It provides a bridge between a database server with its
extended relational database structure and a powerful programming environment
such as Visual Basic.

Glossary 1

A B C D EVF G H I

J K L MNOZPG QRS STUVWXYZ @

Index

A

allocating 3-70
memory 3-10, 3-70

C

calling
cataloged subroutines 3-134
functions from C programs 2-5
functions from Visual Basic
programs 2-6
cataloged subroutines, see subroutines
character mapping 1-8
character strings, converting to external
format 3-72
checking string types 3-9
clearing
file operations 3-12
files 3-12
input stack 3-11
memory 3-10
public process locks 3-140
select lists 3-14
clients
definition Gl-1
NLS in 1-8
closing
files 3-16
sequential files 3-18
sessions 2-3
configurable parameters 1-8
NLSDEFSRVLC 1-8
NLSDEFSRVMAP 1-8, 3-126
NLSLCMODE 1-8
NLSMODE 1-8

connecting to Windows NT server 2-4
connections
determining type 2-7
LAN pipes 2-4
converting
strings to external format 3-72
strings to internal format 3-55
copying software 1-7
creating
select list of record IDs 3-115
select list of secondary index
values 3-118
select lists 3-40, 3-118
current session 2-3
getting information 2-3
quitting 3-81

D

data
deleting in dynamic arrays 3-132
passing 3-20
writing lines 3-154
data blocks, writing 3-151
database commands, executing 3-26,
3-28
dates
returning in external format 3-137
system 3-22
deleting
dynamic array data 3-132
files 3-12
records 3-24
delimiters
lowering values 3-69
inNLS 3-50

A B C D E F G H

raising values 3-84
determining connection type 2-7
developing InterCall applications

requirements 1-3
DLL, definition GlI-1
dynamic arrays 3-40

deleting data 3-132

inserting values into 3-62

locating 3-66

removing strings from 3-108

replacing data 3-111

returning data from 3-30
dynamic buffer allocation 2-5

E

EOF marks, writing 3-147
error codes 3-8, B-1
evaluating I-descriptors 3-64
executing database commands 3-26, 3-
28
extended relational database,
definition Gl-1
external format
converting strings to 3-72
time and date 3-137
extracting fields and records 3-139

F

fields
reading 3-139
reading from a field 3-97
file locks 3-100, 3-156
setting 3-34
file pointers, moving 3-114
files
clearing 3-12
closing 3-16
deleting 3-12
ictest.c 1-5
ictestmak 1-5
information about 3-32
installation 1-4
intcall.h 1-4, 1-5, B-1
INTCALL.TXT 1-4, 2-6, B-1
libuvic.a 1-5
locking 3-34

1

J K L M N O P Q R S

opening 3-74

opening sequential 3-77

reading sequential 3-95

unirpe32.dll 1-4,1-7

unlocking 3-36

UVCLNT32.DLL 1-4, 1-7

UVIC32.DLL 1-4, 1-7

UVIC32.LIB 1-4

version 1-5

vocC 2-7

writing records to 3-156

writing sequential 3-154

&SAVEDLISTS& 3-43
finding secondary index name 3-57
formatting strings 3-39
freeing memeory 3-42
functions

calling from C programs 2-5

calling from Visual Basic

programs 2-6

G

getting
information about current session 2-
3
locale names 3-46
map names 3-47
GUI, definition GI-1

I

ICSTRING type 2-5

ictest sample program 1-10
ictest.c file 1-5

ictest.mak file 1-5
ic_alpha function 3-9
ic_calloc function 3-10
ic_cleardata function 3-11
ic_clearfile function 3-12
ic_clearselect function 3-14
ic_close function 3-16
ic_closeseq function 3-18
ic_data function 3-20
ic_date function 3-22
ic_delete function 3-23
ic_execute function 3-25
ic_extract function 3-29

T U VW X Y Z @

ic_fileinfo function 3-31
ic_filelock function 3-34
ic_fileunlock function 3-36
ic_fmt function 3-38
ic_formlist function 3-40
ic_free function 3-42
ic_getlist function 3-43
ic_getvalue function 3-51
ic_get locale function 3-45
ic_get map function 3-47
ic_get mark function 3-49
ic_iconv function 3-54
ic_indices function 3-56
ic_inputreply function 3-59
ic_insert function 3-61
ic_itype function 3-63
ic_locate function 3-65
ic_lock function 3-67
ic_lower function 3-68
ic_malloc function 3-70
ic_oconv function 3-71
ic_open function 3-73
ic_openseq function 3-76
ic_opensession function 3-78
ic_quit function 3-81
ic_quitall function 3-82
ic_raise function 3-83
ic_read function 3-85
ic_readblk function 3-88
ic_readlist function 3-90
ic_readnext function 3-92
ic_readseq function 3-94
ic_readv function 3-96
ic_recordlock function 3-99
ic_recordlocked function 3-102
ic_release function 3-105
ic_remove function 3-107
ic_replace function 3-110
ic_seek function 3-113
ic_select function 3-115
ic_selectindex function 3-117
ic_session_info function 3-119
ic_setsession function 3-127
ic_setvalue function 3-129
ic_set_comms_timeout function 3-121
ic_set locale function 3-123
ic_set map function 3-125
ic_strdel function 3-131
ic_subcall function 3-133

Index 2

A B C D E F G H

ic_time function 3-135
ic_timedate function 3-136
ic_trans function 3-138
ic_unidata_session function 3-141
ic_universe session function 3-144
ic_unlock function 3-140
ic_weofseq function 3-147
ic_write function 3-149
ic_writeblk function 3-151
ic_writeseq function 3-153
ic_writev function 3-155
I-descriptors, evaluating 3-64
information about files 3-32
input stack, clearing 3-11
inserting values into dynamic arrays 3-
62
installing InterCall
files 1-4
intcall.h file 1-4, 1-5, B-1
INTCALL.TXT file 1-4,2-6, B-1
InterCall
applications
requirements for developing 1-3
requirements for running 1-3
definition GI-1
files 1-4
overview 1-2
sample program 1-10
internal format, converting strings 3-
55

K

key values 3-120
foric_fileinfo 3-32
for ic_getvalue 3-52

L

LAN Manager 1-3
LAN pipes connection 2-4
libuvic.a file 1-5
locales 1-9
definition Gl-1
getting names of 3-46
setting 3-124
locating string values in dynamic
arrays 3-66

3 InterCall Developer’s Guide

1

J K L M N O P Q R S

lock values
for ic_delete 3-23
for ic_read 3-86
locking
files 3-34
record locks 3-100
records 3-156
locks
clearing public process 3-140
file 3-97, 3-100, 3-156
record 3-97
releasing record 3-105
setting 3-100
setting public process 3-67
shared record lock 3-36, 3-103
unlocking 3-140
update record lock 3-36, 3-103
lowering delimiter values 3-69

M

maps
getting names of 3-47
setting 3-126
memory 2-5, 3-70
allocating 3-10
clearing 3-10
freeing 3-42
releasing 3-42
Microsoft Security Token 2-4
moving file pointers 3-114

N

NLS (National Language Support)
character mapping 1-8
in client programs 1-8
and delimiters 3-50
locale conversions 1-9
NLSDEFSRVLC parameter 1-8
NLSDEFSRVMAP parameter 1-8, 3-
126
NLSLCMODE paramater 1-8
NLSMODE parameter 1-8
null value 1-9

T U VW X Y Z @

O

opening

files 3-74

sequential files 3-77

sessions 2-3, 3-79, 3-142, 3-145
output buffers, size 2-6
overview of InterCall 1-2

P

passing
data 3-20

public process locks 3-140
unlocking 3-140

Q

quitting
all sessions 3-82
current session 3-81

R

raising delimiter values 3-84
reading
block of data from sequential files 3-
89
fields 3-139
fields from records 3-97
from select lists 3-91
lines from sequential files 3-95
record IDs from select lists 3-93
records 3-86, 3-139
READL locks, see shared record locks
READU locks, see update record locks
record IDs, list 3-115
record locks
releasing 3-105
status, returning 3-103
records
deleting 3-24
locking 3-100
reading 3-86
reading fields 3-139
writing fields to 3-156
writing to files 3-150

A B C D E F G H

releasing
memory 3-42
record locks 3-105
removing strings from dynamic
arays 3-108
replacing data in dynamic arrays 3-111
responding to server input request 3-60
restoring select lists 3-43
returning
data from dynamic arrays 3-30
date in external format 3-137
record lock status 3-103
secondary index information 3-57
session information 3-120
system date 3-22
system time 3-135
system variable values 3-51
time and date in external format 3-
137
running InterCall applications,
requirements 1-3

S

sample program 1-10
secondary indexes 3-118
finding name 3-57
returning information about 3-57
types 3-57
security token 2-4
select lists
clearing 3-14
creating 3-40
creating record ID list 3-115
reading from 3-91
reading record IDs from 3-93
restoring 3-43
secondary index values 3-118
sequential files
closing 3-18
opening 3-77
reading block of data from 3-89
reading lines from 3-95
server input, responding to request
for 3-60
server sessions 2-3
see also sessions
servers, definition Gl-1

1

J

K L M N O P Q R S

sessions

closing 2-3

current 2-3

information, returning 3-120
opening 2-3, 3-79, 3-142, 3-145
quitting all 3-82

quitting current 3-81

switching 2-3, 3-127

setting

locales 3-124

locks 3-34, 3-100

maps 3-126

public process locks 3-67
system variable values 3-129
UniRPC timeout 3-121

shared record locks 3-34, 3-97, 3-100
size of output buffers 2-6

status codes, see error codes

string values 3-66

strings

character 3-72

checking types of 3-9

converting to internal format 3-55
formatting 3-39

locating values in dynamic arrays 3-

66

subcalls

and ICSTRING 2-5
memory 3-10

subroutines, calling 3-134
switching sessions 2-3, 3-127
system date 3-22

system delimiters

see also delimiters
and the null value 1-9

system time 3-135
system variables

returning values 3-51
setting values 3-129

T

TCP/IP connections 3-79, 3-142, 3-

145

terminating, see quitting
timeouts, setting 3-121
times

returning in external format 3-137

T U VW X Y Z @

system 3-135

U

UniObjects Programming Interface,
definition GI-1

unirpc32.dll file 1-4, 1-7

UniRPC, setting timeout 3-121

unlocking files 3-36

update record locks 3-34, 3-97, 3-100

UVCLNT32.DLL file 1-4,1-7

UVIC32.DLL file 1-4,1-7

UVIC32.LIB file 1-4

v

values, inserting into dynamic
arrays 3-62
variables
system 3-51, 3-129
@TTY 2-7
version file 1-5
Visual Basic, calling functions from 2-
6
VOC file 2-7

W

writing
data blocks for sequential
processing 3-151
EOF marks 3-147
fields to records 3-156
lines of data 3-154
records to files 3-150

Symbols

&SAVEDLISTS& file 3-43
@TTY variable 2-7

Index 4

	Online Guide

	Table of Contents

	Preface
	Organization of This Manual
	Documentation Conventions
	Help
	API Documentation

	Introduction
	About InterCall
	Minimum System Requirements
	InterCall Installation
	On Windows Platforms
	On UNIX Systems

	How InterCall Works
	Copying the Software
	UniVerse NLS in Client Programs
	NLS Configurable Parameters
	Character Mapping

	The Sample Program

	Programming with InterCall
	Server Sessions
	Using the Microsoft Security Token

	Argument Passing Conventions
	The ICSTRING Type
	Calling Functions from C Programs
	Calling Functions from Visual Basic Programs

	Using the @TTY Variable

	InterCall Functions
	Function Summary
	Error Codes
	ic_alpha
	ic_calloc
	ic_cleardata
	ic_clearfile
	ic_clearselect
	ic_close
	ic_closeseq
	ic_data
	ic_date
	ic_delete
	ic_execute
	ic_executecontinue
	ic_extract
	ic_fileinfo
	ic_filelock
	ic_fileunlock
	ic_fmt
	ic_formlist
	ic_free
	ic_getlist
	ic_get_locale
	ic_get_map
	ic_get_mark_value
	ic_getvalue
	ic_iconv
	ic_indices
	ic_inputreply
	ic_insert
	ic_itype
	ic_locate
	ic_lock
	ic_lower
	ic_malloc
	ic_oconv
	ic_open
	ic_openseq
	ic_opensession
	ic_quit
	ic_quitall
	ic_raise
	ic_read
	ic_readblk
	ic_readlist
	ic_readnext
	ic_readseq
	ic_readv
	ic_recordlock
	ic_recordlocked
	ic_release
	ic_remove
	ic_replace
	ic_seek
	ic_select
	ic_selectindex
	ic_session_info
	ic_set_comms_timeout
	ic_set_locale
	ic_set_map (UniVerse only)
	ic_setsession
	ic_setvalue
	ic_strdel
	ic_subcall
	ic_time
	ic_timedate
	ic_trans
	ic_unlock
	ic_unidata_session
	ic_universe_session
	ic_weofseq
	ic_write
	ic_writeblk
	ic_writeseq
	ic_writev

	InterCall Functions by Use
	Accessing a Server
	Reading and Modifying Records
	Reading and Modifying Sequential Files
	Accessing and Modifying Strings
	Accessing and Modifying Select Lists
	Managing Database Files
	Using UniVerse NLS (UniVerse Only)
	Using System Utilities

	Error Codes
	Database Error Codes

	Glossary
	Index

